
Qin et al. Journal of Translational Medicine          (2023) 21:588  
https://doi.org/10.1186/s12967-023-04468-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Integrated machine learning survival 
framework develops a prognostic model based 
on inter‑crosstalk definition of mitochondrial 
function and cell death patterns in a large 
multicenter cohort for lower‑grade glioma
Hu Qin1†, Aimitaji Abulaiti1†, Aierpati Maimaiti1†, Zulihuma Abulaiti2, Guofeng Fan1, Yirizhati Aili1, Wenyu Ji1, 
Zengliang Wang1 and Yongxin Wang1* 

Abstract 

Background  Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately 
predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can 
influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic signifi-
cance of the interplay between mitochondrial function and cell death in LGG requires further investigation.

Methods  We employed a robust computational framework to investigate the relationship between mitochondrial 
function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total 
of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique 
combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using 
machine learning models that exhibited optimal performance.

Results  The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive perfor-
mance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and meta-
bolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity 
profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even follow-
ing adjustment for potential confounding factors, surpassing established clinical models in predictive strength.

Conclusion  Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI 
in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy inter-
ventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes 
that present further prospects for future investigations into the role of PCD within mitochondrial function.
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Introduction
Gliomas are the majority prevalent primary tumors that 
develop of the nervous system in the brain [1]. The clas-
sification of gliomas by the WHO is based on histological 
differences, resulting in four grades, with WHO II and III 
being classified as lower-grade gliomas (LGG). LGG have 
a more favorable prognosis compared to glioblastoma 
(GBM) [2]. While surgery is the recommended treatment 
for LGG, the invasive nature or close proximity of these 
tumors to critical tissues can make complete removal 
challenging. The current standard treatment for LGG 
involves surgery followed by radiotherapy, with chemo-
therapy serving as a promising alternative therapy [3]. 
Unfortunately, the findings suggest that all LGG survi-
vors, regardless of their treatment approach (surgical only 
management or no treatment), are at risk of experiencing 
long-term cognitive impairments in various domains [4]. 
Despite the current standard treatment, which yields a 
median survival time of 5–10 years for LGG patients [5]. 
Hence, there is a pressing need to unravel the underlying 
molecular mechanisms and develop a dependable molec-
ular classification model that can effectively evaluate 
prognosis and guide personalized treatment strategies for 
individuals diagnosed with LGG.

Programmed cell death (PCD) is a crucial physiologi-
cal process that plays a pivotal role in maintaining tis-
sue homeostasis and eliminating damaged or unwanted 
cells. PCD can occur through various mechanisms, 
including apoptosis, anoikis, autophagy, alkalipto-
sis, cuproptosis, entosis, entotic cell death, immuno-
genic cell death, ferroptosis, lysosome-dependent cell 
death, methuosis, necroptosis, netoticcelldeath, NETo-
sis, oxeiptosis, pyroptosis, parthanatos, and parapto-
sis [6]. Imagine PCD as a housekeeping system within 
the body. Just like we clean our houses to maintain 
cleanliness and order, PCD acts as an internal cleaning 
mechanism that removes damaged or unnecessary cells 
to keep the tissues healthy. Among these PCD mecha-
nisms, mitochondrial dysfunction has been implicated 
in several of them [7]. Mitochondria play a pivotal role 
in supplying energy for cellular functions, regulat-
ing cellular signaling pathways, and governing PCD. 
Studies have shown that mitochondrial dysfunction, 
characterized by changes in mitochondrial structure, 
function, and dynamics, is associated with decreased 
mitochondrial respiration, altered mitochondrial mor-
phology, and impaired mitochondrial quality con-
trol in LGG [8–10]. Apoptosis is a widely recognized 

mechanism of PCD, which serves an essential function 
in preserving tissue homeostasis and eliminating dam-
aged or unnecessary cells. Apoptosis is typified by a 
sequence of biochemical and morphological alterations 
[11, 12]. Pyroptosis is a form of PCD that occurs fol-
lowing inflammasome activation and caspase-1 cleav-
age. Cellular enlargement, membrane rupture, and 
the production of pro-inflammatory cytokines are its 
defining features [13]. Ferroptosis is a recently identi-
fied type of PCD defined by iron-dependent cellular 
demise and lipid peroxidation [14]. Autophagy is a cel-
lular mechanism that is essential for preserving cellular 
equilibrium by breaking down impaired proteins and 
organelles. Autophagy can serve as a mechanism for 
either promoting cell survival or inducing cell death, 
depending on the specific context in which it occurs 
[15]. Necroptosis is a form of PCD that is characterized 
by necrosis-like cell death and is triggered by the acti-
vation of RIPK1 and RIPK3 [6]. Cuproptosis is a form 
of PCD that is triggered by copper overload and is char-
acterized by lipid peroxidation and mitochondrial dys-
function. Entotic cell death occurs exclusively in viable 
cells and their adjacent regions. Unlike the traditional 
apoptotic pathway, entotic cell death does not require 
the activation of apoptotic executioner pathways [16]. 
Netotic cell death is an additional type of PCD that 
occurs due to the discharge of neutrophil extracellular 
traps (NETs), commonly observed in response to infec-
tions or injuries [17]. Parthanatos is a tightly controlled 
type of cell death triggered by excessive activation of 
the nuclease PARP-1 [18]. The process of lysosome-
mediated cell death involves the action of hydrolases 
that enter the cytosol through membrane permeabiliza-
tion [19]. Additionally, alkaliptosis, an emerging type of 
programmed cell death, is controlled by the process of 
intracellular alkalinization [20]. Oxeiptosis, which uti-
lizes the reactive oxygen sensing capabilities of KEAP1, 
is a recently discovered cellular pathway that is likely to 
operate in conjunction with other cell death pathways 
[21].

In the context of LGG, tumor cells can evade PCD 
mechanisms through various strategies, similar to 
concealing garbage in hidden corners of a room. They 
may change their shape or activate specific signaling 
pathways to escape elimination. The increased under-
standing of PCD mechanisms has led to the develop-
ment of numerous drugs that target these pathways. 
For instance, the FDA approved a BCL-2 inhibitor that 
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regulates cell apoptosis, which is effective in treating 
lymphoma [22]. GSDME-induced pyroptosis, a distinct 
form of programmed cell death, has shown potential 
as an anti-tumor immunotherapy [23]. Furthermore, 
research has demonstrated that obstructing ferropto-
sis can trigger cellular resistance to anti-PD-1/PD-L1 
treatment [24]. These findings demonstrate the impor-
tance of PCD research in advancing our understanding 
of LGG and developing new therapies to combat them.

Disrupted mitochondrial morphology, such as changes 
in shape, size, or cristae organization, can disrupt normal 
mitochondrial function and trigger PCD [25–27]. Struc-
tural abnormalities may affect the release of pro-apop-
totic factors from the mitochondria, leading to caspase 
activation and subsequent apoptosis [27]. Mitochon-
drial function is also closely linked to PCD mechanisms. 
Dysfunctional mitochondria with impaired oxidative 
phosphorylation and ATP production can induce cellu-
lar stress and initiate PCD pathways [25]. To better link 
mitochondrial function to PCD as described above, a 
series of related biomarkers were screened in this study. 
Nowadays, several molecular markers have been identi-
fied as clinically significant in both the diagnosis and 
prognosis of LGG [28–31]. Markers such as IDH1 muta-
tion and MGMT promoter methylation play a critical 
role in determining the optimal postsurgical treatment, 
including adjuvant chemotherapy and radiotherapy, and 
are strongly associated with the prognosis of LGG [32]. 
In addition to genetic factors, various environmental 
and lifestyle factors can contribute to the development 
of LGG [33]. The carcinogens present in tobacco smoke 
have the potential to inflict DNA damage on brain cells, 
thus facilitating tumor formation [34]. There have been 
studies examining the potential correlation between 
exposure to electromagnetic fields (EMF), such as those 
emitted by power lines or electronic devices, and the risk 
of brain tumors, including LGG [35].

In the process of screening and proving numerous bio-
markers, sources of bias such as sample selection bias, 
tumor heterogeneity, analytical bias, and publication 
bias can impact the accuracy and generalizability of the 
results [36]. Hence, the identification of survival-asso-
ciated genes through transcriptome-based databases is 
necessary for prognostic prediction and targeted treat-
ment selection. For decades, researchers have dem-
onstrated that mitochondrial dysfunction and PCD 
mechanisms are essential for the development and spread 
of malignant neoplasms. In order for malignant cells to 
progress, they must overcome various forms of cell death 
and mitochondrial dysfunction. Nevertheless, there is 
still a lack of comprehensive understanding regarding the 
interplay between mitochondrial dysfunction and PCD 
in LGG, and there are limited detailed functional studies 

of these processes in LGG. To fill these knowledge gaps, 
we introduced a novel metric called the mitochondrial 
programmed cell death index (mtPCDI) to forecast the 
efficacy and prognosis of therapeutic interventions in 
LGG. Through our investigation, we discovered the het-
erogeneity among LGG patients and evaluated their clin-
ical outlook. While our findings rely on the hypothesis of 
an interaction between mitochondrial dysfunction and 
PCD, this provides valuable guidance for selecting the 
best treatment options.

Materials and methods
Data collection
We obtained clinical details and transcriptome data of 
individuals suffering from LGG from four databases: 
the Cancer Genome Atlas (TCGA, https://​portal.​gdc.​
cancer.​gov), Chinese Glioma Genome Atlas (CGGA, 
http://​www.​cgga.​org.​cn/), Gene Expression Omnibus 
(GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo), and ArrayEx-
press (https://​www.​ebi.​ac.​uk/​biost​udies/​array​expre​ss). 
The total analysis included 1467 samples, with 506 sam-
ples from TCGA-LGG, 172 samples from CGGA-325, 
420 samples from CGGA-693, 121 samples from Rem-
brandt, 121 samples from GSE16011, and 142 samples 
from E-MTAB-3892. To improve comparability across 
datasets, all RNA-seq data were converted to transcripts 
per million (TPM) format and corrected for batch effects 
using the “combat” function of the “sva” package. Prior to 
analysis, all data were log-transformed.

In data collection for differential expression analysis, 
we acquired RNAseq data in TPM (Transcripts Per Mil-
lion) format from two distinct sources: the TCGA and 
the Genotype-Tissue Expression (GTEx) project. Specifi-
cally, we retrieved 506 LGG samples (WHO grade II and 
III) from TCGA and 105 normal cerebral cortex samples 
from GTEx. For consistency and standardized process-
ing, all the data underwent uniform processing using 
the Toil process [37] from UCSC XENA (https://​xenab​
rowser.​net/​datap​ages/). Harmonized data processing 
ensures that the datasets are compatible and reduces any 
potential bias arising from variations in data preprocess-
ing methods.

Identification of prognostic mitochondria‑related genes 
and PCD‑related genes
We conducted a literature search [38] and gathered 
18 patterns of PCD and key regulatory genes, which 
included 580 genes related to apoptosis, 367 genes 
related to autophagy, 7 genes related to alkaliptosis, 338 
genes related to anoikis, 19 genes related to cuprop-
tosis, 15 genes related to enteric cell death, 87 genes 
related to ferroptosis, 34 genes related to immunogenic 
cell death, 220 genes related to lysosome-dependent 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://www.cgga.org.cn/
http://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/biostudies/arrayexpress
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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cell death, 101 genes related to necroptosis, 8 genes 
related to netotic cell death, 24 genes related to NETo-
sis, 5 genes related to oxeiptosis, 52 genes related to 
pyroptosis, 9 genes related to parthanatos, and 66 genes 
related to paraptosis. Additionally, there were 8 Methu-
osis genes and 23 Entosis genes, resulting in a total of 
1964 PCD-related genes. We removed 416 duplicates, 
resulting in 1548 PCD-related cluster genes for our 
analysis (Additional file  9: Table  S1). From MitoCarta 
3.0 [39], we extracted 1136 mitochondria-related genes 
(Additional file 10: Table S2).

We employed the “limma” package to identify genes 
with differential expression in LGG and their associated 
normal tissues. To determine differential expression, we 
set thresholds of log2 fold change (log2FC) greater than 
2 and a false discovery rate (FDR) less than 0.05. Sub-
sequently, we utilized the “VennDiagram” package to 
show visual representations in differentially expressed 
genes (DEGs) related to mitochondrial function and pro-
grammed cell death. Additionally, we conducted Pearson 
correlation analysis on the RNA-seq data of TCGA-LGG 
samples to identify mtPCD (mitochondrial programmed 
cell death) co-expressed genes that exhibit a correlation 
coefficient (R) greater than 0.6 and a p-value (P) less than 
0.001.

Development of prognostic model
We integrated ten diverse machine learning algorithms 
and evaluating 101 algorithmic combinations [40, 41]. 
These machine learning algorithms included Support 
Vector Machine (SVM), Least Absolute Shrinkage and 
Selection Operator (Lasso), Gradient Boosting Machine 
(GBM), Random Forest, Elastic Net, Stepwise Cox, 
Ridge, CoxBoost, Super Partial Correlation (SuperPC), 
and Partial Least Squares with Cox regression (plsRcox). 
We followed a sequential approach [40] that involved 
identifying prognostic variables using univariate Cox 
regression modeling, developing prediction models on 
the TCGA-LGG cohort, validating these models on five 
external and independent datasets (CGGA-325, CGGA-
693, Rembrandt, GSE16011, and E-MTAB-3892), and 
calculating the Harrell Consistency Index (C-index) for 
model selection. We defined the model with the high-
est average C-index in all cohorts as the optimal model. 
Based on previous descriptions in the references [40, 42], 
we categorized LGG patients into high- and low-mtPCDI 
cohorts using the median score of the respective cohort. 
Subsequently, we assessed the prognostic significance 
using Kaplan–Meier curves. Additionally, Calibration 
curves and Receiver Operating Characteristic (ROC) 
curves were generated to evaluate the mtPCDI’s prognos-
tic efficacy.

Biological function and pathway enrichment analysis
To identify genes that exhibited significant differential 
expression between the high and low mtPCDI categories, 
we applied selection criteria of FDR < 0.05 and log2 fold 
change (FC) > 1. In order to explore the biological func-
tions and pathway processes associated with mtPCDI, we 
conducted gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis using “cluster-
Profiler” package. Briefly, we used the above differen-
tial genes as inputs, converted them to Entrez id before 
GO and KEGG enrichment analysis, and used a adj. 
p-value < 0.05 as a criterion. Gene set enrichment analy-
ses (GSEA) enrichment were conducted for differential 
genes between different mtPCDI groups. In addition, 
Gene Set Variation Analysis (GSVA) was performed to 
investigate the heterogeneity of various biological pro-
cesses, using the “GSVA” package [43].

Assessment of the immune microenvironment
To assess the degree of immunological infiltrate compre-
hensively, we utilized various bioinformatic algorithms, 
including single-sample Gene Set Enrichment Analy-
sis (ssGSEA) [44], Tumor Immune Estimation Resource 
(TIMER) [45], Cell-type Identification by Estimating 
Relative Subpopulations of RNA Transcripts (CIBER-
SORT) [46], CIBERSORT-ABS [47], QUANTISEQ [48], 
Microenvironment Cell Populations-counter (MCP-
counter) [49], Xcell [50], and Estimation of Proportion 
of Immune and Cancer cells (EPIC) [51]. Each algorithm 
employed unique strategies and gene expression signa-
tures to estimate the abundance of different immune cell 
subpopulations. By computing the enrichment or relative 
abundance of marker genes, we accurately estimated the 
proportions of invading immune cell types in the LGG 
samples. Furthermore, we employed the “Estimation of 
Stromal and Immune cells in Malignant Tumor tissues 
using Expression data” (ESTIMATE) algorithm to gener-
ate overall immunological scores. Finally, we conducted 
an analysis of the expression patterns of 60 immunomod-
ulatory genes [52], including those involved in antigen 
presentation, cell adhesion, co-inhibitors, co-stimulators, 
ligands, and receptors. Finally, we utilized the Wilcoxon 
signed rank summation test. This statistical test allowed 
us to determine the significance of differences in immune 
infiltration. Additionally, we generated heat maps show-
ing the abundance of immune infiltration for each LGG 
sample under the distinct algorithms used, providing a 
visual representation of these differences.

Development of nomogram scoring system
We employed the ‘rms’ package, a widely used tool in sta-
tistical analysis and modeling, to develop a nomogram. 
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This nomogram aimed to integrate clinical and patho-
logical features with mtPCDI to predict patient survival. 
Nomograms are graphical predictive models that pro-
vide a personalized probability of an outcome based on 
individual characteristics. To validate the precision of the 
projected survival rates at 1-, 3-, and 5-year intervals, we 
generated calibration plots.

The mtPCDI signature’s function in forecasting drug 
susceptibility
We utilized the ‘pRRophetic’ and ‘oncoPredict’ packages 
to determine the half-maximal inhibitory concentration 
(IC50) of chemotherapy drugs commonly administered 
for LGG treatment in both the high- and low-mtPCDI 
groups.

Cluster analysis of mtPCDI signature genes
We performed a consensus cluster analysis on tumor 
samples using the expression levels of 18 mtPCDI marker 
genes, employing the “ConsensusClusterPlus” package. 
The objective of this analysis was to classify the samples 
into distinct subgroups. In addition, we employed t-SNE 
analysis and principal component analysis (PCA) to visu-
ally evaluate the clustering patterns of the samples.

Pan‑cancer analysis of mtPCDI signature genes
For each type of cancer, our analysis compared tumor 
expression with normal tissue surrounding the tumor. 
The gene expression patterns of signature genes 
(log2FC > 1.5, FDR < 0.05) were examined specifically. 
We utilized clinical data from 33 different cancer tumor 
samples obtained from TCGA to investigate the relation-
ship between gene expression and survival. Moreover, to 
assess the impact of gene expression on patient survival, 
we constructed a survival landscape for the signature-
derived genes. We categorized the tumor specimens into 
low- and high-expression groups based on mRNA values 
and utilized the “survival” package to analyze the sur-
vival times and status within these groups. Furthermore, 
we examined copy number variation (CNV) data from 
11,495 samples within the TCGA database. Our objective 
was to identify instances of significant CNV amplifica-
tions or deletions within the cohort. We considered both 
amplifications and deletions to enhance the detection 
of alterations in each gene. We defined high-frequency 
CNVs as those with a frequency exceeding 5%. Addition-
ally, we collected single nucleotide variant (SNV) data 
from a total of 10,234 samples across 33 different types of 
cancers. Our aim was to understand the overall mutation 
frequencies across pan-cancer. To summarize the SNV 
data, we generated percentage heat maps. Finally, we 
compared the methylation patterns of each gene between 
tumor and normal samples using the Wilcoxon signed 

rank test. We identified significantly hypo- or hyper-
methylated genes using a probability value threshold of 
0.05.

Statistical analyses
Statistical analyses were performed to assess the sig-
nificance of observed differences and correlations in 
the study. All data were expressed as mean ± SD (stand-
ard deviation). To evaluate the impact of risk factors on 
survival outcomes, Cox regression models and Kaplan–
Meier (K-M) survival analysis were utilized. Pearson 
correlation analysis was conducted to explore the rela-
tionships between variables. Statistical analysis and sci-
entific graphing were performed using R Studio (version 
4.2.3). A significance level of p < 0.05 was considered sta-
tistically significant.

Results
Preliminary screening of mtPCDI regulators
Our study workflow is depicted in Fig. 1. Initially, we col-
lected essential regulatory genes that encompassed 18 
PCD patterns from literature sources [38]. Subsequently, 
we included 1548 PCD-associated crosstalk genes in 
our analysis, as illustrated in Fig.  2A. We then per-
formed differential analysis to identify 11,581 genes that 
exhibited differential expression between normal and 
tumour tissues, as depicted in Fig. 2B. As demonstrated 
in Fig.  2C, 134 mitochondria-associated genes and 333 
programmed cell death-associated genes exhibited dif-
ferential expression between different samples. To iden-
tify genes involved in mitochondrial and programmed 
cell death co-crosstalk, applying pearson co-expression 
(r > 0.6, p < 0.001), a comparison was made between 
the 333 gene expression patterns associated with pro-
grammed cell death and the 134 markers related to 
mitochondrial function, resulting in 215 mitochondrial 
function and cell death co-expressed genes (Additional 
file 11: Table S3). We then applied Cox regression anal-
ysis to evaluate whether these 215 co-expressed genes 
influenced patient prognosis. 146 mtPCD-related genes 
were revealed in the TCGA-LGG cohort. And exhibited 
significant associations with overall survival (OS) among 
patients diagnosed with LGG, as outlined in Additional 
file 12: Table S4.

Integrative construction of a consensus signature
We employed ten machine learning algorithms to con-
struct mtPCDI. These algorithms were applied to the 
TCGA-LGG cohort and five external validation datasets 
(CGGA-325 and CGGA-693, Rembrandt, GSE16011, 
and E-MTAB-3892) to determine the optimal model 
(the largest average C-index in the six cohorts). The 
final RSF algorithm identified the 18 most valuable 
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Fig. 1  The graphic depicts the study’s process
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mtPCDI signature genes, including ACAA2 (acetyl-
CoA acyltransferase 2), ACACB (acetyl-CoA carboxy-
lase beta), ANGPTL2 (angiopoietin-like 2), ANXA5 
(annexin A5), BRCA1 (breast cancer type 1 susceptibil-
ity protein), BRCA2 (breast cancer type 2 susceptibil-
ity protein), CTSL (cathepsin L), ECHDC2 (enoyl-CoA 
hydratase domain-containing 2), ERCC4 (ERCC exci-
sion repair 4), GNS (N-acetylglucosamine-6-sulfatase), 
IFI16 (interferon gamma-inducible protein 16), MCUB 
(mitochondrial calcium uniporter), MRPS16 (mitochon-
drial ribosomal protein S16), MSH6 (MutS Homolog 6), 
MTPAP (mitochondrial poly(A) polymerase), NCOA4 
(nuclear receptor coactivator 4), PABPC5 (poly(A) bind-
ing protein cytoplasmic 5), and PDE2A (phosphodies-
terase 2A). The best-performing model was constructed 
(Fig. 2D). Remarkably, in the TCGA-LGG, LGG patients 
with elevated expression of six signature genes demon-
strated an extended survival period, whereas those with 
increased expression of 12 signature genes had a short-
ened survival duration (Additional file 1: Figure S1).

Our analysis of patients with LGG in the TCGA-
LGG, CGGA-325, CGGA-693, Rembrandt, GSE16011, 
and E-MTAB-3892 datasets showed that high mtP-
CDI expression was associated with reduced survival 
times, as illustrated in Fig.  2E. The TCGA-LGG dataset 
showed AUC values of 0.971, 0.988, and 0.988 for the 
three respective years. The CGGA-325 dataset exhibited 
AUC values of 0.823, 0.863, and 0.842, while the CGGA-
693 dataset presented AUC values of 0.761, 0.762, and 
0.727. Further, the E-MTAB-3892 dataset displayed AUC 
values of 0.655, 0.699, and 0.652, and the GSE16011 
dataset depicted AUC values of 0.930, 0.810, and 0.742. 
Lastly, the Rembrandt dataset demonstrated AUC values 
of 0.788, 0.852, and 0.790 for the same duration. These 
results underscore the prognostic significance of mtP-
CDI, as illustrated in Fig. 2F.

Characterisation of clinical variables
To evaluate the predictive performance of our prognos-
tic model for OS in patients with LGG, we categorized 
LGG patients based on several number of diagnostic fea-
tures. These include age, gender, tumor level, response 
to radiation and chemotherapy, IDH1 mutation sta-
tus, MGMT promoter methylation position, 1p/19q 
teamed up-deletion situation, TERT expression and 

TERT mutant status, as well as ATRX mutation status, as 
described in Additional file  14: Table  S6. We compared 
the mtPCDI between different subgroups of clinical path-
ological variables and observed significant differences 
in age stratification, tumor grade, chemotherapy status, 
1p/19q co-deletion, IDH1 mutation status and MGMT 
inducer methylation position (p < 0.05) among different 
subgroups, as illustrated in Additional file  2: Figure S2. 
Moreover, Kaplan–Meier analysis demonstrated that the 
OS frequency was greater in the lower mtPCDI cohort 
contrasted to the higher mtPCDI category, as illustrated 
in Additional file 3: Figure S3. The heatmap of the mtP-
CDI prognostic model and clinical pathological variables 
is depicted in Fig. 3A.

Annotation of characteristics for the mtPCDI signature 
genes
We conducted a comprehensive analysis of the somatic 
mutation frequency of the 18 mtPCDI signature genes, 
revealing that their mutation frequency was remark-
ably low in TCGA-LGG samples. Of the signature genes, 
ACACB and BRCA2 exhibited the highest mutation fre-
quency at a mere 2% (Additional file 4: Figure S4A). To 
obtain more detailed information, we looked at where the 
18 mtPCDI signature genes—which are found on chro-
mosomes—had CNV changes (Additional file  4: Figure 
S4B), and found their ubiquity upon further analysis of 
CNV frequency (Additional file 4: Figure S4C). We found 
that there was a substantia variation in the expression 
of 16 signature genes comparing both of these group-
ings, as illustrated in Additional file  4: Figure S4D. The 
mtPCDI prognosis model and heatmap of the 18 mtP-
CDI signature genes are presented in Fig. 3A. The TSC/
mTOR, RTK, PI3K/AKT, RAS/MAPK, Hormone ER, 
DNA Damage Response, Hormone AR, EMT, Cell Cycle, 
and Apoptosis pathways are widely recognized as being 
closely linked to cancer. To evaluate the activity levels, we 
classified the samples into a pair of categories (High and 
Low) on the basis of a median gene expression. To deter-
mine the effect of a gene on a pathway, we used pathway 
activity score (PAS) (gene low expression) < PAS (gene 
high expression) to indicate activation and the opposite 
for inhibition (Fig.  3B). Figure  3C provides an overview 
of the relationship between the 18 mtPCDI hallmark 
genes expression and the 24 immunological kinds of cell 

(See figure on next page.)
Fig. 2  The Prognostic Significance of the mtPCDI. A Collection of key regulatory genes containing 18 PCD patterns. B Identification of differentially 
expressed gene volcanoes between cerebral cortex and LGG tissues. C 134 mitochondria-associated genes and 333 programmed cell 
death-associated genes exhibited differential expression in LGG tumour tissues compared to normal tissues. D The machine learning algorithms 
used by mtPCDI were 101 different combinations. Subsequently, each model’s c-index was calculated for each dataset (E) TCGA-LGG, CGGA-325, 
CGGA-693, Rembrandt, GSE16011, and E-MTAB-3892 survival curves by mtPCDI. F ROC curves of 1-year, 3-year, and 5-year OS in the each datasets
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Fig. 2  (See legend on previous page.)
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Fig. 3  Annotation of characteristics for the mtPCDI signature genes. A Heatmap is presented to display the relationship of mtPCDI groups 
and clinical features, as well as the expression of the 18 most significant genes in patients with LGG. B Heatmap displays the proportion of cancers 
in LGG in which a gene exhibits a significant impact (with FDR ≤ 0.05) on the pathway, with each cell representing the corresponding percentage 
value. C Bubble plot that presents the summary of the correlation between18 mtPCDI signature genes expression and 24 immune cell types 
infiltrates in LGG. D Heat map showing the gene-pathways involved in 18 mtPCDI signature genes. E Heatmap displaying the enrichment scores 
of important pathways. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance
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infiltrated in LGG. Additionally, an analysis was per-
formed to identify potential pathways associated with 
each risk gene. As illustrated in Fig. 3D and E, a total of 
186 pathways were significantly correlated with these 18 
genes, encompassing Cell cycle, biological metabolism, 
and immune activity, among others. We then delved into 
the role of the 18 mtPCDI signature genes’ expression 
on immune subtypes (Additional file  5: Figure S5) and 
molecular subtypes (Additional file 6: Figure S6) among 
LGG using the TISIDB website.

Based on our findings, we conclude that the 18 sig-
nature genes exhibit differential expression in various 
immunological and molecular subtypes of LGG.

Multi‑omic comparison between two mtPCDI groups
Using GISTIC2.0, we identified that the mtPCDI-high 
group displayed a higher frequency of recurrent copy 
number alterations compared to the low-mtPCDI group 
(Fig. 4A, B). We then utilized CNA information to inves-
tigate specific chromosomal modifications. Notably, we 
observed a higher frequency of Chr 7 amplification cou-
pled with Chr 10 loss, a major characteristic of glioma 
[53], in the high-mtPCDI subset (Fig.  4C). Conversely, 
the low-mtPCDI group had a higher occurrence of the 
1p/19q codeletion, a genomic indicator of oligodendro-
glioma (Fig. 4D) [54]. Furthermore, an analysis of genes 
impacted by somatic copy number alterations unveiled 
a heightened occurrence of deletions in tumor suppres-
sor genes, such as RB1, PTEN, and MAP3K7, among dif-
ferent LGG patients (Fig.  4E; all p < 0.05). We observed 
frequent amplification of CCND1, CDKN1B, and CHD1 
in the high-mtPCDI group (all p < 0.05). Additionally, 
we compared common somatic mutations in individu-
als with high and low mtPCDI (Fig.  4F) and discovered 
significant IDH1 mutations were more frequent in low-
mtPCDI patients compared those with high-mtPCDI 
patients. Moreover, the high-mtPCDI group exhib-
ited significantly elevated aneuploidy score, proportion 
changed, homologous recombination faults, nonsilent 
mutation rate, number of segments, and tumor mutation 
load (TMB) in comparison to the low-mtPCDI group (all 
p < 0.05, Fig. 4G, H).

To investigate the correlation between TMB and mtP-
CDI, we found that TMB was noticeably more abun-
dant in the high-mtPCDI subgroup (p < 0.001; Fig.  4H). 
TMB and mtPCDI also showed a moderately positive 
correlation (R = 0.36, p < 0.001; Fig.  4I). It is noteworthy 
that patients with lower TMB scores had better survival 
outcomes compared to those with higher TMB scores 
(Fig. 4J). To unravel the synergistic or antagonistic poten-
tial of TMB and mtPCDI in predicting survival, we cat-
egorized patients based on these factors and conducted 
survival analysis. Patients with low TMB and mtPCDI 

had the most favorable prognoses, while those with high 
TMB and mtPCDI had the worst outcomes (Fig. 4K).

These findings suggest a potential association between 
mutational burden and response to immunotherapy, pro-
viding a novel perspective on checkpoint blockade treat-
ment. Overall, the genomic pattern of the mtPCDI-high 
group resembled that of advanced LGG.

The underlying biological mechanisms of mtPCDI groups
To delve deeper into the biological processes linked to 
mtPCDI groups, we executed enrichment analysis. The 
Kyoto Encyclopedia of Genes and Genome (KEGG) 
results are presented in Fig. 5A. Regarding cellular pro-
cesses, mtPCDI were predominantly enriched in focal 
adhesion, phagosome, and cell cycle. In terms of environ-
mental information processing, mtPCDI appeared most 
highly concentrated in the PI3K-Akt signaling pathway, 
ECM-receptor communication, and cytokine-cytokine 
receptors connection. Concerning organismal systems, 
mtPCDI were particularly abundant in cytosolic DNA-
sensing route, complementing and anticoagulant chain 
reactions, and the NOD-like receptor signaling pathways. 
The Gene ontology (GO) results are presented in Fig. 5B. 
Concerning biological processes (BP), the genes associ-
ated with mtPCDI were primarily enriched in leukocyte-
mediated protection, lymphocyte-mediated the body’s 
defense, and immune response adaptation. Regarding 
cellular components (CC), the genes associated with 
mtPCDI were primarily rich in a matrix of cells that con-
tains collagen, the endoplasmic reticulum (ER) lumen, 
and plasma membrane’s outer layer. The primary molec-
ular functions (MF) of mtPCDI were concentrated in the 
matrix of cells structural component, glycosaminoglycan 
enforceable, and enzyme inhibition activity.

In addition, we utilized GSEA to identify potential 
pathways associated with mtPCDI. As depicted in Fig. 5C 
and E, the low-mtPCDI group was significantly enriched 
for environmental information processing and cellular 
process-related pathways, such as ECM receptor inter-
action and focal adhesion. In contrast, the high-mtPCDI 
group was predominantly associated with DNA replica-
tion, cell cycle, and other biological processes related to 
proliferation, which partially explained its more advanced 
grades and unfavorable prognosis, as depicted in Fig. 5D 
and F. The supplementary distinctions in biological path-
ways between the two mtPCDI groups are presented in 
Additional file 7: Figure S7.

Potential biological mechanisms related to the mtPCDI 
signature
Cancer stem cells (CSCs), are cancerous cells that exhibit 
traits associated with normal stem cells and have the abil-
ity to produce every type of cell observed in a particular 
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cancer sample. To investigate the gene expression and 
epigenetic profiles of CSCs, we calculated mRNAsi 

scores and mDNAsi scores, respectively, in TCGA-LGG 
samples. Heatmaps of mRNAsi and mDNAsi scores 

Fig. 4  Multi-omics characterisation. Recurrent regions of copy number amplification and deletion in the (A) mtPCDI-high and (B) low-mtPCDI. 
Different profiles of copy number alterations observed between LGG patients with high- and low-mtPCDI. C–D, landscape with 1p/19q co deletion 
incidence in high and low mtPCDI subset. E Oncoprint showing genes affected by recurrent copy number alterations, with corresponding 
proportions of alterations in each group depicted in the bar plot on the right. F Oncoprint showing common somatic gene mutations, 
with corresponding proportions of mutations in each group depicted in the bar plot on the right. G Comparison of aneuploidy score, fraction 
altered, homologous recombination defects, nonsilent mutation rate, and number of segments between high- and low-mtPCDI patients 
in the TCGA-LGG dataset. H Comparison of high- and low-mtPCDI subgroups of TMB. I Mutation load and mtPCDI correlation analysis. J Kaplan–
Meier curve of OS for patients classified by mtPCDI. K mtPCDI and TMB-categorized OS Kaplan–Meier curves. *p < 0.05; **p < 0.01; ***p < 0.001; ns, 
no statistical significance
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Fig. 5  Functional enrichment analysis of mtPCDI groups. A KEGG and B GO enrichment analyses of mtPCDI groups. The top 5 GSEA enriched 
pathways in the C, E low-mtPCDI D, F and high-mtPCDI groups
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Fig. 6  Functional annotation of the mtPCDI signature. A Association between known clinical and molecular features (age, gender, grade, 
chemotherapy status, radiotherapy status, IDH1 status, MGMT promoter methylation status, 1p/19q codeletion, TERT promoter methylation status, 
TERT expression status, and ATRT status) and mRNAsi in LGG. B Association between known clinical and molecular features (age, gender, grade, 
chemotherapy status, radiotherapy status, IDH1 status, MGMT promoter methylation status, 1p/19q codeletion, TERT promoter methylation 
status, TERT expression status, and ATRT status) and mDNAsi in LGG. C Correlation between mRNAsi and mtPCDI, and mRNAsi difference 
between two mtPCDI groups. D Correlation between mDNAsi and mtPCDI, and mDNAsi difference between two mtPCDI groups. E Correlation 
between TIS and mtPCDI, and TIS difference between high- and low-mtPCDI groups. F Box plot portrays the dissimilarities in cancer immunity 
cycle between two mtPCDI groups. G Radar plot displaying the tumor-infiltrating immunecells between two mtPCDI groups. H The bar plot 
shows the relative proportion of tumor-infiltrating immunecells. I Heatmap illustrates the expression levels of 178 step-specific signature genes 
associated with anti-cancer immunity across all samples in the seven-step Cancer-Immunity Cycle. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical 
significance
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against clinicopathological information are presented 
in Fig. 6A and B, while the correlation and variability of 
mRNAsi and mDNAsi scores with mtPCDI are displayed 
in Fig.  6C and D. Specifically, higher mtPCDI values 
were associated with lower mRNAsi scores and higher 
mDNAsi scores. Furthermore, higher mtPCDI character-
istics were linked to a higher TIS, as shown in Fig. 6E.

To investigate potential biological mechanisms asso-
ciated with the mtPCDI signature, and the progression 
of cancer protection was estimated. Interestingly, in 
known as high mtPCDI team, four phases in the tumors 
immune process had been additional engaged, which 
includes phase 1 (antigen release), phase 2 (cancer anti-
gen presentation), phase 3 (priming and activation), and 
phase 4 (tumor immunized infiltrating cells recruit-
ment). However, three phases in the cancers immunized 
period were inert, including step 5 (immune tissues 
influx), phase 6 (cancer cells comprehension by T cells), 
and phase 7 (cancer cells executing) in the TCGA-LGG, 
as shown in the Fig.  6F. Additionally, we calculated the 

tumour-infiltrating immune cell scores to explore poten-
tial immunological mechanisms associated with the mtP-
CDI profile. As depicted in Fig. 6G and H, high mtPCDI 
were broadly associated with higher levels of CD4 Naive, 
CD8 Effector, CD8 Naive, DC, Monocytes CD14, Mono-
cytes CD16, NK, pDC, Plasma, and Th cells in the TCGA 
LGG developed for tumour characteristics. Furthermore, 
we investigated the expressing themselves quantities of 
178 step-specific that it has been signed genes associated 
with cancer-fighting protection in the seven-phase Can-
cer-Immunity process across really samples.  The results 
of this analysis are displayed in Fig. 6I.

Immune characteristics
To assess the role of mtPCDI markers in LGG in the 
tumor immune microenvironment, we investigated the 
relationship between mtPCDI grouping and mtPCDI 
markers with immune cell infiltration and immunomod-
ulators, respectively. Our analysis revealed that the high-
mtPCDI group exhibited more immune cell infiltration 

Fig. 7  Exploration of the tumour immune microenvironment. A Immune infiltrating cells were estimated by using multiple algorithms 
between the two mtPCDI subgroups. B Immune modulator molecules were estimated between the two mtPCDI subgroups. C Correlation analysis 
to estimate the number of immune-infiltrating cells. D Correlation analysis to estimate the presence of immune modulator chemicals. Differences 
in scores for infiltrating immune cells E and immune-related functions F between two mtPCDI groups. G Estimatescore, immunescore, stromalscore, 
and Tumorpurity in the two mtPCDI groups. H butterfly plot to illustrate the correlation between mtPCDI and infiltrating immune cells, as well 
as immune-related functions. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance
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based on seven immune infiltration algorithms (Fig. 7A). 
To explore the differences in immunomodulator expres-
sion between the two subgroups, we examined the 
expression of immunomodulators (antigen presenta-
tion, cell adhesion, co-inhibitors, co-stimulators, ligands, 
receptors, etc.), showing higher expression in the high-
mtPCDI group (Fig. 7B). Furthermore, the mtPCDI fea-
ture score was constructively associated with nearly all 
malignancy immune contaminating tissue cells, such as 
Myeloid dendritic cells, Macrophage M1, T cells CD4 + , 
Neutrophil, Macrophage, and Myeloid dendritic cells in 
TCGA-LGG, and Macrophage M2 (Fig. 7C). Additionally, 
mtPCDI characteristic scores were positively correlated 
with most immune system modulators, especially PDCD-
1, CTLA-4, and IDO-1 (Fig.  7D). Additionally, we used 
the ssGSEA enrichment score to explore the relationship 
between mtPCDI and distinct immune cell subpopula-
tions and activities. Our results showed that, with the 
exception of mast cells and NK cells, ssGSEA scores were 
significantly greater in high-mtPCDI patients for practi-
cally all immune-related cell functions (Fig. 7E). Similarly, 
we observed in the high-mtPCDI sample compared to the 
low-mtPCDI group, there was a greater enhancement of 
inflammatory conditions, checkpoint, cytolytic exertion, 
T cell co-inhibition, T cell co-stimulation, parainflamma-
tion, and type 2-related IFN reactions, higher immune 
function scores for major histocompatibility complex 
(MHC) class I, APC co-inhibition, chemokine receptor 
(CCR), and human leukocyte antigen (HLA) (Fig.  7F). 
The StromalScore, ImmuneScore, and ESTIMATES-
core were considerably lower in the patients with high 
mtPCDI (all p < 0.001) than those in the low-mtPCDI 
group, as shown by the tumor microenvironment scores 
in Fig. 7G. Lastly, the association between mtPCDI and 
various immune cell subsets and functions is depicted in 
Fig. 7H, demonstrating increased immunological activity 
in the group with elevated mtPCDI.

Establishment of a nomogram
We created and assessed a nomogram structure built 
around mtPCDI using multivariate as well as univariate 
cox regression in order to better examine the predic-
tion usefulness of mtPCDI. According to our research, 
mtPCDI is a standalone predictive factor for those hav-
ing LGG (Fig. 8A, B). We then constructed a nomogram 
model using multivariate Cox regression to estimate OS 
at 1-, 3-, and 5-years. The model included age, IDH1 
status, and mtPCDI, as displayed in Fig.  8C. Figure  8D 
shows the model’s measurement curves, which show that 
the nomination accurately predicted the 1-, 3-, and 5-year 
mortality rates for LGG sufferers. Additionally, the AUC 
analysis of the model demonstrated a high diagnostic 
value for this nomogram plot, as depicted in Fig. 8E. As 

illustrated in Fig. 8F, the nomogram model demonstrated 
significant net benefits across a broad spectrum of risks, 
according to the DCA findings. Overall, our results sug-
gest that the nomogram model based on mtPCDI has a 
strong performance in predicting the prognosis of LGG 
patients.

Analyses of chemotherapy drug sensitivity
Our analysis revealed 13 chemotherapeutic agents for the 
treatment of LGG based on the results of oncoPredict, 
including Lisitinib, LFM.A13, and STF.62247, among 
others (Additional file  8: Figure S8A, Additional file  16: 
Table S8). Similarly, based on the results of pRRophetic, 
we identified 16 chemotherapeutic agents for LGG, such 
as Crizotinib, Sorafenib, Saracatinib, and Paclitaxel, 
among others (Additional file  8: Figure S8B, Additional 
file  17: Table  S9). The high sensitivity of these drugs in 
LGG patients indicates that such chemotherapeutic 
agents may be beneficial for individuals afflicted with this 
condition.

Consensus clusters identified two clusters of LGG patients
To explore the involvement of mtPCDI signature genes in 
LGG development, we performed a consistent clustering 
analysis of the activity values of the 18 signature mark-
ers. For the most stable clustering, K = 2 was deemed 
appropriate (Fig. 9A, B). This analysis resulted in the divi-
sion of all LGG samples into two subgroups: C1 (n = 410) 
and C2 (n = 96) (Fig.  9C). Importantly, there was plenty 
of variations in OS among the two subgroups (p < 0.001, 
Fig.  9D). C1 was predominantly composed of low-mtP-
CDI patients, while Cluster 2 was mainly composed of 
high-mtPCDI patients. The t-SNE and PCA analyses 
(Fig. 9E) further revealed dimensional variations among 
the two groupings were considerable. Additionally, the 
heatmap of mtPCDI Consensus clusters and clinical 
pathological variables (Fig. 9F) demonstrated that, apart 
from gender, radiotherapy, and chemotherapy status, 
the rest of the clinicopathological characteristics were 
substantially different compring the C1 and C2 sections 
(all p < 0.001). Furthermore, the pathway-based ssGSEA 
results (Fig. 9H) indicated that the C2 subtype activated 
more tumour and immune-related pathways, such as 
DNA replicating, homologous recombination (HR), P53 
signaling pathway, mismatch repair, T cell receptor sign-
aling pathway, JAK STAT signaling pathway, B cell recep-
tor signaling pathway, and apoptosis, suggesting that the 
mtPCDI signature is closely associated with these typical 
tumour-related pathways.
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Cluster‑based analysis of tumor immune 
microenvironments
Our results suggest that individuals with the C2 sub-
type had higher levels of immune score, stromal score, 

and estimate score, while having lower levels of tumor 
purity (Fig.  10A). Moreover, using ssGSEA enrich-
ment scores, we assessed the relationship between con-
sensus clusters and various immune cell subsets and 

Fig. 8  Building and validating nomograms. A Univariate and B Multifactorial analyses. C Nomogram to predict 1-, 3-, and 5-year survival. D 
Nomogram calibration curves for 1-, 3-, and 5-year OS. E AUC analysis of variables included in the nomogram model. F DCA curves were compared 
over a period of 1 year, 3 years, and 5 years for patients with LGG
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functions. The results showed that nearly all immune 
function scores were higher in the C2 subtypes than in 
the C1 ones (Fig.  10B), almost all functional immune 
cells exhibited significantly higher ssGSEA scores in 
patients with the C2 subtype, except for DCs and Mast 
cells (Fig. 10C). Additionally, the C2 subtype showed a 
stronger ImmuneScore, suggesting that it may mount 
a more robust response to immunotherapy (Fig.  10D). 
Based on our findings, we concluded that the C2 sub-
type serves as a representative of the immune system 
and displays higher expression of immunomodulators 
such as antigen presentation, cell adhesion, co-inhibi-
tors, co-stimulators, ligands, receptors, among others, 
compared to the C1 cluster (Fig.  10E). Therefore, the 
C2 subtype exhibits greater immune activity.

Pan‑cancer analysis of mtPCDI signature genes
Our study repeatedly confirmed the important value 
of the 18 mtPCDI signature genes in LGG as described 
above, but to summarize the pan-cancer spectrum of 
these 18 mtPCDI signature genes, an in-depth inves-
tigation into the involvement of these genes across 
various human malignancies, encompassing expres-
sion profiles, predictive capacity, methylation patterns, 
CNV, and SNV, is of paramount importance. To begin, 
we developed survival profiles for the concerned genes 
by leveraging the connection between gene expression 
levels, as documented by TCGA, and patient survival 
outcomes (Fig.  11A). We then searched the TCGA 
database to compare the gene expression of tumour tis-
sues with that of healthy samples. We found that the 
expression of IFI16, MCUB, MSH6, MTPAP, ANXA5, 
MRPS16, BRCA2 and BRCA1 genes were usually 
upregulated in cancer tissue, while the expression of the 
remaining genes was usually downregulated (Fig. 11B). 
Altered SNV, CNV and methylation of these five sig-
nature genes, including LGG, were evident. In most 
cancers, the signature genes were differentially meth-
ylated compared to normal tissue; in particular, genes 
including as representatives NCOA4, CTSL, MCUB, 
ANXA5 and ANGPTL2 were usually hypermethylated, 
while genes including PDE2A and others were usually 
hypomethylated (Fig.  11C). Substantial CNV deletions 
were observed in PABPC5, MSH6, IFI16, GNS, ERCC4, 

BRCA1 and ACACB, while substantial CNV ampli-
fication was observed in most tumour types for the 
remaining genes (Fig. 11D). Significant SNV alterations 
were observed in BRCA2, ACACB, BRCA1, MSH6 and 
IFI16 in most tumour types (Fig. 11E, F).

Immunohistochemistry of mtPCDI signature genes
We collected IHC staining images of 18 mtPCDI signa-
ture genes-associated proteins from the HPA database, 
which were obtained from both LGG and healthy brain 
tissue. Our primary objective was to explore any possi-
ble differences in protein expression levels between these 
two sample types for the mentioned 18 genes. Signifi-
cantly higher protein expression levels were observed for 
18 of the mtPCDI signature genes in LGG samples rela-
tive to normal samples, thereby supporting our findings 
(Fig. 12A–R).

Discussion
LGG is a complex and heterogeneous disease, and pre-
dicting the prognosis of LGG patients is challenging. 
Prognostic factors play a crucial role in predicting dis-
ease progression, selecting appropriate treatment strat-
egies, and estimating overall survival [55]. Among the 
significant prognostic factors, histological subtype and 
grade hold paramount importance. Higher grades are 
associated with more aggressive tumor behavior, shorter 
progression-free survival, and reduced overall survival. 
Molecular markers have emerged as powerful predictors 
of prognosis in LGG. Age at diagnosis is another crucial 
factor influencing prognosis, with younger patients tend-
ing to exhibit longer overall survival than older patients. 
Tumor extent and location carry prognostic implications, 
with smaller tumor size and accessible locations associ-
ated with better outcomes. Residual disease after surgi-
cal resection is another important factor influencing 
prognosis. Other prognostic factors include O^6-meth-
ylguanine-DNA methyltransferase promoter methylation 
status, genetic alterations beyond IDH and 1p/19q, and 
the impact of adjuvant therapy. As our understanding of 
LGG biology continues to expand, emerging prognostic 
factors and novel molecular markers are being investi-
gated to refine prognostication and personalize treat-
ment approaches.

Fig. 9  Two different LGG clusters were delineated by consensus clustering. A, B Consensus clustering CDF for k = 2 to 9. C The consensus clustering 
with k = 2. D Kaplan–Meier survival curves of LGG patients’ OS among the two subgroups. E tSNE analysis and PCA analysis between two different 
subgroups. F Heatmap showing the between two different subgroups and clinical features and expression of 18 most valuable genes in LGG 
patients. G Analysis of differences in the expression of mtPCDI signature genes in two different subgroups. H Pathway activity between two 
different subgroups based on ssGSEA algorithm. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance

(See figure on next page.)
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Fig. 9  (See legend on previous page.)
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Fig. 10  Exploration of the immune status of tumours between the two different subgroups. A Estimatescore, immunescore, stromalscore, 
and Tumorpurity in the C1 and C2 subgroups. The score of the B infiltrating immune cells and C immune-related functions in the C1 and C2 
subgroups. D Immune infiltrating cells were estimated by using multiple algorithms between the two different subgroups. E Immune modulator 
molecules were estimated between the two different subgroups. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance
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Machine learning techniques are becoming more prev-
alent in predicting patient survival. Nevertheless, effec-
tively implementing these methods in clinical practice 
while maintaining accuracy remains a challenge. How-
ever, two questions worth considering are why particular 
machine learning algorithms should be used and which 
solution is the best one. A researcher’s choice of algo-
rithm may depend heavily on their own preferences and 
biases [56]. In this research, we gathered expression files 
from 1467 LGG patients from six multicentre cohorts 
worldwide and used a novel computational framework 

to explore the crosstalk between mitochondrial function 
and 18 cell death patterns. The mtPCDI was based on the 
expression of 18 genes (ACAA2, ACACB, ANGPTL2, 
ANXA5, BRCA1, BRCA2, CTSL, ECHDC2, ERCC4, 
GNS, IFI16, MCUB, MRPS16, MSH6, MTPAP, NCOA4, 
PABPC5, and PDE2A) that were most potent in predict-
ing patient survival. Our study findings indicate that 
mtPCDI can serve as a valuable tool in guiding treatment 
decisions and improving patient outcomes. By identifying 
these genetic alterations through mtPCDI, clinicians can 
gain important insights into the underlying molecular 

Fig. 11  The landscape of mtPCDI signature genes in pan-cancer analysis. A Presents hazard ratios and Cox P values for selected cancer types 
and genomic symbols. Rows represent genomic symbols, while columns denote cancer types. The color and size of the bubbles indicate hazard 
ratios and significance of Cox P values, respectively. A blue to red color gradient is used to represent low to high hazard ratios, and larger bubbles 
correspond to greater statistical significance of Cox P values. The black outline border highlights the Cox P value ≤ 0.05 threshold. In B, graphs 
exhibit logFC and FDR of signature genes for each cancer type. Red and blue colors indicate clearly up- and down-regulated genes, respectively. 
Additionally, C shows a heatmap demonstrating varied methylation patterns of signature genes in malignant tumors. Hypermethylated 
and hypomethylated genes are represented in red and blue, respectively, employing Wilcoxon rank-sum test the degree of statistical significance 
assessed. D is a bar graph that presents frequency of copy number variation changes for each signature gene and cancer type. Finally, E and F 
demonstrate signature gene mutation frequency and single-nucleotide variant oncoplot for a given malignancy, respectively
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mechanisms driving the tumor growth. This informa-
tion can help guide the selection of targeted therapies or 
treatment strategies that specifically address the identi-
fied genetic abnormalities.

ANGPTL2 is a secreted protein that has been demon-
strated to facilitate tumor growth and invasion in vari-
ous cancer types, including glioma. Both glioma tissues 
and cells have shown significant elevations of ANGPTL2 
expression levels. Nevertheless, ANGPTL2 knockdown 
induced a significant decline in the invasive capacity and 
proliferation of glioma cells. Additionally, tumorigenesis 
assays demonstrated that inhibiting ANGPTL2 caused 
a decrease in glioma tumor growth in vivo. Noteworthy, 
ANGPTL2 silencing led to a reduction in the protein lev-
els of p-ERK1/2 in glioma cells, consequently impeding 
the ERK/MAPK signaling pathway’s activity [57]. These 
findings indicate that ANGPTL2 might have a critical 
role in glioma’s emergence and progression, and target-
ing this protein could be a potential therapeutic approach 

for glioma treatment. The ANXA5 gene, which is situated 
on 4q27 in humans, encodes for Ca2 + -regulated phos-
pholipid- and membrane-binding proteins. Increasing 
evidence suggests that ANXA5 may be involved in car-
cinogenesis by inhibiting the activity of protein kinase 
C in the RTK-Ras/Raf/MEK/ERK signaling pathway [58, 
59]. Moreover, ANXA5 has a broad distribution and has 
been observed to exhibit abnormal expression in various 
cancer types, such as prostate cancer, cervical carcinoma, 
and cholangiocarcinoma [60, 61]. According to research, 
non-angiogenic gliomas are characterized by express 
higher levels of ANXA5 (with a 2.1-fold increase) and 
angiogenic glioma (with a 3.4-fold increase) as compared 
to normal tissues [62]. In LGG, mutations in BRCA1 and 
BRCA2 have been associated with a higher risk of tumor 
recurrence and a poorer prognosis. CTSL is a lysoso-
mal protease that has been implicated in the regulation 
of apoptosis and autophagy. In LGG, methionine depri-
vation to downregulate CTSL and induce proliferation 

Fig. 12  Gene expression and immunohistochemical analysis of 18 mtPCDI signature genes. A–R show results for ACAA2, CTSL, MRPS16, ACACB, 
ECHDC2, MSH6, ANGPTL2, ERCC4, MTPAP, ANXA5, GNS, NCOA4, BRCA1, IFI16, PABPC5, BRCA2, MCUB, and PDE2A. *p < 0.05; **p < 0.01; ***p < 0.001; 
ns, no statistical significance
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inhibition in glioma cells [63]. IFI16 has been found to 
inhibit apoptosis and enhance cell survival by activating 
the NF-κB pathway. MSH6 is a DNA mismatch repair 
protein that is involved in the maintenance of genome 
stability. LGG has been linked to a greater risk of tumor 
recurrence and a poorer prognosis resulting from muta-
tions in MSH6. NCOA4, a nuclear receptor coactiva-
tor, is involved in the regulation of autophagy and iron 
metabolism. Moreover, NCOA4 has been discovered to 
induce apoptosis by activating the caspase-3 pathway. On 
the other hand, PABPC5, a poly(A)-binding protein, has 
been implicated in regulating mRNA stability and trans-
lation. It has also been found to exert an inhibitory effect 
on apoptosis while to promote cell survival by activating 
the PI3K/Akt pathway. The organelles called mitochon-
dria play a crucial role in ATP production and the regu-
lation of cellular metabolism. There is a suggestion that 
dysfunctional mitochondria play a notable role in regu-
lating cell survival, metabolism, and proliferation in can-
cer. In LGG, the regulation of mitochondrial function has 
been linked to several genes including ACAA2, ACACB, 
ECHDC2, MCUB, MRPS16, MTPAP, and PDE2A. 
ACAA2 is a key enzyme involved in the beta oxidation of 
lipid acids. It works closely with its isoenzyme, ACAA1, 
to catalyze the beta oxidation process through a complex 
mechanism [64]. Inhibiting ACACB has demonstrated 
a decrease in the proliferation and de novo lipogenesis 
of EGFRvIII human glioblastoma cells [65]. MCUB is 
involved in facilitating glioma invasion/migration under 
hypoxic conditions [66]. The activation of the PI3K/AKT 
signaling pathway by MRPS16 leads to elevated levels 
of Snail protein expression, thereby promoting glioma 
progression [67]. The main transcript of PDE2A/miR-
139 has been recognized as a crucial factor in hindering 
the Wnt/β-catenin pathway, which eventually results in 
the regulation of GSC stemness and the development 
of tumors [68]. In conclusion, the regulation of pro-
grammed cell death and mitochondrial function plays a 
critical role in the development and progression of LGG.

Our investigation revealed the presence of shared 
genes impacted by somatic copy number altera-
tions and significant disparities in somatic mutations 
between the mtPCDI-high and low-mtPCDI cohorts. 
Interestingly, the high mtPCDI group demonstrated 
significantly higher TMB, which has emerged as a 
novel prognostic biomarker closely associated with the 
response to immunotherapy. We established a moder-
ately positive correlation between TMB and mtPCDI 
and discovered a potential link between mutational 
burden and immunotherapy response, providing a new 
perspective on checkpoint blockade treatment. Moreo-
ver, our analysis revealed that the high-mtPCDI group 

demonstrated increased immune cell infiltration and 
higher expression levels of immunomodulators, includ-
ing classical immune checkpoint molecules. However, 
patients classified in the high-mtPCDI group exhib-
ited notably lower levels of StromalScore, ImmuneS-
core, and ESTIMATEScore compared to those in the 
low-mtPCDI group. This suggests a complex interplay 
between the mtPCDI and the tumor immune microen-
vironment. Overall, our findings suggest that mtPCDI 
may serve as a valuable biomarker for predicting the 
genomic pattern and response to immunotherapy in 
LGG patients.

As a result of our enrichment analysis, we found that 
mtPCDI-related genes were mainly enriched in various 
cellular processes, environmental information process-
ing, and organismal systems. Of particular interest, our 
analysis uncovered a significant correlation between 
the high mtPCDI group and DNA replication, cell 
cycle, and other proliferation-related biological pro-
cesses. These findings provide partial insight into the 
more unfavorable prognosis observed in this group.

One notable limitation of this study is the lack of 
in vitro or in vivo experiments to directly validate our 
findings. While we have extensively utilized bioinfor-
matics analyses and computational methodologies, 
experimental validation remains an essential aspect of 
scientific research. In experiments could provide valu-
able insights into the functional implications of the 
observed patterns and strengthen the credibility of our 
results. Therefore, future research should focus on con-
ducting targeted experiments that can corroborate and 
extend the observations from mtPCDI.

Conclusion
In conclusion, our findings have enabled us to con-
struct a mtPCDI signature within the TCGA cohort, 
which we have further validated across five other exter-
nal cohorts, demonstrating superior performance. Of 
particular importance, our mtPCDI maintains its sta-
tus as the most potent prognostic indicator even fol-
lowing adjustment for potential confounding factors, 
surpassing established clinical models in predictive 
strength. Additionally, our investigation into the associ-
ation between mtPCDI and immunomodulators, tumor 
microenvironment, and drug sensitivity provides valu-
able insights for future in-depth studies.
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