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Abstract 

Genomic instability is a common hallmark of human tumours. As a carrier of genetic information, DNA is constantly 
threatened by various damaging factors that, if not repaired in time, can affect the transmission of genetic information 
and lead to cellular carcinogenesis. In response to these threats, cells have evolved a range of DNA damage response 
mechanisms, including DNA damage repair, to maintain genomic stability. The X-ray repair cross-complementary 
gene family (XRCC) comprises an important class of DNA damage repair genes that encode proteins that play impor-
tant roles in DNA single-strand breakage and DNA base damage repair. The dysfunction of the XRCC gene family 
is associated with the development of various tumours. In the context of tumours, mutations in XRCC and its aberrant 
expression, result in abnormal DNA damage repair, thus contributing to the malignant progression of tumour cells. 
In this review, we summarise the significant roles played by XRCC in diverse tumour types. In addition, we discuss 
the correlation between the XRCC family members and tumour therapeutic sensitivity.
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Background
Genomic instability, a hallmark of cancer, ensues from 
a complex interplay involving DNA damage, tumour-
specific flaws in DNA repair, and the inability to halt 

or impede the cell cycle prior to transmitting damaged 
DNA to daughter cells [1, 2]. Human DNA is exposed to 
tens of thousands of instances of damage each day, aris-
ing from both endogenous and exogenous factors, such 
as metabolites, ionising radiation (IR), ultraviolet (UV) 
light, and DNA damage resulting from replication errors 
[3–5]. Unrepaired DNA damage can significantly elevate 
the risk of various cancers, including breast, ovarian, 
prostate, and glioma, among others [6–9]. To maintain 
genome stability, cells adopt several measures to repair 
damaged DNA.

DNA damage repair (DDR) is one of the most criti-
cal biological responses in living organisms. The DNA 
repair pathway is usually a multi-step, nonlinear reaction 
involving a series of repair factors that work together in 
a time-series [10]. The DDR system contains five major 
repair pathways: base excision repair (BER), homologous 
recombination (HR), mismatch repair (MMR), nucleotide 
excision repair (NER), and non-homologous end-joining 
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(NHEJ) [11]. Among all types of DNA damage, DNA 
double-strand breaks (DSB) are the most severe type of 
damage, and their efficient repair is essential for main-
taining genome stability. There are two major DSB repair 
pathways in eukaryotes: HR and NHEJ [12, 13]. Muta-
tions or aberrant expression of DDR-related genes result 
in compromised DNA damage repair functions, thereby 
reducing the capability of cells to repair damages caused 
by endogenous and exogenous stimuli. This fosters the 
accumulation of genetic alterations, ultimately leading 
to tumorigenesis [14]. DNA damage and abnormal DDR 
function not only contribute to tumorigenesis but also 
present opportunities and targets for tumour treatment. 
Many antitumour drugs operate in close association with 
the DNA damage and repair systems [15].

The DNA repair system is a vast and intricate network 
closely intertwined with all aspects of life, yet it remains 
inadequately understood. To date, several repair-related 
genes have been identified; however, their specific func-
tions are not well understood. Among these, X-ray cross-
complementing (XRCC) genes are some of the most 
studied DNA repair genes, and their abnormal expres-
sion has been reported to be associated with the devel-
opment of various malignancies [16–21]. The XRCC gene 

family comprises 11 main members (XRCC1–11), pri-
marily responsible for maintaining chromosome stability 
by participating in DNA single-strand break repair [22, 
23]. Among them, XRCC1–6 is a recognized member 
of the XRCC family, highly expressed in various tumour 
tissues and exhibiting multiple mutations in pan-cancer 
(Figs.  1 and 2). In addition, they play different biologi-
cal functions in different cancer types (Table  1). In this 
review, we comprehensively elucidate the functions of 
the XRCC gene family in DNA damage repair, delving 
into their underlying mechanisms, and exploring their 
significant roles in tumour progression. In addition, we 
discuss the role of the XRCC gene family in the context 
of therapeutic sensitivities.

Structure and biological properties of the XRCC 
gene family
The XRCC family constitutes an essential group of DNA 
double-stranded break repair-related genes, respon-
sible for encoding proteins involved in homologous 
recombination, which is indispensable for maintaining 
chromosomal stability and accomplishing DNA dam-
age repair [24]. When DNA damage occurs, different 
XRCC genes participate in distinct DNA damage repair 

Fig. 1 XRCC1-XRCC6 is abnormally expressed in a variety of tumours. The RNA-seq data of the tumours shown in the figure were obtained 
using The Cancer Genome Atlas (TCGA) database, and the expression levels of XRCC1–6 in tumour tissues and normal tissues were analysed, 
where the horizontal coordinates represent different genes and the vertical coordinates represent the gene expression distribution. Different 
colours represent different groups. *p < 0.05, **p < 0.01, ***p < 0.001
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pathways. In the context of double-stranded DNA dam-
age repair, XRCC2, 3, and 11 operate through the HR 
pathway, whereas XRCC4, 5, 6, and 7 operate through the 
NHEJ pathway [23]. Notably, among the 11 members of 
the XRCC family, the probability of XRCC7 (PRKDC), 
XRCC8, XRCC9 (FANCG), XRCC10, and XRCC11 
(BRCA2) belonging to this family remains controversial 
[22].

XRCC1 is located on chromosome 19q13.2–13.3, 
exhibits a total length of approximately 33  kb and con-
tains 17 exons [25]. The XRCC1 encodes a protein with 
three functional domains: the N-terminal domain, the 
BRCA1 carboxyl-terminal (BRCT) I domain, and the 
C-terminal BRCT II domain (Fig. 3), which interact with 
DNA polymerase beta, DNA ligase III, and poly(ADP-
ribose) polymerase (PARP) to form a complex that acts 
as a “scaffolding protein” in the base excision repair pro-
cess [23]. Human XRCC1 was the first isolated mam-
malian repair gene reported to be associated with the 
repair of DNA damage caused by ionising radiation. In 
1990, XRCC1 was cloned by Thompson et  al. from the 
gene library of EM9 cells [26]. In EM9 cells, the DNA 
ligase activity is reduced. Exposure to ionising radiation 
or ethyl methanesulfonate (EMS) led to impaired DNA 
strand breakage ligation and an elevated frequency of 
sister chromatid exchange (SCE). However, the introduc-
tion of XRCC1 rectified the deficiency in the DNA repair 
capacity of this particular cell line.

Human XRCC2 is located at 7q36.1 and contains three 
exons [27]. XRCC2 is a newly discovered member of the 

RecA/Rad51 family of recombinant repair proteins. It is 
highly conserved in mammals and humans and encom-
passes the characteristic ATP-binding region typical of 
the Rad51 family [28]. The functions of XRCC2 include 
recruitment of the core protein Rad51 to the broken end 
of DNA, enhancement of Rad51 activity, maintenance of 
chromosome stability, and repair of DNA damage [29]. 
The loss of XRCC2 expression can result in a defect in the 
core protein RAD51, leading to a significant reduction in 
the homologous recombination repair (HRR) function, 
particularly concerning DNA double-strand breaks. As 
a consequence, DNA damage cannot be effectively and 
timely repaired, giving rise to a considerably increased 
risk of chromosomal aberrations and abnormal chromo-
somal separation [30].

Human XRCC3 is located on chromosome 14 q32.3, 
and the protein it encodes is involved in the recombina-
tion repair process of DNA double-strand breaks. The 
function of XRCC3 was first identified in irs1SF cells, a 
Chinese hamster ovary (CHO) cell line. Transfection of 
the cloned XRCC3 cDNA into irs1SF cells significantly 
improved chromosomal instability and reduced the sen-
sitivity of irs1SF cells to various mutagens [31]. Liu et al. 
sequenced XRCC3 and found homology with RAD51, 
a repair and recombination gene in eukaryotic cells; 
they further demonstrated the interaction between the 
two encoded proteins through a series of basic experi-
ments. This indicates that the XRCC3 protein belongs 
to the RAD51-related protein family and plays a key role 
in the homologous recombination process, essential for 

Fig. 2 Genetic alterations of XRCC1–6 in pan-cancer. Analysis of XRCC1-XRCC6 mutations in pan-cancer using the cBioPortal database (https:// 
www. cbiop ortal. org/)

https://www.cbioportal.org/
https://www.cbioportal.org/


Page 4 of 14Liu et al. Journal of Translational Medicine          (2023) 21:602 

preserving chromosome stability and repairing DNA 
damage [32].

Human XRCC4 is located on chromosome 5q11.2–13.3 
and encodes a 336 amino acid protein (Fig. 3). It exhib-
its a spherical N-terminal head structural domain com-
prising seven peptide chains folded into a flared β-barrel, 
which is further connected to a long helix tail. The pro-
cess of polymerisation involves the association of the 
two head regions and the initial segments of their helix 
tails [33]. XRCC4 is an important NHEJ regulatory pro-
tein that directly interacts with Ku70/Ku80 in the repair 
pathway by preventing the degradation of free damaged 
DNA ends [34, 35]. XRCC4 can form a complex with 
DNA ligase IV and XLF, and then form an elastic link 
between Ku70/Ku80 and DNA ligase IV, guiding the 
damaged DNA ends to join each other, so that DNA can 
be repaired [36, 37].

Human XRCC5 is located at 2q33–34 and encodes a 
732-amino acid protein with a molecular mass of approx-
imately 86 kDa [38] (Fig. 3). XRCC5, also known as Ku80, 

Table 1 The list of XRCCs and their biological functions in different cancer types

MMP matrix metalloproteinase, VEGF vascular endothelial growth factor, XRCC  X-ray repair cross-complementing

XRCCs Cancer type Biological function Mechanism References

XRCC1 Glioma Proliferation, migration, invasion, and angi-
ogenesis

Targeting MMP-2, cyclin D1, VEGF, and p16 [139]

XRCC1 Gastric cancer Induction of cisplatin resistance Targeting thioredoxin-like protein 1 
(TXNL1)

[127]

XRCC1 Pancreatic cancer Induction of apoptosis Targeting base excision repair pathway [140]

XRCC1 Clear cell renal cell carcinoma Regulating tumour metastasis Regulating the expression of MMP-2, 
MMP-9

[74]

XRCC1 Lung cancer Tumour metastasis Regulating the expressions of E-cadherin, 
N-cadherin, and vimentin

[113]

XRCC2 Hepatocellular carcinoma Proliferation Repairing mitochondrial DNA damage [16]

XRCC2 Colorectal cancer Cell growth, cell cycle progression, 
and apoptosis

Regulating bcl-2 expression [141]

XRCC3 Glioma Temozolomide resistance Promoting DNA double-strand break repair [18]

XRCC3 Esophageal squamous cell carcinoma Improvement in radiotherapy effect Promoting DNA damage repair and/
or enhancing Telomere stability

[134]

XRCC3 Breast cancer Induction of cisplatin resistance sensitiza-
tion of chemotherapeutic

Stimulating Rad51-related recombinational 
repair

[132]

XRCC4 Retinoblastoma Drugs development Regulating DNA damage repair [135]

XRCC4 Medulloblastomas Tumour growth Regulating Myc-family or Cyclin D2 [142]

XRCC5 Colorectal cancer Cancer stemness and aggressiveness Promoting cyclooxygenase-2 expression. In 
cooperation with p300

[143]

XRCC5 Colorectal cancer Proliferation Activating cyclooxygenase-2 expression 
and enhanced prostaglandin E2 produc-
tion

[144]

XRCC6 Osteosarcoma Proliferation and metastasis Promoting β-catenin/Wnt signalling 
pathway

[145]

XRCC6 Hepatocellular carcinoma Promotion of the transformation of pre-
cancerous hepatocytes and hepatocellular 
carcinoma development

Regulating the Wnt/β-catenin pathway [146]

XRCC6 Hepatocellular carcinoma Inducing an effective autophagic degrada-
tion

[17]

Fig. 3 List and domain structures of XRCC1–6
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together with XRCC6 (Ku70) constitutes the XRCC5/
XRCC6 heterodimer (Ku80/Ku70), which is a DNA-
dependent protein kinase complex [37, 38]. The XRCC5/
XRCC6 dimer binds to DNA double-stranded break ends 
and serves as an essential component of DNA nonhomol-
ogous end-joining repair [39].

Single nucleotide polymorphisms (SNPs) 
in the XRCC family and tumour susceptibility
Single nucleotide polymorphisms (SNPs) are alterations 
in DNA sequence that are caused by variations in a sin-
gle base at the genomic level. As the most common form 
of genetic variation, SNPs are commonly found in the 
human genome and constitute more than 90% of all vari-
ations in human genomic DNA, with an average of one 
genotypic polymorphic SNP per thousand bases [40, 41]. 
SNPs may be found in both the coding and non-coding 
sequences of genes. SNPs located in the coding regions 
of genes, specifically those genes encoding immune 
response factors, have the potential to impact differences 
in gene expression or alter the structure of proteins they 
encode [42, 43]. Numerous studies have highlighted the 
potential function of SNPs, such as their impact on gene 
or protein modifications, promoter activity, and the mod-
ification of transcription factor binding sites. Moreover, 
SNPs can also influence the subcellular localisation of 
RNA and/or proteins. In addition, SNPs are associated 
with certain human traits and can influence an individ-
ual’s susceptibility to specific diseases. Therefore, con-
ducting an in-depth study of disease-associated SNPs and 
disease-susceptibility genes, along with analysing their 
functions, can significantly improve disease prevention 
strategies [44–47]. SNPs in the XRCC family of proteins 

play a significant role in causing individual variations in 
DNA damage repair ability, which in turn determines an 
individual’s susceptibility to tumours. Consequently, it 
is imperative to investigate genetic polymorphisms and 
tumour susceptibility and to explore specific molecular 
markers for the early diagnosis and treatment of tumours 
(Table 2).

Extensive research on XRCC1 SNPs has unequivocally 
established their correlation with tumour risk, treatment 
response, and survival outcomes in diverse malignancies, 
including lung cancer and gastric cancer [48–51]. Sev-
eral SNPs have been detected within the coding region of 
XRCC1 that result in corresponding amino acid changes 
in the encoding protein. The C→T base transition in exon 
6 of XRCC1 results in the conversion of the amino acid 
encoded by codon 194 from Arg to Trp, leading to the 
formation of the XRCCl Arg194Trp gene polymorphism; 
the G→A base transition in exon 10 of XRCC1 results in 
the conversion of the amino acid encoded by codon 399 
from Arg to Gln, resulting in the formation of Arg399Gln 
gene polymorphism. Furthermore, the G→A base tran-
sition in exon 9 at position 27,466 results in the forma-
tion of Arg280His gene polymorphism [52]. XRCC2 
gene polymorphisms can potentially lead to alterations 
in the primary structure of XRCC2 or abnormal protein 
expression, resulting in impaired repair of DNA damage 
and increased susceptibility to cancer. Polymorphisms in 
XRCC2 are associated with the development of various 
cancers, including lung, gastric, cervical, colon, breast, 
and others. Gok et  al. reported that the Arg188His 
locus polymorphism of XRCC2 was significantly asso-
ciated with the development of gastric cancer. Further-
more, Perez et al. demonstrated that the rs3218536 locus 

Table 2 The relationship between SNPs of XRCC1–6 and tumour

SNP single nucleotide polymorphisms, XRCC  X-ray repair cross-complementing

Genes Variants Position Cancer types/functions References

XRCC1 G>C c.1517 Increased risk of hepatocellular carcinoma development [147]

Arg399Gln exon 10 Genetic biomarker of squamous cell carcinoma of the head and neck [148]

Arg399Gln exon 10 Increased childhood risk of acute lymphoblastic leukemia [149]

G>A c. 1196 Influence of colorectal cancer on the clinical outcomes of patients [150]

XRCC2 R188H rs3218536 Influence breast cancer risk and survival [151]

C>T rs718282 Increased the cancer risk of endometrial cancer [152]

XRCC3 Thr241Met rs861539 Associated with the survival of glioblastoma multiforme patients [153]

A>G rs1799796 Increased risk of prostate cancer [154]

A>G rs1799794 Modulates the risk of head and neck cancer [155]

XRCC4 G>T c.1394 Associated with breast cancer development [65]

S110P rs79561451 Influence the susceptibility of individuals to breast cancer [156]

A>G rs1805377 Genetic markers of hepatocellular carcinoma [157]

XRCC5 G>A rs207906 Increased susceptibility to leukaemia [158]

XRCC6 C>G c.-1310 Associated with breast cancer risk and oestrogen exposure [159]
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polymorphism of XRCC2 was substantially associated 
with the risk of cervical cancer pathogenesis. In addition, 
Sirisena and Kluzniak reported that SNPs in XRCC2 are 
associated with the risk of breast cancer pathogenesis 
[53–57]. XRCC3 possesses multiple SNPs, and certain 
XRCC3 SNPs have been inextricably linked to tumorigen-
esis, cancer progression, and susceptibility to treatment. 
These SNPs have the potential to serve as molecular indi-
cators for predicting tumorigenesis and prognosis [58]. 
Several studies have demonstrated that the Thr241Met 
SNP of XRCC3 is associated with susceptibility to vari-
ous cancers, including lung, bladder, endometrial, and 
laryngeal cancers [59–63]. The SNP of XRCC4 G1394T 
has been reported to be associated with colorectal car-
cinogenesis and susceptibility to lung and prostate can-
cer [64]. Furthermore, the c.1394G>T SNP in XRCC4 
is associated with the development of breast cancer in 
Filipinos [65]. This study suggests that SNPs of XRCC5 
are associated with the development and progression 
of various tumours. Liu et  al. observed that rs828704, 
rs3770502, and rs9288516 SNPs in XRCC5 are associ-
ated with an increased risk of glioma susceptibility [66]. 
Hayden et al. observed that individuals carrying the TT 
genotype exhibited a reduced risk of myeloma compared 
with those carrying the XRCC5 rs2440 CC genotype [67]. 
The structure and function of XRCC6 are regulated by 
multiple SNPs and are closely associated with the devel-
opment and progression of several tumours. Numerous 
studies have reported that SNPs of XRCC6 are associated 
with genetic susceptibility to various cancers, including 
head and neck, bladder, lung, kidney, prostate, oral, and 
gastric cancers [68–71]. In addition, XRCC7 SNP at allele 
3434Thr has been reported to be associated with the risk 
of thyroid cancer in Iranian patients [72].

Role of XRCC in tumour metastasis
Metastasis refers to the process by which malignant 
tumour cells spread and establish secondary growths 
at distant sites from the primary tumour. The dissemi-
nation occurs through various means, including the 
lymphatic vessels, blood vessels, or body cavities from 
the primary site. Metastasis of malignant tumours is a 
major cause of death in cancer patients and a crucial 
factor affecting patient prognosis [73]. The XRCC fam-
ily has been reported to regulate tumour metastasis 
by employing a variety of mechanisms. For instance, 
XRCC1 is expressed at low levels in clear cell renal cell 
carcinoma (ccRCC) tissues in contrast to normal tis-
sues. The ccRCC tissues with low XRCC1 expression 
exhibit a positive correlation with lymph node metasta-
sis and are associated with an unfavourable prognosis. 
Mechanistically, XRCC1 inhibits tumour cell invasion 
and metastasis by regulating the expression of tissue 

inhibitors of matrix metalloproteinase-2 (TIMP-2) and 
TIMP-1, leading to the suppression of the expression of 
metastasis-related markers matrix metalloproteinase-2 
(MMP-2) and MMP-9 [74]. Additionally, the inhibi-
tion of XRCC1 expression is associated with the pro-
gression of primary and metastatic melanoma [75]. 
The meta-analysis conducted by Bashir et  al. revealed 
a significant downregulation of XRCC2 in breast cancer 
tissues as opposed to non-cancerous healthy tissues. 
They also observed a significant correlation between 
XRCC2 expression, lymph node status, and metastatic 
status in patients with breast cancer. These findings 
suggest that dysregulation of XRCC2 in breast cancer 
could be utilized as a predictive indicator for lymph 
node metastasis and may serve as a therapeutic role in 
patients with breast cancer who are at risk of metasta-
sis [76]. In colorectal cancer, the Thr241Met polymor-
phism of XRCC3 is associated with time-to-metastasis 
and may potentially play a biological role in accelerat-
ing the metastatic process [77]. In breast cancer, scor-
ing XRCC4 expression using immunohistochemistry 
has proven to be effective in predicting postoperative 
breast cancer metastasis. In addition, the combined 
diagnosis of XRCC4, PARP1, and excision repair cross-
complementation group 1 (ERCC1) has demonstrated 
considerable predictive capability in assessing the risk 
of breast cancer metastasis [78]. XRCC5, a downstream 
gene of miRNA-188-5p, was reported to be upregu-
lated in glioma samples. In contrast, miRNA-188-5p 
was down-regulated in these samples, and patients 
with glioma exhibiting low miRNA-188-5p expression 
levels showed higher rates of distant metastasis. In 
addition, it is observed that miRNA-188-5p regulates 
glioma cell metastasis by suppressing XRCC5 expres-
sion [79]. In hepatocellular carcinoma, there is a posi-
tive correlation between XRCC5 expression level and 
the migration and invasion abilities of hepatocellular 
carcinoma cells. Inhibition of XRCC5 expression leads 
to a significant reduction in the migration and invasion 
abilities of hepatocellular carcinoma cells. Addition-
ally, high XRCC5 expression is associated with tumour 
size, microvascular invasion, and lower overall survival 
time in the clinical samples of patients with hepatocel-
lular carcinoma. Mechanistically, XRCC5 regulates the 
expression of CTNNB1 (beta-catenin 1) and MMP9, 
which are key downstream target molecules of the 
Wnt/β-catenin signalling pathway. Through this regu-
latory function, XRCC5 promotes the progression 
of hepatocellular carcinoma [80]. Luo et  al. reported 
that testicular expression 10 (TEX10) may potentially 
regulate cancer cell proliferation and metastatic pro-
cesses through XRCC6, thereby controlling the Wnt/β-
catenin signalling pathway and DNA repair channels 
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[81]. These data suggest that the XRCC gene family 
plays an crucial role in tumour metastasis via multiple 
mechanisms.

Role of XRCC in tumour immunity
At present, tumour immunotherapy is the most prom-
ising strategy for cancer treatment. It is used to treat 
tumours by harnessing the body’s immune system, ena-
bling it to actively combat tumours, eradicate tumour 
cells, and establish sustained immune memory. Unlike 
targeted therapy, which focuses on specific targets, 
immunotherapy eliminates tumour cells by activating 
the body’s immune system and utilising immunoac-
tive substances and immune cells produced by the body 
[82, 83]. Several immune checkpoints associated with 
tumour immunity have been identified, including cyto-
toxic T-lymphocyte antigen 4 (CTLA-4), programmed 
death 1 (PD-1), programmed death ligand 1 (PD-L1), 
T-cell immunoglobulin and mucin-domain containing 
protein-3 (TIM3), and lymphocyte activating 3 (LAG3), 
among others [84–87]. Damaged DNA repair and asso-
ciated genomic instability not only elevate mutagenicity 
and oncogenicity but also augment the neoantigenic load 
on the surface of tumour cells, thereby increasing their 
immunogenicity [88, 89]. The XRCC family is closely 
associated with tumour immunity.

In colorectal cancer samples, mutations of XRCC1 
were significantly correlated with adenomas. Aberrant 
XRCC1 expression and mutations contribute to adenoma 
carcinogenesis. Moreover, PD-1/PD-L1 expression and 
CD4+ intraepithelial lymphocytes (IELs) are associ-
ated with tumour progression in patients possessing the 
wild-type XRCC1, suggesting that XRCC1 expression is 
correlated with patient survival, tumour-infiltrating lym-
phocytes, and immune marker expression [90]. Using 
bioinformatics analysis, Li et  al. observed that in breast 
cancer XRCC2 and XRCC3 are associated with the infil-
tration of immune cells, such as B cells, CD4+ T cells, 
CD8/CD4+ T cells, neutrophils, and dendritic cells, as 
well as the prognosis of patients with breast cancer [91]. 
In head and neck, lung and cervical cancers, the methyla-
tion status of XRCC3 is associated with the expression of 
immune checkpoint molecules and inflammatory mark-
ers [92]. Guo et al. reported that retinoic acid-inducible 
gene I (RIG-I) can potentially be recruited to double-
strand breaks (DSB) and inhibit NHEJ. Mechanistically, 
RIG-I hinders the formation of the XRCC4/LIG4/XLF 
complex on DSB by interacting with XRCC4, thereby dis-
rupting DNA repair and rendering cancer cells sensitive 
to radiation therapy. XRCC4 enhances RIG-I oligomeri-
zation and ubiquitination to promote RIG-I signalling, 
thereby inhibiting RNA viral replication in host cells, 
indicating the crucial role played by XRCC4 in the innate 

immune response [19]. The cGAS-STING pathway has 
emerged as a potential mechanism for the induction of 
inflammation-mediated tumorigenesis [93, 94]. Qi et  al. 
reported that XRCC5 and XRCC6 are associated with 
the cGAS-STING pathway. Overexpression of XRCC5 
and XRCC6 was significantly associated with the clini-
cal stage and pathological grade of hepatocellular carci-
noma. Moreover, they observed a significant correlation 
between the expression of XRCC5 and XRCC6 and the 
infiltration of B cells, CD4+ T cells, CD8+ T cells, mac-
rophages, neutrophils, and dendritic cells in hepatocel-
lular carcinoma [95]. In addition, the toll-like receptor 
4 (TLR4)-mediated lack of immune activity inhibits the 
expression of XRCC5 and XRCC6 in response to dam-
age by the carcinogen diethylnitrosamine (DEN). This 
effect leads to the impairment of DNA repair, facilitat-
ing the transformation of precancerous hepatocytes and 
the progression of HCC. In contrast, XRCC6 expression 
prevents the development and progression of HCC by 
restoring the cellular senescence response and activat-
ing the immune network, thereby inducing efficient 
autophagic degradation, scavenging accumulated reac-
tive oxygen species (ROS), reducing DNA damage, and 
attenuating proliferation [17, 96].

Role of XRCC in tumour metabolism
The abnormal metabolism of tumour cells is an impor-
tant feature of tumours. As normal cells gradually 
develop into tumour cells, they acquire several hallmark 
capabilities. Abnormal alterations in energy metabolism 
are one of the primary hallmarks of malignancy [97]. 
Tumour cells perform several biosynthetic processes and 
metabolic activities in a metabolic reprogramming man-
ner, providing energy and multiple substrates to support 
their rapid proliferation and survival [98]. The activa-
tion of oncogenes or inactivation of tumour suppressors 
drives the metabolic reprogramming of cancer cells, and 
the XRCC family plays a critical role in the tumour meta-
bolic process.

In a recent study, Anurag et  al. observed that pro-
teomic analysis of pretreatment patient biopsies 
uniquely revealed metabolic pathways associated with 
drug resistance, including oxidative phosphorylation, 
lipogenesis, and fatty acid metabolism. Interestingly, 
proteogenomic analysis of somatic copy number aber-
rations identified a resistance-associated deletion in 
19q13.31–33, which corresponded with the location 
of XRCC1 [99]. Aldehyde dehydrogenase 2 (ALDH2) 
is also involved in lipid metabolism. Chen et al. found 
that the interaction between the base excision repair 
proteins, XRCC1 and ALDH2, was indicative of over-
all survival in patients diagnosed with lung and liver 
cancer [100]. Folic acid metabolism is associated with 
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the efficacy of platinum compounds [101, 102]. Folate 
metabolism involves DNA methylation mediated by 
the enzymes, tetrahydrofolate methylene reductase 
(MTHFR) and methionine synthase (MTR). Polymor-
phisms in XRCC1 and folate metabolism genes can 
affect the prognosis of patients with non-small cell 
lung cancer [103]. In addition, polymorphisms in DNA 
repair genes (including XRCC1, XRCC2, and XRCC3) 
and steroid metabolism genes in patients undergoing 
prostate cancer radiotherapy are associated with clini-
cally advanced toxicity [104].

Role of XRCC in autophagy
Autophagy is a process by which self-damaged orga-
nelles and proteins are separated into autophagic 
vesicles and transported to lysosomes for catabolism 
[105]. Autophagy is closely associated with various 
diseases and plays a complex role in tumours. Particu-
larly, autophagy plays an oncogenic role in early-stage 
tumours. Additionally, stressors such as nutritional 
deficiency, DNA damage, and cytotoxic effects can 
potentially induce cellular autophagy and promote 
malignant tumour progression in advanced-stage 
tumours or during antitumour therapy. Recent studies 
have shown that autophagy plays a dual regulatory role 
in promoting and inhibiting tumour cell growth; thus, 
targeting autophagy may significantly affect the efficacy 
of antitumour therapy [105].

Ma et al. conducted a comprehensive analysis includ-
ing a cohort of 47 patients with advanced or metastatic 
oesophageal cancer who underwent next-generation 
sequencing (NGS) between May 2017 and February 
2020. This study resulted in the identification of 227 
mutated genes. Among them, XRCC1 exhibited a sub-
stantial number of mutations and was associated with 
autophagy [106]. Demirbag-Sarikaya et  al. observed 
that the autophagy-related molecule autophagy-
related protein 5 (ATG5) interacts with both XRCC5 
and XRCC6. This interaction is primarily mediated by 
XRCC6. They also found the interaction to be dynamic 
and enhanced under genotoxic stress. Moreover, they 
found that the interaction between ATG5 and XRCC6 
is essential for DNA repair and effective recovery from 
genotoxic stress. These results demonstrate a novel, 
direct, dynamic, and functional interaction between 
ATG5 and XRCC6, which are proteins that play critical 
roles in DNA repair under genotoxic stress conditions 
[107]. In addition, Wang et  al. showed that the resto-
ration of immunity supporting hepatocyte senescence 
and autophagy through XRCC6 repair of DNA damage 
reverses the progression of TLR4-deficient deteriorat-
ing hepatocellular carcinoma [17, 96].

The influence of non‑coding RNAs on XRCC 
Non-coding RNA (ncRNA) is an emerging biomarker 
that exhibits correlations with tumorigenesis and pos-
sesses oncogenic or tumour-suppressing properties. It 
can be detected in serum, plasma, and other biological 
fluids, making it a promising therapeutic and prognostic 
target for tumours, due to its non-invasive nature trau-
matic, high sensitivity, and specificity [108–110]. The 
ncRNAs, including long ncRNAs (lncRNAs), micro-
RNAs (miRNAs), and circular RNAs (circRNAs), are 
extensively involved in tumour pathogenesis. The ncR-
NAs play a pivotal role in the biological processes of 
tumours by regulating cell growth and survival, EMT and 
metastasis, maintenance of tumour stem cells, metabo-
lism, autophagy, chemoresistance, and angiogenesis 
[111, 112]. Several studies have reported that ncRNAs 
modulate tumour progression by regulating XRCC . In 
lung cancer, the circular RNA FLNA acts as a sponge 
for miR-486-3p and promotes tumour cell proliferation, 
migration, and invasion by regulating XRCC1 expres-
sion [113]. Li et al. observed that miR-3940-5p enhances 
homologous recombination repair after DSB by down-
regulating XRCC2 expression [114]. In oesophageal can-
cer, microRNA-127-3p enhances the chemosensitivity of 
phenanthroline-dione derivatives by targeting XRCC3 
[115]. In glioma cells, the long non-coding RNA SBF2-
AS1 acts as a ceRNA for miR-151a-3p, which in turn reg-
ulates the expression of XRCC4, thereby enhancing DSB 
repair [116]. Furthermore, in hepatocellular carcinoma 
cells, lncRNA NIHCOLE promotes the ligation efficiency 
of DSB by regulating XRCC4 [117]. CircXRCC5 acts as 
a sponge for miR-490-3p and regulates the expression of 
the downstream target gene, XRCC5, thereby activating 
CLC3 transcription and promoting glioma progression 
[118]. In breast cancer, miR-623 inhibits cell proliferation, 
migration and invasion by targeting XRCC5 by down-
regulating cell cycle protein-dependent kinases and 
inhibiting phosphatidylinositol-3 kinase (PI3K)/Akt and 
Wnt/β-Catenin pathways [119]. The correlation between 
microRNA-379-5p and premature ovarian insufficiency 
has been reported to be mediated by PARP1 and XRCC6 
[120].

Role of XRCC in tumour therapeutic sensitivity
Platinum-based combination chemotherapy repre-
sents the first-line standard of care for numerous types 
of tumours. The primary mechanism of action of plat-
inum-based drugs is the formation of platinum–DNA 
adducts binding to guanine, adenine, and cytosine on 
DNA. This process leads to the creation of inter-strand 
or intra-strand DNA cross-links, ultimately causing 
DNA damage and cell death [121]. Differences in DNA 
repair ability directly lead to inter-individual differences 
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in the sensitivity of tumour cells to DNA-related cyto-
toxic drugs [122]. Therefore, the relationship between 
DNA repair genes and tumour susceptibility to platinum-
based chemotherapy may be crucial for guiding indi-
vidualised clinical treatments. Similarly, the biological 
mechanism of killing tumour cells by radiation therapy 
is primarily based on direct genomic damage caused by 
radiation, resulting in the loss of the proliferative ability 
of tumour cells. Therefore, the clinical effect of radiation 
therapy depends on the responsiveness of tumour cells 
to radiation damage and their ability to repair the dam-
age. However, tumour cells are highly capable of damage 
repair and can selectively recognise damage and initi-
ate repair pathways, leading to tumour cell tolerance to 
radiation therapy and other antitumour drugs. Studies 
have demonstrated that DNA damage repair mechanisms 
protect tumour cells from radiation therapy-induced cell 
death, indicating that repair pathway proteins may play 
a potential role in enhancing tumour cell radiosensitiv-
ity. Exploring new approaches to more effectively inhibit 
repair proteins is crucial for enhancing tumour radiosen-
sitivity [123].

DNA repair ability is associated with the Gln399Arg 
polymorphism in XRCC1. Patients with non-small cell 
lung cancer polymorphism may potentially be resistant 
to platinum [50, 124]. In a study involving 195 patients 
with epithelial ovarian cancer, it was observed that 45% 
of patients with XRCC1-positive tumours were resist-
ant to platinum drugs. In contrast, only 17% of patients 
with XRCC1-negative tumours were resistant to plati-
num drugs. These findings suggest that XRCC1 has clini-
cal significance as a predictor of resistance to platinum 
therapy in patients with ovarian cancer [125]. Xu et  al. 
reported that the methylation level of H3K4 is signifi-
cantly reduced in drug-resistant cells. JIB-04, a chemical 
inhibitor of H3K4 demethylase, restores the methylation 
of H3K4, blocks the co-localisation of XRCC1 and phos-
phorylation of H2AX (γH2AX), and ultimately improves 
drug sensitivity. They also found that the expression level 
of KDM5B was significantly elevated in drug-resistant 
cells. Knockdown of KDM5B elevates the methylation 
level of H3K4, which hinders the localisation of XRCC1 
at the DNA damage site, resulting in heightened sensitiv-
ity [126]. Furthermore, in the context of gastric cancer, 
it has been reported that XRCC1 expression was signifi-
cantly elevated in cisplatin-resistant cells, and it indepen-
dently promoted cisplatin resistance. Irinotecan, another 
chemotherapeutic agent that induces DNA damage, was 
used to treat patients with advanced gastric cancer who 
experienced progression on cisplatin therapy. Nota-
bly, irinotecan effectively inhibited XRCC1 expression, 
resulting in increased sensitivity of resistant cells to cis-
platin [127].

XRCC2 is indispensable for DNA repair following radi-
ation damage. Radiation induces an abnormal increase 
in the expression level of XRCC2 in lung cancer cells, 
which causes them to resist the damaging effects of radi-
ation on tumour cell DNA. This results in the develop-
ment of tumour resistance to radiotherapy [128, 129]. In 
glioblastoma, inhibition of XRCC2 expression increases 
the radiosensitivity of tumour cells to radiation [130]. 
X-ray irradiation induces XRCC2 expression in colorec-
tal cancer cells and exhibits a dose- and time-dependent 
relationship between XRCC2 expression and radiation 
exposure. Downregulation of XRCC2 expression inhibits 
the proliferation of colorectal cancer cells and increases 
their sensitivity to radiation. In addition, gene silencing 
of XRCC2 induces a decrease in the repair of radiation-
induced cell damage, resulting in cellular arrest in the 
G2/M phase and increased apoptosis [131]. Expression 
abnormalities in XRCC3 are associated with tumour 
resistance to DNA damage-inducing antitumour agents. 
XRCC3 induces cisplatin resistance in tumour cells 
by activating Rad51-related recombination repair and 
S-phase monitor activation and by reducing apoptosis 
[132, 133]. XRCC3 has been reported to protect glioma 
cells from temozolomide (TMZ)-induced cell death and 
cell cycle inhibition. In addition, XRCC3 knockdown 
significantly reduces DSB repair after TMZ treatment, 
leading to increased drug sensitivity. This study con-
firms the importance of homologous recombination in 
conferring resistance to the methylating drug TMZ of 
glioma cells [18]. High XRCC3 expression is positively 
associated with resistance to radiotherapy in oesophagal 
squamous cell carcinoma (ESCC) and is an independent 
predictor of short disease-specific survival in patients 
with ESCC. Knockdown of XRCC3 in ESCC cells sig-
nificantly improved the efficacy of radiotherapy in both 
in vitro and in vivo analyses. XRCC3 overexpression sig-
nificantly enhanced the resistance of ESCC cells to radio-
therapy. Furthermore, the radiation resistance of XRCC3 
was mainly dependent on enhanced homologous recom-
bination, telomere stabilisation, and ESCC cell death 
reduction mediated by radiation-induced apoptosis and 
mitotic mutations [134]. Overexpression of ubiquitin-like 
with PHD and RING finger domains 1 (UHRF1) increases 
XRCC4 expression Conversely, the downregulation of 
XRCC4 renders retinoblastoma cells sensitive to etopo-
side treatment, indicating that XRCC4 is a key media-
tor of drug sensitivity following UHRF1 consumption in 
retinoblastoma cells. Moreover, in retinoblastoma cells 
depleted of UHRF1, it was observed that the chromatin 
association of DNA ligase IV in response to acute DNA 
damage was significantly reduced. Functional comple-
mentation of XRCC4 in cells depleted of UHRF1 weak-
ens drug sensitivity, indicating that the downregulation 
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of XRCC4 in UHRF1-depleted cells impairs DNA repair, 
leading to a significant induction of apoptosis during 
treatment with genotoxic drugs [135]. Hori et  al. inves-
tigated the relationship between NHEJ-related protein 
expression and the outcome of radiotherapy in oesopha-
geal cancer. They employed immunohistochemical analy-
sis of NHEJ-related proteins, including XRCC4, which 
holds promise as a potential predictive marker for assess-
ing tumour radiosensitivity [136]. XRCC5 knockdown 
significantly enhanced the sensitivity of glioma cells to 
TMZ, whereas XRCC5 overexpression led to TMZ resist-
ance in cancer cells. Both in vitro and in vivo experiments 
have shown that TMZ treatment induces XRCC5 expres-
sion in TMZ-resistant cells [137]. Chen et  al. reported 
that the quercetin-targeted radiation-induced ARv7-
mediated circNHS/miR-512-5p/XRCC5 signalling path-
way increases radiosensitivity in prostate cancer [138].

Conclusions
Tumour development is the result of a complex inter-
play of various factors, and DNA damage is a significant 
contributor to this process. The XRCC gene family is a 
crucial group of genes involved in DNA damage repair 
responsible for maintaining the stability of genetic mate-
rial and cellular function through their role in repairing 
DNA double-strand breaks and cross-link damage. Addi-
tionally, these genes play a significant role in ensuring 
the proper segregation of chromosomes during cell divi-
sion. The XRCC family constitutes a group of suscepti-
bility genes, and their polymorphisms are prevalent in 
the general population, exerting a substantial effect on 
tumorigenesis. An in-depth investigation of the correla-
tion between XRCC gene polymorphisms and tumour 
development can help explore the interactions between 
related genes, as well as the interactions between genes 
and the environment. These investigations will substan-
tially help in effectively formulating tumour preven-
tion and treatment strategies, protecting the susceptible 
population to a larger extent, effectively reducing the 
incidence of tumours, and improving the cure rate of 
tumours. Although significant progress has been made, 
inconsistencies persist in the findings of several stud-
ies. Therefore, it is essential to increase the sample size 
and conduct a comprehensive population cohort study 
employing multivariate analysis of crucial prognostic 
factors, such as gender, age, smoking status, histopatho-
logical types, clinical stages, and treatment strategies. 
This approach enables the investigation of the correlation 
between gene polymorphisms and prognosis, as well as 
the interplay between genetic polymorphisms and envi-
ronmental factors.

The mechanism of resistance to tumour radiotherapy 
and chemotherapy has been a popular research topic in 

the field of oncology. DNA oxygenation and alkylation 
damage caused by numerous DNA-damaging antican-
cer drugs can be repaired via the XRCC gene family-
mediated pathways. Research on the XRCC gene family 
and chemotherapeutic drug sensitivity is of particular 
interest. Inhibition of the XRCC gene family expres-
sion can sensitise various anticancer drugs, suggesting 
the XRCC gene family has the potential to influence the 
efficacy of tumor therapy by affecting chemotherapy 
sensitisation. However, the functions of these genes are 
not fully understood, and their relationship with anti-
cancer drug sensitisation requires further exploration.
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