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Abstract 

Background Anti‑PD1/PDL1 immune checkpoint inhibitors (ICI) transformed the prognosis of patients 
with advanced non‑small cell lung cancer (NSCLC). However, the response rate remains disappointing and toxicity 
may be life‑threatening, making urgent identification of biomarkers predictive for efficacy. Immunologic Constant 
of Rejection signature (ICR) is a 20‑gene expression signature of cytotoxic immune response with prognostic value 
in some solid cancers. Our objective was to assess its predictive value for benefit from anti‑PD1/PDL1 in patients 
with advanced NSCLC.

Methods We retrospectively profiled 44 primary tumors derived from NSCLC patients treated with ICI as single‑agent 
in at least the second‑line metastatic setting. Transcriptomic analysis was performed using the  nCounter® analysis sys‑
tem and the PanCancer Immune Profiling Panel. We then pooled our data with clinico‑biological data from four public 
gene expression data sets, leading to a total of 162 NSCLC patients treated with single‑agent anti‑PD1/PDL1. ICR 
was applied to all samples and correlation was searched between ICR classes and the Durable Clinical Benefit (DCB), 
defined as stable disease or objective response according to RECIST 1.1 for a minimum of 6 months after the start 
of ICI.

Results The DCB rate was 29%; 22% of samples were classified as ICR1, 30% ICR2, 22% ICR3, and 26% ICR4. These 
classes were not associated with the clinico‑pathological variables, but showed enrichment from ICR1 to ICR4 
in quantitative/qualitative markers of immune response. ICR2‑4 class was associated with a 5.65‑fold DCB rate 
when compared with ICR1 class. In multivariate analysis, ICR classification remained associated with DCB, indepen‑
dently from PDL1 expression and other predictive immune signatures. By contrast, it was not associated with disease‑
free survival in 556 NSCLC TCGA patients untreated with ICI.

Conclusion The 20‑gene ICR signature was independently associated with benefit from anti‑PD1/PDL1 ICI in patients 
with advanced NSCLC. Validation in larger retrospective and prospective series is warranted.
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Background
Despite significant improvement in systemic treatments 
during the last few years, advanced non-small-cell lung 
cancer (NSCLC) remains the leading cause of cancer-
related death worldwide [1]. Recent advances in lung 
cancer biology knowledge led to molecular dismember-
ment of the disease, leading to the development of tar-
geted therapies. This changed the lung cancer prognosis 
thanks to personalized therapeutic approach [2]. Beyond 
oncogenic addictions, cancer immunology breakthrough 
allowed for the emergence of immune checkpoint inhibi-
tors (ICI) [3]. These drugs, which target the PD1-PDL1 
axis, are now widely used in the first- and second-line 
settings for advanced NSCLC [4–6]. Unfortunately and 
in contrast with targeted therapies, only 20% of patients 
respond to ICI as single agent and up to 50% when 
combined with chemotherapy [4–6]. This suggests an 
incomplete knowledge of the molecular determinants of 
immune responsiveness. Furthermore, life-threatening 
or fatal immune-related adverse events occur in some 
patients. Consequently, there is still a long way to achieve 
immune dissection of targeted immunotherapies-medi-
ated effects, and an urgent need to identify biomarkers 
able to predict anti-PD1/PDL1 ICI efficacy [7].

To date, evaluation of PDL1 expression on tumors 
cells by immunohistochemistry (IHC) using the PD-L1 
IHC 22C3 pharmDx assay (CPS > 50%) is the only 
approved companion diagnostics for pembrolizumab, 
whereas the PD-L1 IHC 22C3 pharmDx and Ventana 
PD-L1 (SP142) have status as complementary diag-
nostics for nivolumab and atezolizumab. It is however 
an imperfect predictive biomarker which is not suffi-
cient to face the most important existing challenge in 
the field of immunotherapy [8]. The main reason given 
is the operator’s variability to evaluate PDL1 protein 
expression and its spatial heterogeneity [9]. Further-
more, the use of different IHC tests with the different 
anti-PD1 and anti-PD-L1 ICI adds to these difficulties. 
Several other predictive biomarkers have been studied, 
but none of them appears to be reliable and reproduc-
ible enough to improve on the predictive significance 
of PDL1 expression, despite a better consideration 
of various biological features underlying ICI efficacy. 
Tumor mutational burden (TMB), thought to reflect 
the amount of neo-antigens on tumor cells by quantify-
ing non-synonymous mutations in coding areas, failed 
to show a clear survival difference when used alone 
and remains difficult to standardize for routine use [10, 
11]. In a same way, quantification of tumor-infiltrating 

lymphocytes and other circulating biomarkers appeared 
to be interesting prognostic biomarkers, but not pre-
dictive of ICI efficacy [12, 13]. In addition, interferon 
gamma (IFN-Ɣ) pathway is known to be involved in 
PDL1 expression and is a key feature to several anti-
tumor immune expression signatures, such as the T 
cell-inflamed signature (TIS) [14]. The independent 
predictive value of this signature was validated in a pro-
spective series of 37 NSCLC treated with nivolumab, 
independently from PDL1 expression by IHC [15], and 
more recently in patients treated with pembrolizumab, 
in a pan-cancer clinical trial performed across 20 tumor 
types, including lung cancer [16]. Finally, methylation 
profiles and microbiota assessment turned out to be 
hardly operable in daily care [17–19].

Thus, determinants of ICI response in NSCLC 
appeared to be many and various, depending on tumor 
and microenvironment features. Considering the rela-
tive failure of these descriptive biomarkers, more func-
tional biomarkers such as transcriptomic signatures 
could become key parameters to solve this complex 
equation. Besides the TIS signature, other signatures 
including IFN-Ɣ-related genes showed also positive 
predictive value with atezolizumab in 115 NSCLC in 
the POPLAR study [20] and with durvalumab in 97 
NSCLC [21]. Gene expression signatures (GES) asso-
ciated with enrichment in tertiary lymphoid struc-
tures (TLS) have also been generated in other cancers, 
including the Coppola’s 12-chemokine signature [22]. 
Other prognostic and/or predictive immune signatures 
were reported in series ranging from 21 to 67 patients 
with NSCLC [23–26]. The ICR (Immunologic Constant 
of Rejection) signature is defined as an immune pheno-
type quantifying the expression of 20 genes, all involved 
in anti-tumor immunity. Selected genes are reflecting 
main anti-tumor immune pathways, such as Th1 signal-
ing (IFNG, TBX21, CD8A/B, IL12B, STAT1 and IRF1), 
Th1 chemoattraction (CXCL9, CXCL10 and CCL5) 
and cytotoxic functions (GNLY, PRF1, GZMA, GZMB 
and GZMH). Interestingly, the expression of these 
pro-cytotoxic transcripts is associated with inhibition 
of suppressive mechanisms, known as ICIs (CD274, 
PDCD1, IDO1, CTLA4 and FOXP3) [27].

In early-stage breast cancer, we showed that ICR sig-
nature divided the tumors in four ICR groups reflecting 
a clinically and biologically relevant immune contin-
uum, and displayed independent predictive values for 
metastasis-free survival (MFS) and for achievement of 
pathological complete response (pCR) to neo-adjuvant 
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chemotherapy [28, 29]. ICR4 tumors strongly expressed 
ICR signature and showed longer MFS and higher pCR 
rate to chemotherapy than other ICR tumors. Similarly, 
we recently showed the independent prognostic value 
of ICR in soft tissue sarcomas [30]. Regarding ICI, a 
potential positive predictive value for response was 
reported in melanoma [31].

Given these correlations in other cancers, its immune 
relevance, and the growing place of ICIs in advanced 
NSCLC treatment, we assessed the ICR signature as 
a potential predictive biomarker for ICI response in a 
cohort of 162 patients with advanced NSCLC treated 
with anti-PD1/PDL1 ICI. Our secondary objectives were 
to compare the predictive value of ICR with that of other 
immune signatures and to assess its prognostic value in 
NSCLC untreated with ICI.

Methods
Patients’ populations and gene expression profiling
Our own series included formalin-fixed paraffin-embed-
ded (FFPE) tumor samples from the previously biopsied 
primary tumor of 77 consecutive patients with advanced 
NSCLC who had received an anti-PD1/PDL1 ICI as sin-
gle agent outside clinical trials in our institution (Hôpital 
Nord, Marseille, France). All clinical data were collected 
from the patients’ electronic medical record. This non-
interventional retrospective study was approved by our 
institutional review board under the number 2019_93. 
All patients had given their signed written informed con-
sent for the use of archived material for research purpose. 
Tumor RNA was extracted using “Maxwell® RSC Instru-
ment” (Promega) shortly after microtome dissection to 
prevent nucleic acid degradation. After extraction, RNA 
quantification and quality control were done using the 
Nano-Drop ND-1000 technology (ThermoFisher). Forty-
four out of 77 tumor samples fulfilled the quality and 
quantity thresholds for downstream transcriptomic anal-
ysis. This latter was performed using nCounter® technol-
ogy Dx analysis as recommended by Nanostring, based 
on microscopic imaging counting relative abundance of 
770 transcripts present in the “PanCancer Immune Pro-
filing Panel”, which included the 20 ICR genes. Briefly, the 
profiling required three successive steps: a first hybridiza-
tion step to capture target sequences, followed by a puri-
fication step, and finally a quantification step using the 
Digital Analyzer processor.

In order to expand our series, we collected gene expres-
sion and clinico-pathological data from four publicly 
available data sets [15, 23, 32, 33] of NSCLC patients 
treated with a single-agent anti-PD1/PDL1 ICI and 
with available clinical outcome. In these published data 
sets, gene expression profiling had been done using 
Nanostring technology or RNA-Sequencing. The final 

pooled data set included 162 metastatic NSCLC patients 
clinically annotated, notably in term of clinical benefit 
after ICI treatment (Additional file 2: Table S1). Finally, in 
order to assess the eventual prognostic value of ICR out-
side any ICI treatment, we collected The Cancer Genome 
Atlas (TCGA) lung adenocarcinoma (LUAD) data set [34] 
and the TCGA lung squamous cell carcinoma (LUSC) 
data set [35] including 515 and 502 patients respectively 
with gene expression data.

Gene expression data analysis
Nanostring data processing and normalization were per-
formed using the  nSolver™ 4.0 analysis software. Briefly, 
data processing of raw counts was done with background 
subtraction defined by the geometric mean of the eight 
negative control probes. Next, normalization was done 
with the geometric mean algorithm using the 40 house-
keeping and the six positive control probes. Processed 
data were then  log2-transformed. Before analysis of 
pooled data sets, several steps of data processing were 
applied. The first step was the normalization of each 
set separately. It was done in R using Bioconductor and 
associated packages; we used quantile normalization for 
the available processed  log2-transformed data. We then 
applied to each data set separately several multigene 
signatures.

First, the ICR classifier based on consensus cluster-
ing (CC) analysis of the expression levels of 20 repre-
sentative immune genes (namely CCL5, CD274, CD8A, 
CD8B, CTLA4, CXCL9, CXCL10, FOXP3, GNLY, GZMA, 
GZMB, GZMH, IDO1, IFNG, IL12B, IRF1, PDCD1, 
PRF1, STAT1, and TBX21) as previously described [29]. 
Briefly, the CC analysis was performed in R using the 
Bioconductor package “ConsensusClusterPlus” [36] set-
ting as input parameters 5000 repetitions, 80% item 
resampling (pItem), a number of groups (k) fixed to 4 (in 
order to have all datasets stratified with the same num-
ber of classes, 4 being the optimal number of groups for 
the TCGA cohort [29], and the use of an agglomerative 
hierarchical clustering with ward criterion (Ward.D2) 
inner and complete outer linkage. Second, we applied 
several other transcriptional signatures related to 
immune response: metagenes of signatures of 28 innate 
and adaptative immune cell subpopulations defined by 
Bindea et al. [37], activation score of IFN-α, IFN-Ɣ, and 
TNF-α pathways [38], cytolytic activity score [39], and 
antigen processing and presentation machinery score 
(APMS) [40]. We also applied the TP53 activation score 
[38], and three potential predictors of response to ICI: 
PDL1 (CD274) expression, T cell-inflamed signature 
(TIS) [14], and tertiary lymphoid structures (TLS) sig-
nature [22]. These three predictors were tested as binary 
variables using the first quintile as cut-off, thus defining 
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the “low” (first quintile) and “high” (four last quintiles) 
classes. Third, PDL1 gene expression levels (CD274) 
were extracted from each data set and were standard-
ized within each data set using the NSCLC population 
as a reference to be comparable across data sets and to 
exclude bias from population heterogeneity. Of note, 
we verified the correlation between mRNA and protein 
expressions of PDL1 in lung cancer samples (cell lines 
and clinical tumors; Additional file 1: Fig S1).

Statistical analysis
The continuous variables were described by median and 
range, and the binary variables by numbers and percent-
age. Correlations between tumor classes and clinico-
pathological or molecular variables were analyzed using 
the one-way analysis of variance (ANOVA) or the Fisher’s 
exact test when appropriate. Our primary endpoint was 
the Durable Clinical Benefit (DCB), a relevant criterion 
of ICI efficacy considering the challenge and the expected 
paradigm shift to overcome natural course of the disease 
and induce prolonged response [41]. We defined DCB as 
stable disease or objective response according to RECIST 
1.1 for a minimum of 6 months after the start of ICI. This 
definition has been mainly previously published among 
ICI literature and especially biomarkers literature [42–
44]. Uni- and multivariate analyses for DCB were done 
using logistic regression (glm; significance estimated by 
specifying a binomial family for models with a logit link). 
The variables submitted to univariate analysis included 
patients’ age (continuous value), sex (male vs female), 
smoker status (current vs former vs non-smoker), patho-
logical type (squamous vs non-squamous), mutational 
status (mutated vs non-mutated), and classifications 
based on ICR (ICR2-4 vs ICR1), TIS (“high” vs “low”), 
TLS (“high” vs “low”) and PDL1 expression (“high” vs 
“low”). Variables with a p-value < 0.05 in univariate analy-
ses were tested in multivariate analyses. In this meta-
analysis of five independent sets, we used the test of 
homogeneity in a fixed-effects model to provide evidence 
about whether the effect sizes are measuring a com-
mon effect size. The prognostic analysis in the TCGA set 
used the Disease-Free Survival (DFS) as endpoint, calcu-
lated from the date of diagnosis until the date of distant 
relapse. Follow-up was measured from the date of diag-
nosis to the date of last news for event-free patients. Sur-
vivals were calculated using the Kaplan–Meier method 
and curves were compared with the log-rank test. All 
statistical tests were two-sided at the 5% level of signifi-
cance. Statistical analysis was done using the survival 
package (version 2.43-3) in the R software (version 3.5.1; 
http:// www. cran.r- proje ct. org/). We followed the report-
ing REcommendations for tumor MARKer prognostic 
studies (REMARK criteria) [45].

Results
Patients’ population and ICR classification
We profiled our series of 44 tumor samples that we cou-
pled with 118 profiled samples from four published pub-
lic datasets [15, 23, 32, 33], obtaining a cohort of 162 
advanced NSCLC patients treated with anti-PD1/PDL1 
ICI. Baseline patients’ characteristics are summarized 
in Table  1. They were representative of patients treated 
by daily care: the median patients’ age was 60  years, 
67% of informative patients were male, 89% were active 
or former smokers, 65% of tumors were non-squamous 
pathological type, and 38% displayed somatic mutations 
(KRAS, then EGFR, then NRAS, STK11, and ROS1). 
Regarding our primary endpoint, 47 patients (29%) expe-
rienced a DCB after ICI treatment and 115 (71%) did not. 
ICR classification of the 162 tumors defined 35 tumors 
(22%) as ICR1, 48 (30%) as ICR2, 36 (22%) as ICR3, and 
43 (26%) as ICR4 (Fig. 1A).

ICR classification and clinico‑pathological and immune 
variables
We first searched for correlations between the four ICR 
classes and different variables. There was no significant 
correlation with the following clinico-pathological fea-
tures: patients’ age and sex, smoker status, pathological 
type, and mutational status (Additional file 2: Table S2). 
By contrast, a significant correlation existed with the 
achievement of DCB (p = 2.67E-02, Fisher’s exact test), 
with DCB rates equal to 9% in ICR1 versus 35% in ICR2, 
36% in ICR3, and 33% in ICR4 (Fig. 1B).

We also found strong correlations with immunity-
related features with a continuum between the four 
classes (from ICR1 to ICR4) for nearly all features 
(Fig. 1C; Additional file 2: Table S2). All but one Bindea’s 
signatures for immune cell subsets [37] showed a strong 
enrichment from ICR1 to ICR4, notably cytotoxic cells, 

Table 1 Clinico‑pathological characteristics of patients and 
samples

a 2 EGFR, 17 KRAS, 1 NRAS, 1 ROS1, 1 STK11 mutations

Characteristics N

Patient’s age, years Median (range) 60 (26–86)

Sex Female 41 (33%)

Male 84 (67%)

Smoker status Current smoker 46 (46%)

Former smoker 43 (43%)

Non‑smoker 11 (11%)

Pathological type Non‑squamous 22 (38%)

Squamous 47 (35%)

Mutational status Mutateda 22 (38%)

Wild‑type 36 (62%)

http://www.cran.r-project.org/
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T-cells, CD8 + T-cells, Th1 cells, TFH cells and acti-
vated NK  CD56dim cells (p < 1.00E-15). Among T-helper 
cells, the Th1/Th2 ratio increased from ICR1 to ICR4. 
This increasing anti-tumor activation was associated 
with increasing immune cell subsets involved in antigen 
presentation, such as activated dendritic cells (aDC), 
DC, B-cells, and macrophages. Such enrichment in cell 
subsets was confirmed using more functional immune 
signatures, with gradual enrichment from ICR1 to ICR4 
for activation scores of IFN-α, IFN-Ɣ, and TNF-α path-
ways (p < 1.00E-08), for the cytolytic activity score [39] 
(p < 1.00E-30) and for the APMS score [40] (p < 1.00E-
15). Conversely, the TP53 pathway activation score [38] 
decreased from ICR1 to ICR4 (p < 1.00E-05).

ICR classification and DCB after ICI treatment
Based on the absence of difference in the DCB rate 
between the ICR2, 3 and 4 classes (p = 0.937, Fisher’s 

exact test), we pooled them into the ICR2-4 class that 
we then compared to the ICR1 class. The DCB rates 
were 9% in ICR1 (3/35 patients) versus 35% in ICR2-4 
(44/127 patients), corresponding to a 5.65 Odds Ratio 
(OR) (95% CI 1.64–19.51; p = 6.10E-03, logit function) 
in ICR2-4 versus ICR1 in univariate analysis (Fig.  2). 
Interestingly, analysis of homogeneity in a fixed-effects 
model revealed homogeneity between the five data sets 
in term of correlation between DCB rate and ICR1/2–4 
classes (p = 0.950; Additional file  1: Fig S2). Notably, 
in our own cohort of 44 patients, the DCB rates were 
11% in ICR1 (1/9 patients) versus 40% in ICR2-4 (10/35 
patients), corresponding to a 3.20 OR (95% CI 0.35–
29.01). None of the clinico-pathological variables tested 
in univariate analysis displayed significant correlation 
with the achievement of DCB (Fig. 2): patients’ age and 
sex, smoker status, pathological type, and mutational 
status.
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Fig. 1 ICR classification of 162 NSCLC samples treated with anti‑PD1/PDL1 ICI and correlations with immune variables. A Expression heatmap 
of the 20 ICR genes in 162 tumor samples. The samples (columns) are ordered from left to right according to their increasing ICR score. The 20 
genes (raws) are ordered from top to bottom according to hierarchical clustering with uncentered Pearson correlation distance and centroid 
agglomerative method as parameters. The expression levels are color‑coded according to the indicated color scale. Above the heatmap, the four 
ICR classes are indicated. B Correlation of ICR classes with DCB. The percentage of patients with DCB is indicated for each class. C Heatmap 
representation of expression scores of several immune‑related variables and non‑immune related variables in the four ICR classes. The mean scores 
are shown as median‑centered according to the colored scale shown at the bottom. The p‑values of comparison between the four classes (one‑way 
ANOVA test) are shown on the right (NS not significant; * < 0.05; **, < 0.01; ***, < 0,001)
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Then, we compared this predictive value of ICR for 
DCB to that of PDL1 expression and two immune sig-
natures (TIS, TLS) previously reported as predictive for 
response to ICI. In univariate analysis (Fig.  2), the four 
variables showed a positive association with DCB with 
an OR for DCB superior to 2 in the “TIS-high”, “TLS-
high”, “PDL1-high”, and ICR2-4 patients when compared 
with the “TIS-low”, “TLS-low”, “PDL1-low”, and ICR1 
patients respectively. However, likely due to the number 
of patients, the correlation was not significant for TIS 
and PDL1. However, it was significant for TLS (p = 2.27E-
02, logit function) and ICR (p = 6.10E-03, logit function) 
signatures. In multivariate analysis (Fig.  2), only ICR 
remained significant, suggesting stronger and independ-
ent predictive value.

ICR classification and correlation with survival without ICI 
treatment
We assessed the eventual prognostic value of ICR in an 
early-stage NSCLC population (TCGA dataset of 556 M0 
patients including 408 with lung adenocarcinoma and 
148 with lung squamous carcinoma) naive from ICI and 
with available post-operative disease-free survival (DFS). 
A total of 164 samples were classified as ICR1 (29%), 127 
as ICR2 (23%), 188 as ICR3 (34%), and 77 as ICR4 (14%), 
with similar correlations with immune variables as those 
described in our population treated with ICI (Additional 
file 2: Table S3). With a median follow-up of 158 months, 
101 (18%) displayed a DFS event and the 5  year DFS 
was 67% (95% CI 61–74). It was 72% (95% CI 63–82) in 
the ICR1 class, and 66% (95% CI 58–74) in the ICR2-4 
class, suggesting no prognostic value of ICR classification 
(p = 0.782, log-rank test; Fig. 3).

Discussion
Immune checkpoint inhibitors are considered as a revo-
lution for patients with advanced NSCLC and became 
a therapeutic standard for NSCLC without oncogenic 
addiction in European and US Guidelines regardless of 
PDL1 expression [46, 47]. Nevertheless, extended effi-
cacy with acceptable safety profile remains too scarce and 
identification of predictive biomarkers for ICI efficacy 

Patient's age 

Sex, male vs. female 

Smoker, former vs. current

Smoker, non vs. current 

Pathological type, squamous vs. non-squamous 

Mutational status, mutated vs. non-mutated 

TIS, high vs. low 

TLS, high vs. low

PDL1, high vs. low

ICR, 2-4 vs. 1

N p-value

162 1.97 [0.58-6.65] 0.274

162 4.17 [1.10-15.8] 3.54E-02

-0.5 0.5Odds ratio [95%CI]

OR (log10)

DCB univariate DCB multivariate

N p-value

104 1.02 [0.98-1.06] 0.354

125 1.78 [0.75-4.23] 0.194

100 0.88 [0.35-2.21] 0.793

100 1.90 [0.50-7.29] 0.347

136 0.75 [0.34-1.65] 0.471

58 1.92 [0.57-6.43] 0.289

162 2.10 [0.80-5.47] 0.130

162 3.62 [1.20-11.0] 2.27E-02

162 2.10 [0.80-5.47] 0.130

162 5.65 [1.64-19.5] 6.10E-03

-0.5 0.5Odds ratio [95%CI]

OR (log10)
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became a major challenge. Here, we showed the inde-
pendent predictive value of the ICR signature for efficacy 
of single-agent anti-PD1/PDL1 ICI in the largest retro-
spective multicentric clinical reported cohort of patients 
with NSCLC.

Our approach tested ICR in an independent series of 
samples, thus avoiding the problem of overfitting. A total 
of 162 pre-therapeutic cancer samples informative for 
DCB after ICI and large-scale gene expression profile 
were available, allowing not only to test our hypothesis 
in uni- and multivariate analyses, but also to test many 
other gene signatures and modules relevant to immune 
response. Our series was profiled using the Nanostring® 
technology, already available in clinical routine for breast 
cancer prognostication (CE-IVD label) and more adapted 
for daily care, notably for small FFPE or frozen biopsies 
as often available in NSCLC. The DCB was chosen to 
explore ICR predictive value because of its clinical rel-
evance and consistency in the immunotherapy field [43, 
48].

As described in other cancers such as breast can-
cer [28], sarcomas [30], or colon cancer [49], we found 
an immunological continuum in NSCLC from ICR1 
to ICR4 classes. There was an increasing enrichment 
in scores reflecting the amount of different immune 
cell types, notably T-cells, cytotoxic T-cells, Th1-cells, 
CD8 + T-cells, and antigen-presenting cells, and func-
tional scores reflecting IFN-Ɣ pathway activation, 
cytolytic activity, and antigen presentation machin-
ery. Conversely, the activation score of TP53 pathway 
decreased from ICR1 to ICR4, in agreement with the 
higher rate of inactivating TP53 mutations reported in 
ICR4 previously reported in breast cancer [29].

A strong association between ICR classes and DCB 
was observed: the DCB rates were 9% in ICR1 patients 
versus 35% in ICR2-4 patients, corresponding to a 5.65 
OR. Importantly, there was homogeneity through the 
five pooled data sets in term of correlation between DCB 
rate and ICR classes. This predictive value strengthens 
the potential clinical role of ICR signature and the cor-
relation between tumor immunogenicity and ICI efficacy. 
Interestingly, ICR was more predictive than other poten-
tial biomarkers such as PDL1 expression, TIS and TLS 
signatures, whereas, as expected, no tested clinico-path-
ological feature showed any predictive value. Although 
associated with the same immune and biological vari-
ables in the TCGA set than in our 162 patients, the ICR 
signature was not associated with survival in TCGA 
patients untreated with ICI, suggesting that ICR is not 
broadly prognostic in NSCLC and might be only inform-
ative in the presence of an ICI treatment. However, since 
the lymphocyte infiltration seems to have some prognos-
tic role in NSCLC [50], this absence of prognostic value 

of ICR in our TCGA analysis may appear surprising and 
clearly deserves further comparative assessment of both 
biomarkers in the same clinical series.

All 20 genes of ICR signature are involved in tumor 
immune pathways and previously published data high-
lighted their functional implication and clinical rel-
evance. Despite the failure of therapeutic application, 
IFN-Ɣ remains the most described cytokine involved 
in anti-tumor immune response. On one hand, IFN-Ɣ 
upregulation at the early phase of immune response is 
obviously a major step of anticancer immunity using vari-
ous downstream mechanisms. On the other hand, IFN-Ɣ 
is also known for its regulatory role in a further step of 
immune response, also able to enhance tumor growth 
and PDL1 expression [51]. Moreover, TBX21, known as 
a transcription factor of IFN-Ɣ, already showed a nega-
tive association with NSCLC prognosis by mediating 
tumor growth [52]. IL12 is also involved in triggering 
IFN-Ɣ to switch CD4 helper differentiation into Th1 cells 
and was already described across expression signatures 
as a prognostic biomarker in NSCLC [53]. Downstream 
IFN-Ɣ pathway is inducing STAT1 activation achiev-
ing various biological functions such as IRF1 expression 
and tumor growth regulation, but STAT1 activation is 
also described for enhancing tumor progression through 
chronic inflammation responsible for controversial thera-
peutic implication [54]. ICR signature also includes genes 
involved in Th1 chemo-attraction through IFN-Ɣ path-
way, like CXCL9 and CXCL10, regulating naïve T cells 
migration, differentiation and activation and inhibiting 
angiogenesis [55]. Other genes included in ICR signature 
are mainly involved in direct cytotoxic function, such as 
CD8, GNLY, GZMA, GZMB and GZMH. Finally, immu-
nosuppressive mechanisms known as checkpoint inhibi-
tors are considered in the signature and widely involved 
in ICI efficacy such as CD274, PDCD1 or CTLA4 but 
also IDO1 and FOXP3. IDO1 is involved in tryptophan 
metabolism and known to enhance the PI3K/AKT sign-
aling and also with the T regulatory cell generation in 
tumor microenvironment, thus associated with poor 
prognosis in various tumor types [56, 57]. ICR provides a 
surrogate for the ability of immune response to attack the 
cancer cells if the checkpoint is inhibited.

Our result is consistent with other studies that reported 
a predictive value of immune signatures for the benefit of 
ICI in lung cancer [7]. These signatures, ranging from 4 
to 59 genes, include genes coding for proteins involved 
in tumor antigenicity and T cell priming/activation, traf-
ficking of T cells and infiltration into tumors, recogni-
tion of cancer cells by T cells, infiltration by inhibitory 
cells, and immune checkpoints receptors or ligands. 
Many of them include IFN-Ɣ-related genes, such as the 
18-gene TIS associated with objective response and PFS 
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after pembrolizumab in the KEYNOTE-028 trial [16], 
the 8-gene “T-effector and IFN-Ɣ signature” associ-
ated with overall survival (OS) after atezolizumab in 115 
NSCLC patients in the POPLAR study [20], or the 4-gene 
“IFN-Ɣ signature” associated with objective response and 
PFS after durvalumab in 97 NSCLC patients [21]. Other 
predictive immune signatures were reported in smaller 
NSCLC series ranging from 21 to 67 patients [23–26]. 
Interestingly, the ICR signature remained the sole vari-
able significant in our multivariate analysis for DCB 
prediction, when confronted to the TIS and TLS signa-
tures. The predictive value of ICR for the response to sys-
temic anti-cancer treatments has already been reported 
in retrospective studies. In early-stage breast cancer, we 
showed that ICR signature was independently associ-
ated with achievement of pathological complete response 
(pCR) to neo-adjuvant chemotherapy [28, 29]. Regard-
ing ICI, a potential positive predictive value of ICR was 
reported for clinical response in melanoma [31], and 
more recently for the pathological response to neo-adju-
vant chemotherapy combined with pembrolizumab in 
breast cancer [58]. Such predictive value should not be 
limited to these two cancers, and clearly further studies 
are warranted in other indications.

Our study displays strengths and limitations. The first 
limitations are related to the retrospective nature and its 
associated biases such as heterogeneity and missing data. 
For example, our population included patients treated by 
ICI as single agent in different metastatic lines, whereas a 
wide majority of patients now receive ICI in the first-line 
setting; the samples used for the transcriptomic analy-
ses were obtained at various stages of the disease (early 
and late) leading to some heterogeneity in our popula-
tion considering temporal tumor heterogeneity; relevant 
data were missing such as the TMB or PDL1 expression 
by IHC, even if we replaced it by mRNA expression that 
correlates with protein expression in lung cancers (Addi-
tional file 1: Fig S1). Second, we used the DCB as efficacy 
endpoint, rather than overall survival (OS) and progres-
sion free survival (PFS), but DCB has now been widely 
used among cancer immunotherapy literature, reinforc-
ing its clinical significance. Finally, the number of sam-
ples analyzed was relatively small when compared to the 
frequency of NSCLC, but to our knowledge, our series is 
the largest series of gene expression profiling of NSCLC 
patients treated with ICI. The strength of our results lies 
in: (i) the number of 162 samples that, to our knowl-
edge, makes our series the largest gene expression study 
reported so far in this setting; (ii) its originality, being 
the first one to describe the predictive value of ICR sig-
nature for response to ICI in NSCLC; (iii) a population 

of patients treated in the community setting, likely more 
reflective of real-life than a selected patient population 
within a clinical trial; (iv) the biological relevance of ICR, 
its predictive value in the context of ICI treatment and 
absence of prognostic value in absence of ICI; and (v) the 
small number of genes included (20 genes), which should 
facilitate its clinical application once validated.

Conclusion
We showed the predictive value of ICR in a large, com-
posite, and multicentric cohort. Even if a validation is 
required in larger retrospective cohorts and in prospec-
tive trials to confirm the robustness of our results in the 
first-line setting and chemotherapy combination, ICR 
displays a promising signal of efficacy in the so far disap-
pointing immune biomarkers field. In a near future, pre-
dicting ICI efficacy will be a major challenge with three 
pivotal questions: (i) when? Balanced with the new data 
on ICI use in early-stage NSCLC and the re-challenge in 
widely pretreated patients [59–61]; (ii) how? By assess-
ing various techniques to develop composite predictors 
likely including clinical, biological, genomic, transcrip-
tomic, proteomics, and spatial data to better consider 
the different drivers of immune response; and (iii) what? 
Considering the amount of new potential therapeutic 
immune targets, starting by the 20 genes of the signature, 
and the wide possibilities of treatment associations and 
sequences.
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