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Abstract 

The advent of immunotherapy, a groundbreaking advancement in cancer treatment, has given rise to the promi-
nence of the tumor microenvironment (TME) as a critical area of research. The clinical implications of an improved 
understanding of the TME are significant and far-reaching. Radiomics has been increasingly utilized in the com-
prehensive assessment of the TME and cancer prognosis. Similarly, the advancement of pathomics, which is based 
on pathological images, can offer additional insights into the panoramic view and microscopic information of tumors. 
The combination of pathomics and radiomics has revolutionized the concept of a “digital biopsy”. As genomics 
and transcriptomics continue to evolve, integrating radiomics with genomic and transcriptomic datasets can offer fur-
ther insights into tumor and microenvironment heterogeneity and establish correlations with biological significance. 
Therefore, the synergistic analysis of digital image features (radiomics, pathomics) and genetic phenotypes (genom-
ics) can comprehensively decode and characterize the heterogeneity of the TME as well as predict cancer prognosis. 
This review presents a comprehensive summary of the research on important radiomics biomarkers for predict-
ing the TME, emphasizing the interplay between radiomics, genomics, transcriptomics, and pathomics, as well 
as the application of multiomics in decoding the TME and predicting cancer prognosis. Finally, we discuss the chal-
lenges and opportunities in multiomics research. In conclusion, this review highlights the crucial role of radiomics 
and multiomics associations in the assessment of the TME and cancer prognosis. The combined analysis of radiomics, 
pathomics, genomics, and transcriptomics is a promising research direction with substantial research significance 
and value for comprehensive TME evaluation and cancer prognosis assessment.
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Introduction
The tumor microenvironment (TME) is a multicel-
lular ecosystem composed of multiple cell types and 
molecules that is highly dynamic and spatially heteroge-
neous over time [1, 2] (Fig. 1). The TME plays a crucial 
role in promoting and sustaining tumor characteristics 
by releasing important molecules and activating related 
signaling pathways. These pathways interact with tumor 
cells, influencing their plasticity, invasiveness, and migra-
tory capacity. Conversely, the shaping of the TME by 
tumor cells can also affect the biological properties of the 
tumor itself [3–6]. The functional diversity and temporal 
sequence of the components of the TME are subject to 
dynamic changes under the influence of other compo-
nents, which collectively impact tumor development and 
have significant clinical implications for treatment and 
prognosis [7–9].

Immunotherapy has revolutionized cancer treatment 
[10, 11]. However, despite its potential, the objective 
response rate of immunotherapy in most cancers remains 
relatively low [12–14]. Therefore, there is an urgent need 
to identify reliable biomarkers that can screen patients 
who are most likely to benefit from immunotherapy, 
thereby guiding its use more effectively and rationally. 
Tumor-infiltrating lymphocytes (TILs) are one of the 
most representative biomarkers [15, 16] and have shown 
good prognostic predictive power in several cancer 

types [17–19]. Recently, tertiary lymphoid structures 
have also been used as significant predictive biomarkers. 
Their presence is associated with a good prognosis and 
response to immunotherapy and may activate antitu-
mor immune responses [20–23]. However, assessment of 
these important biomarkers still relies mainly on patho-
logical methods. The invasive nature of pathological tests 
and the limitations and biases in the acquisition of tumor 
specimens hinder the widespread use of the TME and 
prognostic assessment. Therefore, there is an urgent need 
to develop new noninvasive assessment methods to facil-
itate comprehensive decoding of the TME and prediction 
of cancer prognosis.

Medical imaging provides a wealth of information that 
reflects not only the macroscopic anatomy of the entire 
tumor but also its microscopic heterogeneity and the 
functional status of the surrounding environment [24, 
25]. Quantitative analysis of imaging data can offer a 
more comprehensive panoramic view of the tumor than 
examining a small portion of tumor tissue pathologi-
cally [26]. Radiomics is a rapidly growing research area 
focused on the conversion of images of the region of 
interest into quantitative radiomics features. These fea-
tures are derived through high-throughput extraction of 
information from imaging data, enabling their combina-
tion with the clinicopathological features of patients and 
subsequent modeling using machine learning algorithms 

Fig. 1 Schematic diagram of the various components of the tumor microenvironment, which contains multiple cell types and molecules
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[27]. Radiomics features encompass a range of charac-
teristics, including shape features such as volume, first-
order features such as skewness, second-order features 
such as gray level co-occurring matrix, and higher-order 
features such as Wavelet [28]. The essence of radiomics 
lies in the efficient extraction of quantitative image fea-
tures to effectively characterize the lesion region of inter-
est. These radiomics features capture tissue and lesion 
characteristics that, in conjunction with clinical, labo-
ratory, histopathology, genomics, or other histological 
data, can be integrated through machine learning. Their 
primary utility lies in addressing diverse clinical prob-
lems, including accurate diagnosis, efficacy assessment, 
and prognosis prediction of diseases [29]. The radiomics 
process mainly includes four fundamental steps: image 
acquisition, segmentation, feature extraction, and model 
building [30]. Image segmentation methods encompass 
manual segmentation, semiautomatic segmentation, and 
fully automatic segmentation. A growing number of radi-
omics studies have confirmed the correlation between 
radiomics features and TME components. However, due 
to the highly dynamic and temporal-spatial heterogene-
ity of the TME, a single radiomic approach for evaluat-
ing the TME and cancer prognosis may be limited. With 
the development of genomics and pathomics, multiom-
ics combinations offer new paths and directions for the 
assessment of the TME and cancer prognosis.

This review provides a comprehensive summary of the 
studies of important biomarkers in radiomics for assess-
ing the TME, highlighting the interconnection between 
radiomics, genomics, and pathomics in cancer. We 
aimed to comprehensively decode the TME and predict 
cancer prognosis by multiomics combinations, which 
has important research significance and clinical value. 
In the future, further research is needed to address the 
challenges of multiomics analysis and to fully realize the 
potential of integrating different types of data to improve 
our understanding of the TME and its role in cancer.

Radiomics predicts important components 
of the tumor microenvironment
Previous research in oncology has primarily concen-
trated on studying tumor cells, disregarding the crucial 
role of the TME in tumorigenesis and disease progres-
sion. TME research holds clinical significance because 
it enables the prediction of treatment effectiveness and 
the design of targeted therapeutic strategies, among 
other essential aspects. Further improvements in cur-
rent immunotherapies or the development of novel 
therapeutic approaches greatly depend on understand-
ing the interactions and immune evasion mechanisms 
of the various components within the TME. Accu-
rate characterization of the specific components and 

features of the TME is vital for evaluating tumor prog-
nosis, enhancing clinical decision-making, and advanc-
ing precision medicine.

The composition of the TME varies depending on the 
relative proportions of its different constituents, while its 
presence plays a critical role in tumor growth and inva-
sion. When immune cells are lacking in the TME or when 
immunosuppressive cells are excessively present, the effi-
cacy of anti-programmed cell death protein-1 (PD-1) and 
programmed cell death ligand-1 (PD-L1) immunotherapy 
is diminished. Notably, the TME significantly influences 
the survival benefits of immunotherapy [31]. The pres-
ence of immune cells within the TME, including the 
percentage of  CD8+ T cells, can serve as a predictor of 
immunotherapy effectiveness [32]. Therefore, enhancing 
the population of immune cells is a promising approach 
to enhance the efficacy of tumor treatment. Immune cells 
within the TME exhibit a dualistic function—recognizing 
and destroying tumor cells on the one hand, while also 
facilitating tumor growth and metastasis on the other 
hand [33, 34]. For instance, immune cells, including T 
cells, B cells, macrophages, and myeloid-derived sup-
pressor cells (MDSCs), possess the ability to modify the 
TME, thereby impacting the metastatic and pathologi-
cal traits of tumors. Tumor-associated macrophages can 
facilitate angiogenesis and invasion through the secretion 
of cytokines, growth factors, and proteases [35]. Acti-
vated tumor-associated fibroblasts have the capability to 
secrete various substances, including extracellular matrix 
and vascular endothelial growth factor (VEGF), among 
others, thereby contributing to the complex nature of the 
TME [36]. The extracellular matrix can exert influence 
over cell growth, metastasis, and the evasion of immune 
surveillance through the activation of signaling pathways, 
which subsequently impacts the pathogenesis of tumors. 
Additionally, tumor cells have the ability to release sev-
eral growth factors, such as tumor growth factor and 
endothelial growth factor, as well as VEGF, which serve 
to enhance the development of new blood vessels [37]. 
Neovascularization is critical in providing nourishment 
and oxygen to tumor cells, ultimately playing a pivotal 
role in tumor growth.

In conclusion, the TME plays a crucial role in tumor 
growth and metastasis. Gaining a comprehensive under-
standing of TME formation, investigating the cross-
talk between immune cells and tumors, and exploring 
multiple genetic variants are future directions of TME 
research. Additionally, selecting targeted therapeutic 
strategies based on TME typing can enhance the effec-
tiveness of tumor treatment. Accurately predicting and 
classifying significant TME components are essential for 
targeted tumor therapy and prognostic assessments. This 
section aims to summarize ongoing efforts in predicting 
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and evaluating relevant TME components and cancer 
prognosis through radiomics.

Tumor‑infiltrating lymphocytes
TILs represent a vital constituent of the TME and are 
involved in the local immune response to the TME. Previ-
ous studies have shown that the presence, differentiation 
and localization of TILs determine clinical outcomes, 
prognostic assessments and clinical decision making [38, 
39]. However, specimens used for TIL assessment are 
not representative of TIL levels in the whole tumor due 
to tumor heterogeneity and differences and limitations in 
pathology specimen acquisition. Therefore, preoperative 
assessment and prediction of TIL levels by noninvasive 
radiomics methods are important. Table  1 summarizes 
the studies related to radiomics prediction of TILs.

Recently, radiomics studies concerning TILs have 
mainly focused on breast cancer, lung cancer, and pancre-
atic ductal adenocarcinoma. A small number of studies 
have also included hepatocellular carcinoma, colorectal 
cancer, glioma, head and neck squamous cell carcinoma, 
esophageal cancer, and undifferentiated pleomorphic 
sarcoma. The vast majority of these studies have demon-
strated good predictive performance. Radiomics studies 
of TILs encompass three main aspects. (1) Most studies 
have focused on the use of radiomics for preoperative 
prediction of TIL level and density. (2) A few studies have 
combined radiomics features with TILs to predict prog-
nosis. (3) The TME has been defined as “cold” or “hot” 
based on the abundance of TILs combined with PD-L1/
PD-1 expression in tumors for the prediction and explo-
ration of relevant TME immune features.

Radiomic assessment of the TME first began with pre-
diction of the density of a particular immune cell. Bra-
man et  al. showed that classifiers of intratumoral and 
peritumoral magnetic resonance imaging (MRI) radiomic 
features predicted the breast cancer HER2-E subtype and 
that features in the peritumoral 0–3  mm region corre-
lated significantly with the density of TILs [40]. Khorrami 
et  al. demonstrated an association between computed 
tomography (CT) radiomics-based peritumoral Gabor 
features and TIL density in response to immunotherapy 
in lung cancer patients [41]. Jeon et al. found a significant 
correlation between MRI radiomic features and  CD8+ 
TIL density when predicting alterations in  CD8+ TIL 
density induced by radiotherapy in locally progressive 
rectal cancer [42].

A study was conducted by Sun et al. to forecast the TIL 
level using radiomics. They effectively assessed tumor-
infiltrating CD8 cells and immunotherapeutic response 
by CT radiomics in a variety of advanced solid tumors, 
and the radiomic signature of CD8 cells was validated in 
three additional independent cohorts, providing precise 

predictions for distinguishing the immunophenotypes of 
tumors and clinical outcomes of cancer patients under-
going anti-PD-1 and PD-L1 immunotherapy [43]. Sun 
et al. used validated CD8 cell radiomic features to predict 
the prognosis of patients with multiple cancers receiv-
ing immunotherapy in combination with radiotherapy 
[44], as well as to predict intercellular heterogeneity and 
prognosis in patients with advanced melanoma [45]. Su 
et al. utilized MRI radiomic features to construct a model 
that predicts the TIL level in triple-negative breast can-
cer (TNBC). Transcriptomic analyses subsequently con-
firmed that tumors with high TIL levels, as predicted 
by radiomics, exhibit activated immune-related path-
ways. High Rad-TIL tumors were found to possess a hot 
immune microenvironment characterized by upregu-
lated gene markers for T-cell infiltration, cytokines, 
costimulators, and major histocompatibility complexes. 
Additionally, higher proportions of  CD8+ T cells, folli-
cular helper T cells, and memory B cells were observed 
in these tumors. This study demonstrated the feasibility 
of radiomic models to predict TIL status and provided a 
method by which TIL status can be interpreted [46]. In 
a research study on the use of MRI radiomic models to 
predict TIL levels in breast cancer, delayed-phase MRI 
radiomic features exhibited the most favorable predictive 
performance, with areas under the curve (AUCs) of 0.934 
and 0.950, respectively [47]. Additionally, a study utilizing 
a CT and MRI radiomics-based extreme gradient boost-
ing (XGBoost) classifier demonstrated that the levels of 
tumor-infiltrating  CD8+ T cells in patients with pancre-
atic ductal adenocarcinoma (PDAC) could be effectively 
predicted. Furthermore, this approach can be imple-
mented to identify potential patients who could benefit 
from immunotherapy [48, 49]. Liao et al. assessed tumor-
infiltrating  CD8+ T-cell levels in patients with hepato-
cellular carcinoma (HCC) by preoperative enhanced CT 
radiomics and found that Rad scores were positively cor-
related with the percentage of TILs [50].

A few studies have focused on combining radiomic fea-
tures and TILs to predict tumor prognosis. Jimenez et al. 
developed a pretreatment prediction model involving the 
MRI radiomic signature and TIL level, a combination 
that improved the accuracy of predicting the pathologi-
cal complete response to neoadjuvant systemic therapy 
in patients with TNBC [51]. Few studies have classified 
the TME based on PD-L1 expression and TILs, and radi-
omics can achieve precise prediction of the type of TME. 
Mazzaschi et  al. demonstrated that 7 CT radiomic fea-
tures could efficiently differentiate hot (inflammatory) 
from cold (desert) TME [52]. Trentini et al. showed that 
hot and cold tumor TME could be effectively distin-
guished by three CT radiomic features, with a predicted 
AUC of 0.94 for the hot tumor microenvironment [53].
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Table 1 Radiomics study for predictive evaluation of tumor-infiltrating lymphocytes

Tumor type Sample size TILs 
evaluation

TILs 
evaluation 
method

Imaging 
modality

Feature 
selection

Model Training set 
performance

Validation set 
performance

References

N/A 254 CD8+TILs RNA-seq CT Elastic-net Linear 
regression

AUC 0.74 AUC 0.67 [43]

UPS 14 CD8+TILs RNA-seq MRI N/A N/A ACC 93% N/A [54]

TNBC 139 TILs RNA-seq MRI Elastic net LR AUC 0.868 AUC 0.790 [46]

TNBC 43 TILs IHC Mammogra-
phy

Mann–Whit-
ney U-test/
PCC

N/A N/A N/A [55]

TNBC 80 TILs HE MRI N/A N/A AUC 0.752 N/A [51]

BC 133 TILs HE MRI LASSO LR AUC 0.934 AUC 0.872 [47]

BC 172 TILs IHC MRI LASSO Linear 
regression

AUC 0.742 AUC 0.718 [56]

BC 121 TILs HE Mammogra-
phy

RFE LR AUC 0.83 AUC 0.79 [57]

BC 154 TILs NA MRI LASS0 LR AUC 0.86 AUC 0.83 [58]

RC 141 CD8+TILs IHC MRI LASSO Linear 
regression

AUC 0.760 AUC 0.729 [42]

RC 133 T cells IHC MRI GBDT LR AUC 0.770 AUC 0.768 [59]

CCLM 103 T cells IHC CT N/A SVM N/A N/A [60]

HGG 51 T cells FCM MRI sPLS sPLS-DA AUC 0.986 N/A [61]

LGG 107 B/T cells RNA-seq MRI LASSO COX R correlation 
coefficient

[62]

0.975 (B cell) 0.429

0.474 (CD8 T 
cell)

0.552

NSCLC 100 TILs IHC CT Mann–Whit-
ney U

Cox model AUC 0.91 N/A [52]

NSCLC 103 CD8+TILs IHC PET/CT LASSO LR AUC 0.800 AUC 0.794 [63]

NSCLC 290 TILs IHC CT N/A COX N/A N/A [64]

NSCLC 117 CD8+TILs IHC CT LASSO N/A AUC 0.83 AUC 0.68 [65]

NSCLC 60 TILs IHC CT PCA N/A N/A N/A [66]

NSCLC 149 CD8+T cells RNA-seq CT N/A RF AUC 0.681 (RF) N/A [67]

LDA AUC 0.674 
(LDA)

CART AUC 0.647 
(CART)

NSCLC 97 CD8+TILs FACS CT N/A Neural 
network

0.788 0.753 [68]

NSCLC 91 CD8+TILs IHC PET-CT LASSO LR 0.818 N/A [69]

NSCLC 44 CD8+TILs IHC PET N/A COX 0.9 N/A [70]

NSCLC 221 CD8+T cells IHC PET/CT LASSO LR 0.907 0.883 [71]

PDAC 184 CD8+TILs IHC CT LASSO XGBoost AUC 0.75 AUC 0.67 [48]

PDAC 156 CD20B cells IHC MRI LASSO LR AUC 0.79 AUC 0.79 [72]

PDAC 114 CD8+T cells IHC MRI LASSO LDA AUC 0.85 AUC 0.76 [73]

PDAC 183 TILs IHC CT NA XGBoost AUC 0.93 AUC 0.79 [74]

PDAC 156 TILs IHC MRI LASSO XGBoost AUC 0.86 AUC 0.79 [49]

HCC 142 CD8+T cells IHC CT Elastic-net linear regres-
sion

AUC 0.751 0.705 [50]

HCC 207 T cells IHC MRI Randomized 
tree

Randomized 
tree

AUC 0.904 AUC 0.823 [75]

HNSCC 160 CD8+T cells RNA-seq CT Consensus 
clustering

RF ACC 65.7% N/A [76]

HNSCC 71 CD8+T cells IHC CT LASSO LR 0.786 N/A [77]
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In conclusion, radiomics studies of TILs are still evolv-
ing and have yielded some remarkable results, but the fol-
lowing limitations remain. (1) Most studies have focused 
on  CD8+ T cells and have not classified TILs in a more 
detailed way. Therefore, more detailed studies on other 
types of TILs are needed to explore the detailed and com-
prehensive roles of TILs, especially B cells. (2) Current 
radiomics studies on TILs are from single centers and 
have small sample sizes. Therefore, a multicenter study 
with a large sample size is necessary to verify the robust-
ness of the findings. (3) TILs should be combined with 
other important components of the TME to comprehen-
sively reveal the characteristics of the TME for better 
prognosis assessment and clinical decision guidance.

Other important components of the tumor 
microenvironment
As comprehension of the TME has gradually progressed, 
radiomics studies have begun to explore other vital com-
ponents and cell types present within the TME. The 
interplay between stromal components and tumor cells 
is a chief instigator of tumor progression and metastasis. 
According to Cai et al., MRI-based radiomic features were 
employed to preoperatively assess the tumor-stroma ratio 
in rectal cancer, and they found that radiomic features 
outperformed the apparent diffusion coefficient in dis-
tinguishing the tumor-stroma ratio in rectal cancer [79]. 
Furthermore, Meng et  al. utilized an XGBoost classifier 
based on CT and MRI radiomics to predict the tumor-
stroma ratio and enhance risk stratification in patients 
with PDAC [80, 81]. Multiple other cell types in the TME 
were also included in the study. Li et al. were able to pre-
dict survival in glioma patients by establishing a preop-
erative T2-weighted MRI radiomic model, which could 
assess the extent of macrophage infiltration preopera-
tively [82]. Hsu et al. developed a machine learning-based 
MRI radiomics model to assess the enrichment levels of 
four immune subpopulations, including cytotoxic T lym-
phocytes, regulatory T cells, activated dendritic cells, 
and MDSCs. The radioimmunophenotype model can 

characterize the immune phenotype of and can predict 
patient prognosis [83]. Similarly, Zhang et al. used MRI-
based radiomics to predict the infiltration levels of vari-
ous immune cells in low-grade gliomas, including B cells, 
 CD4+ T cells,  CD8+ T cells, macrophages, neutrophils, 
and dendritic cells [62]. Devkota et al. developed a nano-
radiomics approach for detecting the tumor response to 
cellular immunotherapy targeting MDSCs. Nanoradiom-
ics revealed that TME-directed cellular immunotherapy 
induces subtle changes [84]. Ming et  al. revealed breast 
cancer heterogeneity by MRI radiomics, identifying three 
imaging subtypes that differ in cell cycle and extracel-
lular matrix receptor interaction pathways and cellular 
components, such as cancer-associated fibroblasts. These 
imaging subtypes have different clinical outcomes and 
biological features [85]. Arefan et al. predicted the abun-
dance of 10 cell types of breast cancer, such as fibroblasts, 
by MRI-based radiomic features, which correlated with 
different aspects of TME cell type abundance [86]. Huang 
et al. used the CT radiomics score to predict the neutro-
phil–lymphocyte ratio in the TME of gastric cancer with 
an AUC of 0.795–0.861 [87].

Radiomics was also used to predict the expression 
levels of important molecules in the TME. He et  al. 
predicted cytotoxic T-lymphocyte-associated protein 
4 expression and prognosis in clear cell renal cell car-
cinoma (ccRCC) with CT radiomics, which helped to 
stratify the prognosis of ccRCC patients [88]. Gao et al. 
established that CT radiomic features identified PD-1 
expression status and prognosis in ovarian cancer, reveal-
ing that the cause is associated with T-cell depletion [89]. 
Mu et al. used a deep learning approach based on PET/
CT radiomics that could predict PD-L1 status as well as 
immunotherapy response [90]. Jiao et  al. used CT radi-
omics to predict that interleukin-23 (IL-23) expression 
levels in ccRCC correlated with prognosis as well as the 
immune microenvironment [91]. Müller et al. developed 
an MRI radiomics model to predict tissue hypoxia and 
vascularization in mice with an AUC of 0.85 and devel-
oped a TME signature that may help to further reveal the 

UPS undifferentiated pleomorphic sarcomas, HGG high-grade gliomas, TNBC triple-negative breast cancer, BC breast cancer, NSCLC non-small cell lung cancer, 
PDAC pancreatic ductal adenocarcinoma, HCC hepatocellular carcinoma, LGG lower-grade gliomas, CCLM colorectal cancer lung metastasis, HNSCC head and neck 
squamous cell carcinoma, ESCC esophageal squamous cell carcinoma, CART  classification and regression tree, H&E hematoxylin and eosin, IHC immunohistochemistry, 
PET Positron emission tomography, LASSO least absolute shrinkage and selection operator, ACC  accuracy, sPLS-DA sparse partial least squares discriminant analysis, 
RFE recursive feature elimination, LR logistic regression, GBDT gradient boosting decision tree, PCC Pearson correlation coefficient, PCA principal component analysis, 
RNA-seq RNA-sequencing, LDA linear discriminative analysis, SVM support vector machine, RF random forest, FACS fluorescence-activated cell sorting, FCM flow 
cytometry, AUC  area under the curve, N/A not applicable

Table 1 (continued)

Tumor type Sample size TILs 
evaluation

TILs 
evaluation 
method

Imaging 
modality

Feature 
selection

Model Training set 
performance

Validation set 
performance

References

ESCC 220 CD8+T cells IHC CT LASSO LR 0.764 0.728 [78]
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underlying biological puzzle [92]. Perrone et al. were able 
to distinguish the level of inflammation in patients by 
CT radiomic features based on the expression of CD68 
and IL-1β. Additionally, they developed and validated a 
radiomic model based on quantitative inflammatory fea-
tures in CT images that could predict the prognosis of 
patients with non-small cell lung cancer (NSCLC) [93]. 
Wang et al. were able to effectively predict the expression 
level of CD27 in head and neck squamous cell carcinoma 
(HNSCC) patients by CT radiomics modeling [94]. Wang 
et  al. predicted the expression profile of Ki-67 status in 
ovarian cancer by PET/CT radiomic features [95].

However, there have been only a limited number of 
studies on ultrasound radiomics exploring the impor-
tant role of the TME. Mohammadi et  al. evaluated the 
potential benefits of incorporating the tumor perimeter 
as a component of the TME in the quantitative analysis of 
ultrasound images. They demonstrated that ultrasound-
based radiomics features extracted from enlarged tumor 
contours can differentiate between benign and malignant 
lymph node and breast lesions, with AUC values of 0.868 
and 0.714, respectively. Their findings provide convincing 
evidence of the significance of the tumor periphery and 
the TME in the quantitative analysis of medical imaging 
[96].

In summary, radiomics has the capability to evalu-
ate other crucial components of the TME. Individual or 
a limited number of indicators of the immune micro-
environment cannot comprehensively capture the bio-
logical characteristics of the TME. Therefore, it is an 
emerging trend to develop a comprehensive evaluation 
system using multiple indicators that can comprehen-
sively depict the characteristics of the TME. In addition, 
expanding the research scope of radiomics is vital. In 
the future, it is necessary to expand the scope and sam-
ple size of the study, integrate various indicators, and 
combine multiple approaches to create a comprehensive 
and accurate predictive model for evaluating the tumor 
microenvironment, which will facilitate decoding the 
TME and assessing cancer prognosis.

Multiomics of radiomics, genomics, and pathomics 
combined to evaluate TME and predict cancer 
prognosis
Radiogenomics
Radiomics is a routine method for converting images into 
quantitative data. Radiogenomics is a distinct applica-
tion that involves the identification of radiomic features 
that are linked to gene expression patterns, gene muta-
tions, and other genome-related characteristics. These 
radiogenomics features provide valuable insights into 
the underlying genetic mechanisms that contribute to 
disease development and progression. Radiogenomics 

allows for a deeper characterization and comprehensive 
understanding of tumor biology as well as tumor het-
erogeneity. Radiogenomics studies have focused on pre-
dicting and associating established biological features, 
such as isocitrate dehydrogenase-1 (IDH-1) [97], epi-
dermal growth factor receptor (EGFR) [98], P53 muta-
tion [99], BRCA1/2 [100], Kirsten rat sarcoma (KRAS) 
[101], BRCA1-associated protein 1 (BAP1) [102], and 
other gene mutations and molecular subtypes [85, 103]. 
Screening for imaging group biomarkers that predict 
gene mutations may provide diagnostic and therapeutic 
value for cancer intervention.

One of the applications of radiogenomics is the predic-
tion of the mutational status of genes through radiomics. 
Li et  al. found that deep learning-based radiomics can 
predict IDH1 mutation status in low-grade gliomas [104]. 
Jia et  al. used radiomic features that can predict EGFR 
mutations in lung adenocarcinoma, providing a noninva-
sive, easy and feasible method to predict EGFR mutation 
status [105]. Cui et al. reported a moderate performance 
in the prediction of KRAS status using MRI radiomic fea-
tures with an AUC of 0.72 [101]. Radiogenomics can also 
predict molecular subtypes of tumors based on molecu-
lar expression. Jiang et  al. developed and validated MRI 
radiomic features to distinguish TNBC from other breast 
cancer subtypes. Moreover, these features can differenti-
ate between the molecular subtypes of TNBC. Combined 
with TNBC transcriptomic and metabolomic data, the 
radiomic features demonstrated that peritumor het-
erogeneity is associated with immunosuppression and 
upregulation of fatty acid synthesis in tumors. This study 
further contributes to the understanding of the biological 
significance of radiomics [106].

Radiogenomic analysis may also be employed to decode 
the underlying biological mechanisms of newly identi-
fied imaging biomarkers, and classical pathway enrich-
ment analysis can serve as a viable method for executing 
radiogenomic analysis. Beig et  al. revealed the associa-
tion of MRI radiomic features with signaling pathways 
for cell differentiation, cell adhesion, and angiogenesis 
by radiogenomic analysis, suggesting that MRI radiomic 
features may be significantly associated with key biologi-
cal processes that influence chemotherapeutic response 
in glioblastoma (GBM) [107]. Jamshidi et  al. performed 
a multilevel radiogenomic study to elucidate the MRI 
radiogenomic signature of GBM caused by changes in 
messenger RNA (mRNA) expression and DNA copy 
number variation (CNV). Gene set enrichment analysis 
(GSEA) was used to identify various oncogenic pathways 
with MRI signatures, identifying 34 correlations between 
genetic loci that showed consistent changes in gene vol-
ume and mRNA expression, leading to the construction 
of an MRI, mRNA and CNV radiogenomic association 
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map [108]. Yeh et  al. conducted an exhaustive radiog-
enomic investigation to establish correlations between 
radiogenomic features and 186 Kyoto Encyclopedia of 
Genes and Genomes pathways. Their findings revealed 
that all radiogenomic size characteristics were positively 
linked with multiple replication and proliferation path-
ways and negatively associated with apoptotic pathways. 
The gene pathways that were associated with immune 
system regulation and extracellular signaling exhibited 
the most noteworthy radiographic signature associations. 
The study demonstrated that breast cancer MRI radiomic 
features can predict underlying gene expression, suggest-
ing the possibility that MRI radiomic features can dis-
tinguish immunologically active tumors [109]. Wu et al. 
devised a radiogenomics classifier to forecast three imag-
ing subcategories, scrutinized their biological underpin-
nings via in-depth pathway enrichment analysis, and 
uncovered a correlation between malignant tumors and 
the aberrant regulation of immune-related and protein 
export pathways [110]. Feng et al. revealed hypoxia pat-
terns and immunological features in ovarian cancer based 
on CT radiogenomics analysis, finding that patients with 
a low-risk subtype had an active immune microenviron-
ment for reasons that may benefit from immunotherapy. 
They also constructed a radiogenomics model contain-
ing four features to reveal hypoxic risk status, which had 
AUCs of 0.900 and 0.703 in the training and test cohorts, 
respectively [111]. Feng et al. were able to accurately pre-
dict the macrotrabecular-massive subtype in patients 
with HCC using a CT radiomic model, and findings 
based on high-throughput and single-cell RNA sequenc-
ing revealed that the radiomic model was associated with 
humoral immune dysregulation involving B-cell infiltra-
tion and immunoglobulin synthesis [112]. Yu et al. used 
MRI radiomics to effectively predict preoperative axillary 
lymph node metastasis and found an association between 
radiomic features and tumor microenvironmental fea-
tures, including immune cells, long-chain noncoding 
RNA, and methylation site types, revealing a potential 
biological basis for MRI radiomics [113].

In summary, radiogenomics enables the noninvasive 
correlation and prediction of gene expression by estab-
lishing associations between genes and noninvasive 
imaging features. This allows for the prediction and anal-
ysis of treatment and prognosis at the molecular level. 
However, radiogenomics also faces certain limitations. 
First, most radiogenomics studies are retrospective and 
involve small sample sizes. Thus, it is necessary to con-
duct larger prospective studies to identify radiogenomics 
associations that can be effectively applied in clinical set-
tings in the future. Second, there is a need to integrate 
data from various sources, such as transcriptomics, pro-
teomics, and metabolomics. Joint multiomics studies 

would facilitate the design of more valuable biomark-
ers, ultimately leading to a better understanding of the 
TME, prognostic assessment, and overall comprehensive 
resolution.

Radiotranscriptomics
Radiotranscriptomics is an emerging and crucial field 
that investigates the correlation between radiological 
features derived from medical images and gene expres-
sion profiles. This research area has significant potential 
in cancer diagnosis, treatment planning, and prognosis 
assessment. Given the inherent complexity of diseases 
and the influence of epigenetic factors on pathogenesis, 
the transcriptome offers insights into sequence modi-
fications that may not be evident at the genomic level. 
Transcriptomics provides a functional context for under-
standing the involvement of key genes and the regulatory 
mechanisms underlying the selective expression variation 
observed in disease pathogenesis. By combining tran-
scriptomics data with imaging, a deeper understanding 
of the molecular intricacies of diseases can be achieved 
[114, 115]. Radiotranscriptomics thus emerges as a 
promising approach for developing noninvasive imaging 
biomarkers and supporting clinical decision-making.

First, numerous studies have examined the correlation 
between radiomics and transcriptomics, with a focus on 
their biological significance. For instance, Cianflone et al. 
conducted a study to investigate the relationship between 
CT imaging features and gene expression patterns in 
patients with ccRCC. The study successfully identified 
four radiogenomics patterns that exhibited a statistically 
significant correlation between radiogenomics features 
and transcriptomes [116]. Similarly, Dovrou et  al. con-
ducted a study on non-small cell lung cancer, also find-
ing a correlation between radiogenomics features and 
transcriptomes. They further validated the biological rel-
evance of these radiomic features by conducting enrich-
ment analyses on transcriptomics-based regression 
models. This analysis revealed closely related biological 
processes and pathways, thus providing valuable radi-
otranscriptomics markers and models that enhance our 
understanding of the link between the transcriptome and 
phenotype in cancer [117]. Crombé et al. investigated the 
correlation between MRI radiomics and differential gene 
expression profiles in pathway analysis of soft tissue sar-
comas (STSs). The study identified three reliable patient 
subgroups based on delta-radiomics. Group B patients 
exhibited increased tumor heterogeneity, necrotic signal, 
infiltrative margins, peritumoral edema, and peritumoral 
enhancement before treatment initiation. Molecular 
analysis revealed downregulation of natural killer cell-
mediated cytotoxicity genes and upregulation of the 
Hedgehog and Hippo signaling pathways. This study 
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highlights the integration of radiomics and transcriptom-
ics in STS, suggesting that STS with extensive changes on 
imaging shows overactivation of suppression of prolifera-
tion and immune response [118].

Preliminary tumor molecular typing based on radiom-
ics and transcriptomics has been addressed by several 
studies. Lin et al. integrated radiomics and transcriptom-
ics analyses to provide novel insights into the molecular 
annotation of radiographic features and effective risk 
stratification in NSCLC. Three radiotranscriptomics sub-
types (RTSs) were identified using radiomics and pathway 
enrichment profiles: RTS1 (proliferative subtype), RTS2 
(metabolic subtype), and RTS3 (immune-activated sub-
type). RTS3 exhibited increased infiltration of the major-
ity of immune cells. RTSs have the potential to stratify 
patients with molecular heterogeneity, revealing a rela-
tionship between molecular phenotypes and radiomic 
features [119]. In another study, Zeng et  al. utilized CT 
radiomic features to predict gene mutations and mRNA-
based molecular subtypes. They employed a combination 
of multiomics data (radiomics, genomics, transcriptom-
ics, and proteomics) to predict the overall survival (OS) 
of patients with ccRCC, achieving a 5-year OS AUC value 
of 0.846. This study suggests that CT radiomics has the 
potential to serve as a feasible method for predicting 
gene mutations, molecular subtypes, and overall survival 
in ccRCC patients [120]. Rabasco et al. conducted a study 
on the molecular subtypes of locally advanced HNSCC 
using radiomics. They successfully improved the prog-
nostic value of localized regional control by combining 
radiomic and transcriptomic features [121]. Huang et al. 
employed CT radiomics to differentiate between various 
molecular subtypes of HNSCC, including RNA-defined 
HPV status, five DNA methylation isoforms, four gene 
expression isoforms, and five somatic gene mutations. 
Their results demonstrated the ability of quantitative 
image features to differentiate between multiple molecu-
lar phenotypes [122]. In the study conducted by Le et al., 
transcriptome subtypes in glioblastoma patients were 
predicted using XGBoost-based radiomics modeling. 
They identified 13 radiomics features in the model that 
achieved high prediction accuracies for classical (70.9%), 
mesenchymal (73.3%), neural (88.4%), and proneural sub-
types (88.4%) [123].

In recent studies, the combination of radiomics and 
transcriptomics has been explored. Fan et  al. developed 
a radiotranscriptomic signature using serum miRNA 
levels and CT texture features to predict the response 
to radiotherapy in patients with NSCLC. This signature 
could serve as an independent biomarker for evaluat-
ing the response to radiation therapy in NSCLC patients 
[124]. Trivizakis et al. constructed a multiomics machine 
learning model that incorporated deep features and 

transcriptomics in an NSCLC study. The model success-
fully predicted molecular subtypes and histological sub-
types with AUC performances of up to 0.831 and 0.925, 
respectively. The clinical significance of this high-perfor-
mance predictive model lies in its ability to provide prog-
nostic value and facilitate optimal therapeutic assessment 
[125]. Tixier et  al. investigated the reflection of tumor 
transcriptomics through radiomics features extracted 
from 18F-fluorodeoxyglucose (FDG) PET images. By 
analyzing FDG-PET image features and transcriptomic 
data of patients with locally advanced head and neck can-
cer, they demonstrated that FDG PET radiomics features 
could be utilized to infer tissue gene expression and cellu-
lar pathway activity in tumors [126]. Wu et al. conducted 
a study that identified correlations between radiological, 
pathological, and molecular features of bladder cancer 
using multimodal data analysis, including CT, whole-slice 
imaging, and transcriptomics. The study identified 13 
prognostically relevant features from CT and whole-slide 
images, and the fusion of radiologic and pathologic fea-
tures achieved higher accuracy than the single-modality 
approach, with an AUC of 0.89. This research illustrated 
the potential for using multimodal data analysis in rel-
evant clinical applications and demonstrated the cor-
relation between CT, pathologic slides, and molecular 
features [127].

Despite some previous studies correlating radiom-
ics with transcriptomics, establishing a causal relation-
ship between the two has remained elusive. However, 
transcriptomics data from single cells have not yet been 
utilized. Thus, in future research, the integration of sin-
gle-cell transcriptomics data with radiomics will lead to 
more precise predictions of tumor heterogeneity, micro-
environments, and the efficacy and prognosis of tumor 
therapy.

Radiopathomics
Pathomics is an innovative interdisciplinary field that 
integrates the domains of pathology and artificial intel-
ligence. It is based on the fundamental principle of uti-
lizing a state-of-the-art full-slide scanner to digitize 
full-slide images, followed by the automatic extrac-
tion and classification of histological features and the 
subsequent conversion of this information into binary 
data. The extracted features are then processed through 
sophisticated self-learning computer algorithms, facili-
tating tasks such as cancer classification and outcome 
prediction [128]. Pathomics enables a detailed spatial 
exploration of the entire tumor landscape and its most 
aggressive elements from standard hematoxylin and 
eosin slides.

The development of pathomics is relatively recent, 
and pathomic studies are mainly focused on predicting 
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patient prognosis. Chen et  al. established that various 
pathomic features derived from H&E slides are independ-
ent predictors of gastric cancer prognosis and become 
possible potential predictors of adjuvant chemotherapy 
decisions [129]. Chen et al. used machine learning-based 
pathological features as novel prognostic markers for 
patients with ccRCC [130]. Fassler et  al. demonstrated 
that pathomics can be used as an assessment of the abun-
dance and spatial distribution patterns of TIL infiltration, 
an important biomarker in breast cancer, and that peri-
tumoral and intratumoral TIL aggregation is associated 
with longer survival [131].

Another important research area is the combination of 
radiomics and pathomics. Jimenez et al. demonstrated a 
possible cross-scale association between digital pathol-
ogy and CT imaging that could be used to identify rele-
vant imaging and histopathological features to accurately 
differentiate lung adenocarcinoma from squamous cell 
carcinoma [132]. Brancato et al., in a glioma study, simi-
larly showed a possible cross-scale association between 
digital pathomics and MRI. This not only contributes to 
the understanding of GBM intratumoral heterogeneity 
but also provides new insights into the combined multi-
omics approach [133]. Feng et al. developed and validated 
an artificially intelligent imaging pathomics fusion model 
using pretreatment MRI and H&E-stained biopsy slides 
to predict pathologic complete response in patients with 
locally advanced rectal cancer, with a combined model 
AUC of 0.812, significantly higher than other unimodal 
models [134]. Wan et  al. effectively predicted a good 
pathological response after neoadjuvant radiotherapy for 
locally advanced rectal cancer with a model combining 
radiomic and pathomic features [135]. Wang et al. devel-
oped a machine learning nomogram model consisting 
of pathomic features, radiomic features, immune scores, 
and clinical features to reliably predict postoperative 
overall survival and disease-free survival in patients with 
colorectal lung metastases [60].

The concept of “digital biopsy” can be redefined 
through the utilization of noninvasive technology, 
achieved by the optimal integration of radiomics and 
pathomics. Additionally, the integration of radiomics and 
pathomics can enhance the comprehensive characteriza-
tion of tumors with heterogeneity. Future studies need to 
prioritize the incorporation of genomics and proteomics 
data to construct comprehensive tumor prediction mod-
els that encompass macroscopic radiological data along-
side microscopic pathological information.

Pathogenomics
Cao et  al. proposed a deep learning model based 
on histopathology images to predict microsatellite 

status, and the AUCs of this model were 0.88 and 
0.85. Notably, the model was able to identify five dis-
tinct pathology imaging features that were associated 
with mutation burden and DNA damage repair-related 
genotypes in the genome, as well as antitumor immune 
activation pathways in the transcriptome. The pre-
dictive model offers the possibility of multiomics 
association through interpretability associated with 
pathological, genomic and transcriptomic phenotypes 
[136]. Ziemys et al. demonstrated the potential of digi-
tal pathomics in transcriptional analysis combined 
with the spatial distribution of immune cells to effec-
tively predict the clinical response to BRAF inhibition 
in metastatic melanoma [137]. Huang et  al. identified 
N7-methylguanosine modification (m7G) in pancancer 
as an innovative marker for predicting clinical outcome 
and immunotherapy efficacy. Cellular pathway enrich-
ment analysis showed that m7G scores were strongly 
associated with invasion, the cell cycle, and DNA dam-
age and repair. In several cancers, m7G scores were 
positively correlated with tumor immune dysfunction 
and exclusion. The XGBoost-based pathomics model 
accurately predicted m7G scores with an AUC of 0.97. 
Furthermore, scRNA-seq analysis showed that m7G 
significantly differed between cells in the TME, indi-
cating its potential as a therapeutic target for cancer 
treatment [138]. Yu et  al. reported good performance 
in predicting survival and immunotherapy response in 
cervical cancer patients by pathomic characterization 
and genomic profiling [139]. Sammut et al. integrated 
digital pathology and genomic and transcriptomic data 
from pretreatment breast cancer samples and corre-
lated the pathological outcomes of surgery (complete 
remission or residual disease) with a multiomics pro-
file. Research has demonstrated that the response to 
treatment is influenced by the pretreatment tumor 
ecosystem, and its multiomics landscape can be incor-
porated into predictive models using machine learn-
ing. The degree of residual disease after treatment is 
linearly related to pretreatment characteristics, such as 
tumor mutation and copy number landscapes, tumor 
proliferation, immune impact, and T-cell dysfunction 
and rejection [140].

Pathomics, as an emerging research method, is cur-
rently in the early stages of investigation. Despite the 
significant potential and prospects of supplementing 
and enhancing histopathology with other omics data, 
current research is primarily limited to small-scale 
datasets from single institutions. Subsequent studies 
that offer large-scale, multimodal datasets may facili-
tate the development of elaborate integration strate-
gies, further unleashing the potential of pathomics and 
quantitative tissue morphology.
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Multiomics combination of radiomics, pathomics 
and genomics in cancer prognosis
Multidimensional data from radiomics, pathomics and 
genomics for multiomics fusion will further comprehen-
sively evaluate the TME and cancer prognosis (Fig.  2). 
However, there are currently very few studies on this 
area, which holds great potential for future development. 
Table 2 summarizes current multiomics clinical studies. 
Boehm et  al. collected a multimodal dataset of patients 
with advanced high-grade plasmacytoma ovarian can-
cer and identified quantitative features associated with 
prognosis. By fusing histopathological, radiological and 
clinicogenomic machine learning models, they dem-
onstrated that integration through multimodal data is a 
promising technique to improve the risk stratification of 
cancer patients [141]. Vanguri et al. evaluated the predic-
tive power of the immunotherapy response in NSCLC by 
integrating radiology, histopathology, and genomic fea-
tures. Machine learning was employed to synthesize the 
multimodal features into a risk prediction model. The 
study revealed that the multimodal model AUC value 
of 0.80 surpassed that of any single variable. These find-
ings establish a quantitative foundation for the utilization 
of multimodal integration features in conjunction with 
machine learning to enhance the accuracy of immuno-
therapy response prediction in NSCLC patients [142].

Vaidya et  al. developed a quantitative radiomics risk 
score and associated nomogram to predict DFS and the 
additional benefits of adjuvant chemotherapy after sur-
gery for early-stage NSCLC. Radiopathomic studies have 
revealed that intratumoral radiomic features are cor-
related with various features that explain TIL-nucleus 
interactions. High-risk patients are predicted to have 
more disorganized and disordered microstructures on 
CT images, with corresponding whole-slide tissue images 
showing very dense, tightly bound spatial arrangements 
of cancer cell nuclei clusters. Radiogenomic features were 
associated with angiogenesis, proliferation, cell differen-
tiation, T-cell and lymphocyte activation, and biological 
pathways of chemotaxis. Additionally, the peritumoral 
Haralick energy feature was inversely correlated with 
macrophage chemotaxis [143]. Wang et  al. [144] first 
developed an imagingomics model to predict DFS with 
optimal performance in patients with locally advanced 
breast cancer. Then, tumor heterogeneity was analyzed 
by GSEA and differentially expressed gene enrichment. 

GSEA found that the immune-related interferon-gamma 
pathway was enriched in the high-scoring subgroup of 
the imaging set and that the cytokine‒cytokine interac-
tion pathway was downregulated in the low-scoring sub-
group. Gene Ontology enrichment analysis showed that 
tumors in the low-scoring subgroup differed from those 
in the high-scoring group in terms of cell differentiation, 
while tumors in the low-scoring and high-scoring sub-
groups had differing immune and TME, and activated 
natural killer cells were higher in the low-scoring group. 
Pathohistological studies revealed 23 histopathologi-
cal features that were significantly different between the 
high- and low-scoring groups, with the two groups dif-
fering in cellular centrifugation, nucleus thickness and 
diameter. Tumors in the high-scoring group differed 
morphologically from those in the low-scoring group, 
supporting the idea that imaging histology scores reflect 
differences in cell differentiation. Imaging histology 
revealed the heterogeneity of tumor cells and the TME, 
genomics and pathomics explored the biological signifi-
cance of imaging histological features, and the combina-
tion of the three comprehensively revealed and decoded 
the TME characteristics of locally advanced breast can-
cer and predicted prognosis [144]. Braman et al. further 
refined the clinical grading and molecular staging of 
glioma patients by developing a deep orthogonal fusion 
model of radiomics, pathomics, and genomics to pre-
dict the prognosis of glioblastoma patients and stratify 
glioma patients [145]. Table  3 summarizes the advan-
tages and disadvantages of studies with different omics 
combinations.

In summary, the interconnections among radiomics, 
pathomics and genomics help to build and deepen the 
understanding of cancer biology and imaging features. At 
the same time, powerful machine learning techniques can 
decode the complex interactions of tumors and cancer 
treatments, and the understanding of the TME and can-
cer prognostic evaluation will be significantly enhanced 
by combining machine learning techniques with digital 
images and new methods for assessing the TME at the 
biomolecular level. It is also possible to combine tran-
scriptomics, proteomics, metabolomics and other multi-
omics studies to comprehensively decode the complexity 
and heterogeneity of the TME and thus perform prog-
nostic assessment, which will be a promising direction 
for future multiomics-based imaging. However, there 

Fig. 2 The flow chart of multiomics combination. a Radiomics process mainly includes image acquisition, region of interest (ROI) segmentation, 
radiomics feature extraction. b Pathomics process includes acquisition of pathological images, whole slide images (WSI) ROI segmentation, 
extraction features of deep learning. c Genomics process mainly includes acquisition of genomics data, analysis of genomics data, etc. d Clinical 
data include demographic information, laboratory examination, diagnosis and staging, treatment method, etc. e Multiomics combinations. 
Multiomics data are fused by machine learning methods to construct combinatorial models for tumor microenvironment exploration and cancer 
prognosis evaluation, and to develop comprehensive prognosis biomarkers

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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are still many difficulties to overcome to exploit this rich 
and complex multiomics dataset. Decoding the dynamic 
TME and achieving accurate prognostic assessment will 
require comprehensive adoption of machine learning and 
network analysis techniques, which we believe will ulti-
mately change our deep understanding of tumor biology, 
prognostic assessment of treatment response, and preci-
sion medicine.

Challenges and opportunities
Figure  3 summarizes the challenges and potential solu-
tions of multiomics combinations. Although radiom-
ics has made some achievements in the evaluation of 
the TME and prognostic assessment of cancer due to its 
unique advantages, there are still some shortcomings and 
deficiencies. (1) Time-consuming and subjective nature 
of radiomics studies. Currently, radiomics research 
requires manual image segmentation, which is time con-
suming, and the subjectivity of manual segmentation also 
affects model efficacy. In future research, more efficient 
and reliable automatic segmentation methods should be 
developed, which will improve the clinical applicability, 
accuracy and research efficiency of radiomics and will 
help the further development of radiomics. (2) Lower 
model reproducibility. The reproducibility of current 
radiomics research models is relatively low, and standard-
ized research processes are needed in the future. (3) Most 
radiomics-based studies are single-center and small-
sample studies that lack sufficient external validation. 
Therefore, standardized large-scale prospective studies of 
patient cohorts from multiple centers are needed in the 
future. (4) Radiomics has a monolithic nature. For exam-
ple, most current imaging histology studies assessing the 
TME are mainly limited to the cellular level, resulting in 
a single index for evaluation. Therefore, it is important to 
expand the scope of studies on radiomics assessment of 

the TME and combine other histologies into multiomics 
studies to integrate more indicators for the assessment of 
the TME and comprehensively decode its complexity and 
heterogeneity.

The future goal of pathomics is to integrate other omics 
disciplines, integrating radiomics, genomics, and tran-
scriptomics with pathomics. Despite the potential cost 
of genomic and transcriptomic research, through high-
throughput sequencing results, we can establish con-
nections between the biological foundation of tumors 
and gather additional information about tumors and the 
TME. Advancements in biometric measurement tech-
nologies, such as single-cell RNA sequencing and spatial 
transcriptomics, allow us to gain a clearer understanding 
of the interactions among various subtypes of tumor cells 
and the dynamic TME. This will enhance our compre-
hension of the biological significance of tumors and the 
TME, further promoting the integration of genomics, 
transcriptomics, and other omics disciplines.

Finally, another dilemma of multiomics studies is the 
high dimensionality and heterogeneity of the data, and 
integrating quantitative measures from multimodal 
data for prognostic prediction is a very challenging 
task. Therefore, the development and implementation 
of multimodal fusion models in future studies requires 
access to matched pathology, imaging, and genomics 
data. Multiomics data provide a novel opportunity to 
comprehensively decode the TME, allowing for a more 
accurate and comprehensive assessment of its complex-
ity and heterogeneity and cancer prognosis. The integra-
tion of pathological phenotypes, imaging phenotypes, 
and genetic phenotypes can help us (1) understand the 
underlying biological basis of specific quantitative imag-
ing features, (2) obtain comprehensive information to 
visualize the spatial and molecular context of cancer, (3) 
discover new diagnostic and prognostic markers, and (4) 

Table 2 Radiomics-based multiomics combinations study for cancer prognosis

HGSOC high-grade serous ovarian cancer, NSCLC non-small cell lung cancer, OS overall survival, CT computed tomography, MRI magnetic resonance imaging, DyAM 
dynamic deep attention-based multiple-instance learning model with masking, DOF deep orthogonal fusion, N/A not applicable

Tumor type Sample size Evaluation indicators Multiomics approaches Model Training set Test set References

HGSOC 444 OS Histopathological
CT radiologics
Genomics
Clinical data

Cox model N/A 0.61 [141]

NSCLC 247 Immunotherapy response Pathological
CT radiomics
Genomics
Clinical data

DyAM model 0.8 N/A [142]

Glioma 176 OS Pathological
MRI radiomics
Genomics
Clinical data

DOF model 0.788 N/A [145]
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build a holistic and comprehensive model and approach 
to explore and assess tumorigenesis, progression, and 
prognosis.

Conclusion
In summary, the advancement of precision imaging and 
radiomics has introduced novel approaches for noninva-
sive assessment of the TME and cancer prognosis. Radi-
omics methodologies have already produced remarkable 
outcomes in TME and prognostic evaluation, and the 
development of machine learning and deep learning 
technologies will further promote the accuracy of TME 
as well as cancer prognostic evaluation. The multiomics 
combination of radiomics, pathomics and genomics will 
be a crucial research topic and direction for future explo-
ration of the TME. The combination of metabolomics, 
transcriptomics, and proteomics will further enrich the 
methods for evaluating the TME and cancer progno-
sis. Combining imaging phenotypes with multiomics 

biological data can more comprehensively evaluate, 
characterize, and decode the TME, predict patient prog-
nosis and further elucidate the image features and the 
pathophysiological and biological basis of tumor pathol-
ogy. Ultimately, the establishment of new prognostic 
biomarkers and comprehensive prediction models will 
enhance the precision of diagnosis, prognosis and predic-
tion, thereby realizing the objective of precision oncology 
medicine and providing optimal clinical decision support 
for patients’ clinical treatment and prognosis.
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