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Abstract 

Background Tumor invasiveness reflects numerous biological changes, including tumorigenesis, progression, 
and metastasis. To decipher the role of transcriptional regulators (TR) involved in tumor invasiveness, we performed 
a systematic network-based pan-cancer assessment of master regulators of cancer invasiveness.

Materials and methods We stratified patients in The Cancer Genome Atlas (TCGA) into invasiveness high (INV-H) 
and low (INV-L) groups using consensus clustering based on an established robust 24-gene signature to determine 
the prognostic association of invasiveness with overall survival (OS) across 32 different cancers. We devise a network-
based protocol to identify TRs as master regulators (MRs) unique to INV-H and INV-L phenotypes. We validated 
the activity of MRs coherently associated with INV-H phenotype and worse OS across cancers in TCGA on a series 
of additional datasets in the Prediction of Clinical Outcomes from the Genomic Profiles (PRECOG) repository.

Results Based on the 24-gene signature, we defined the invasiveness score for each patient sample and stratified 
patients into INV-H and INV-L clusters. We observed that invasiveness was associated with worse survival outcomes 
in almost all cancers and had a significant association with OS in ten out of 32 cancers. Our network-based framework 
identified common invasiveness-associated MRs specific to INV-H and INV-L groups across the ten prognostic cancers, 
including COL1A1, which is also part of the 24-gene signature, thus acting as a positive control. Downstream pathway 
analysis of MRs specific to INV-H phenotype resulted in the identification of several enriched pathways, including Epi-
thelial into Mesenchymal Transition, TGF-β signaling pathway, regulation of Toll-like receptors, cytokines, and inflam-
matory response, and selective expression of chemokine receptors during T-cell polarization. Most of these pathways 
have connotations of inflammatory immune response and feasibility for metastasis.

Conclusion Our pan-cancer study provides a comprehensive master regulator analysis of tumor invasiveness 
and can suggest more precise therapeutic strategies by targeting the identified MRs and downstream enriched path-
ways for patients across multiple cancers.
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Graphical Abstract

Introduction
Cancer is one of the leading causes of death worldwide, 
accounting for over 10 million deaths annually [1]. 
Once cells are damaged then evading programmed cell 
death [2], invading local tissue (activating invasion) and 
metastasizing are hallmarks of cancer [3]. Cancer inva-
siveness is a phenotype usually associated with a worse 
survival prognosis [4]. In this context, several invasive-
ness-associated gene signatures have been reported 
[5–7] for individual cancer types. However, in [4], the 
authors devised a robust 24-gene signature through 
comprehensive pan-cancer analysis. This gene signature 
includes COL11A1, POSTN, EPYC, ASPN, COL10A1, 
THBS2, FAP, LOX, SFRP4, INHBA, MFAP5, GREM1, 
COMP, VCAN, COL5A2, COL5A1, TIMP3, GAS1, 
TNFAIP6, ADAM12, FBN1, SULF1, COL1A1 and DCN. 
While a pan-cancer analysis of invasiveness-associated 

dysregulated molecular features, including genomic, 
epigenomic, transcriptomic, proteomic, and metabo-
lomic features, has been conducted in [4], the clinical 
impact of invasiveness for patient stratification and 
the mechanisms governing the transcriptional regula-
tions and their associated pathway alterations are still 
poorly understood. Thus, it is imperative to deter-
mine the pan-cancer prognostic relevance of invasive-
ness and identify key driver genes and their associated 
downstream mechanisms to design better therapeutic 
strategies.

In this study, we developed a systematic framework 
using 32 tumor lineages from The Cancer Genome Atlas 
(TCGA) [8] to characterize the prognostic implications of 
invasiveness. Using the 24-gene signature and a consen-
sus clustering approach [9–15], we classified the tumor 
samples into Invasiveness High (INV-H), Invasiveness 
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Medium (INV-M), and Invasiveness Low (INV-L) groups 
for each cancer type to determine the prognostic associa-
tion i.e. correlation between INV-H and INV-L clusters 
and overall survival (OS). Our working hypothesis is to 
determine whether the intrinsic activation of transcrip-
tional regulators (TRs) is involved in sustaining the onco-
genic process influencing invasiveness.

A necessary condition for tumor progression, metas-
tasis, and drug resistance is transcriptional dysregula-
tion [16, 17]. A majority of the cancer driver genes are 
TRs [18]. TRs are largely dysregulated due to genomic 
alterations in their regulatory proteins, which in turn can 
modulate the expression of their target genes, referred to 
as their ‘regulon.’ TRs identified as key oncogenic driv-
ers whose activity patterns are influential to a patient’s 
clinical diagnosis [19] are referred to as master regulators 
(MRs). In the recent literature, there are methods, such 
as Netfactor [20] and [16], that take a consensus-based 
approach to identify signature-specific MRs. In this work, 
to be comprehensive, we use a consensus of four different 
network-based master regulator analysis (MRA) pipe-
lines [21–31] on publicly available RNA-Seq data from 
TCGA. We identified MRs specific to INV-H and INV-L 
phenotypes with similar activity patterns across multi-
ple cancers where invasiveness has prognostic relevance. 
Extensive validation of activities of MRs was done on 
sets from two different sources, i.e., the not significantly 
prognostic cancer types from TCGA and the datasets 
from the Prediction of Clinical Outcomes from Genomic 
Profiles (PRECOG) repository [32]. Finally, we perform 
downstream analysis of the MRs specific to INV-H (asso-
ciated with worse OS) using ConsensusPathDB [33] to 
discover enriched pathways, several of which are poten-
tial candidates for targeted therapy.

Materials and methods
Data acquisition and normalization
RNA-Seq data from the TCGA website (https:// www. 
cancer. gov/ tcga) were downloaded for each cancer c sep-
arately using TCGAbiolinks (v2.22.3) through the ‘GDC-
qeury()’ function. This resulted in the STAR-protocol 
[10] based raw count matrix. For each c, the patient sam-
ples (count matrix) were quantile normalized using pre-
processCore (v1.56.0) R package and then log2 
transformed (see Additional file  1: Figure S2). The pro-
cessed RNA-Seq data for each cancer was represented as 
Dc

=

[

gc
1
, gc

2
, . . . , gcp

]

 , where Dc represents the RNA-seq 
matrix, gci  represents the ith gene’s expression profile as a 
column vector and has dimension Nc × 1 . Here Nc corre-
sponds to the number of patient samples for a particular 
cancer c. The dimension of the RNA-seq matrix is 
Nc × p , where p is the total number of genes in the 
expression matrix. The RNA-seq data from 32 primary 

solid tumors (TP) consisting of over 9000 samples in total 
were used in our analysis. Owing to the lack of TP sam-
ples in SKCM, we included the metastatic samples (TM) 
in the SKCM dataset. Gene symbols were converted to 
official HUGO Gene Nomenclature Committee gene 
symbols, and genes without gene symbols or gene infor-
mation were excluded. This resulted in p = 23,216 genes, 
including TRs for each cancer c.

Validation datasets
For the out-of-box validation of the activation profiles of 
the Master Regulators (MRs), we accumulated independ-
ent test sets from the PRECOG repository. We selected 
eight datasets, each corresponding to a different cancer 
type and the largest available dataset for a particular can-
cer type as the validation set. These included GEO Acces-
sion Id: GSE32894 [34] for Bladder Urothelial Carcinoma 
(BLCA), GSE3494 [35] for Breast Invasive Carcinoma 
(BRCA), GSE39582 [36] for Colon adenocarcinoma 
(COAD), GSE108474 [37] for Glioblastoma multiforme 
(GBM), GSE65858 [38] for Head and Neck squamous 
cell carcinoma (HNSC), GSE72094 [39] for Lung adeno-
carcinoma (LUAD), GSE9891 [40] for Ovarian serous 
cystadenocarcinoma (OV) and GSE65904 [41] for Skin 
Cutaneous Melanoma (SKCM). These eight datasets con-
sisted of 224, 251, 579, 490, 270, 398, 278, and 210 tumor 
samples with 21817, 19980, 23216, 23216, 23216, 20061, 
23216, and 23216 genes, respectively, and were normal-
ized using quantile normalization [36], followed by log2 
transformations. These normalized datasets and INV 
clusters for each sample within each cancer c were esti-
mated using the 24-gene signature as discussed in the fol-
lowing subsection.

Cancer invasiveness clusters
An unsupervised consensus clustering based on a robust 
gene set of 24 invasiveness-relevant genes was per-
formed for each cancer type separately using the Con-
sensusClusterPlus (v1.58.0) R package with the following 
parameters: 5000 repeats, a maximum of six clusters and 
agglomerative hierarchical clustering with the distance 
method set as Ward (‘ward.D2’) distance. This method 
has previously successfully identified optimal prognos-
tic clusters for the pancancer immunologic constant of 
rejection [42–45] and pancancer panoptosis phenotype 
[2]. The optimal number of clusters () for the best seg-
regation of samples based on the invasiveness signature 
was initially determined heuristically using the Calinski-
Harbasz criterion [46]. With the intent to compare can-
cer samples with a highly active invasiveness phenotype 
with those that have a relatively inactive invasiveness 
phenotype, the cluster with the highest average expres-
sion of invasiveness gene signature was designated as 

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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‘Invasiveness high’ (INV-H), while the cluster with the 
lowest average expression of invasiveness gene signature 
was designated ‘Invasiveness low’ (INV-L). All samples in 
the intermediate cluster(s) were defined as an ‘Invasive-
ness medium’ (INV-M, see Fig. 1B). Tumor samples were 
annotated with an invasiveness score, defined as the aver-
age expression of the 24-gene signature panel in a par-
ticular tumor sample and mathematically depicted as:

Survival analysis
Overall survival (OS) from the TCGA clinical data 
resource was used to estimate the hazard ratios for sur-
vival analysis. For each cancer c, patients with less than 
one day of follow-up were removed, and the survival data 
were censored after a follow-up duration of ten years. The 
hazard ratios (HR) between INV-H and INV-L clusters, 
their corresponding confidence intervals, and P-values 
were estimated using a univariate survival analysis model 
for each cancer c using the ‘analyze_survival’ function 
from survivalAnalysis (v0.2.0) R package [47]. We used 
the ‘kaplan_meier_plot’ function to visualize the Kaplan–
Meier plots for cancers with significant prognosis (see 
Additional file 1: Figure S1). A forest plot was generated 
using the forestplot (v2.0.1) R package (see Fig. 1D). The 
cancer type cholangiocarcinoma (CHOL, no death event 
in INV-L) was excluded before the generation of the for-
est plot, as the number of deaths in the two comparison 
groups (INV-H versus INV-L) was too small for survival 
estimation. Cancers with a P-value < 0.1 and a total num-
ber of tumor samples > 50 in INV-H plus INV-L groups 
were identified as cancers where invasiveness had a sig-
nificant prognostic value.

Figure  1 depicts a sample consensus clustering for 
BLCA (Bladder Urothelial Carcinoma), the gene expres-
sion profile of the 24-gene signature across the tumor 
samples from BLCA, the variations in invasiveness score 
between the invasiveness clusters across 32 different can-
cers, and a forest plot highlighting the pancancer prog-
nostic relevance of invasiveness phenotype.

Master regulator analysis pipeline
There have been several methods in the literature [48, 49] 
to perform MR analysis (MRA). The primary component 

(1)scoreci =
1

24

∑24

j=1
gcj,i

for MRA is to infer a ‘high-quality’ gene regulatory net-
work (GRN) consisting of TR-target gene interactions 
(regulons) from RNA-Seq data (see Fig.  2A, B). This is 
one of the central problems in computational biology, 
and several techniques have been proposed, including 
the mutual information-based method ARACNE [21] 
and tree-based machine learning techniques such as 
GENIE [22] and regularized gradient boosting machine 
(RGBM) [24]. ARACNE [21] formulates the problem of 
inferring GRN using an information-theoretic approach, 
including a combination of mutual information and data-
processing inequality steps to identify possible TF-target 
interactions from RNA-seq data and then filter out spu-
rious TR-target connections. However, both GENIE 
and RGBM formulate the GRN reconstruction task as 
a regression task: F(XTR) =  Yt, where  XTR represents the 
matrix of gene expression of transcriptional regulators 
and  Yt corresponds to the expression profile of a given 
target (t) gene. Both GENIE and RGBM use a tree-based 
machine learning framework to solve the underlying 
regression task. While GENIE [22] uses a random-for-
est approach, RGBM [24] utilizes the gradient boosting 
machine In [27], through an open-science competition 
(DREAM Challenge), the authors compared various GRN 
inference methods on several synthetic and real datasets. 
In [24], the authors illustrated the superior performance 
of RGBM for the DREAM Challenge networks over other 
tree-based methods such as GENIE. Hence, RGBM is the 
primary GRN inference technique used in the present 
work.

Another key ingredient of the MRA pipeline is to 
estimate enrichment/activity scores for TRs in a given 
tumor sample, taking into consideration its regulon (see 
Fig.  2C). This is essential to identify significantly differ-
entially enriched/activated TRs (referred to as MRs, see 
Fig. 2D and F, respectively). RGBM utilize a simplistic dif-
ference in the average expression of positively and nega-
tively regulated targets to estimate the activity of a TR as 
defined below:

Here tpki is the expression level of the kth positive tar-
get of a TR in the ith sample, tnji is the expression level 
of the jth negative target of the TR in the ith sample, U 
(V) is the number of positive (negative) targets present 

(2)Act(TR, i)C =

1

U

∑U

k=1
t
p
ki −

1

V

∑V

j=1
tnji

(See figure on next page.)
Fig. 1 A Consensus Clustering based on Invasiveness gene set. The ‘red’ corresponds to INV High, ‘yellow’ to INV Medium and ‘blue’ to INV Low 
clusters. B Expression of the 24 invasiveness genes in BLCA cancer. The ‘red’ corresponds to INV High, ‘yellow’ to INV Low and ‘blue’ to INV Low groups. 
C Invasiveness score distribution in INV High, Low and Medium groups identified as consensus clusters. D Differential association of Invasiveness 
phenotype (INV High vs INV Low) with survival prognosis in TCGA patients. Here N1 and N2 represent the number of samples in INV Low and High 
clusters respectively, HR corresponds to hazards ratio and CI represents confidence intervals. The ‘*’ corresponds to significance of association 
as obtained from the univariate survival analysis model. ‘*’ → 0.01 < P-value < 0.1, ‘**’ → 0.001 < P-value < 0.01 and ‘***’ → P-value < 0.001



Page 5 of 18Jethalia et al. Journal of Translational Medicine          (2023) 21:558  

Fig. 1 (See legend on previous page.)
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in the regulon of the considered TR. If Act(TR,i) > 0, the 
TR is active in that particular sample. If Act(TR,i) < 0, 
then the TR is inversely activated and if Act(TR,i) ≈ 0 it 
is not considered active. In contrast, methods such as 
virtual inference of protein activity by enriched regulon 
analysis (VIPER) [50] and MARINA [51] utilize a dedi-
cated algorithm formulated to estimate TR activity taking 
into account the TR mode of action, the TR-target gene 
interaction confidence and the pleiotropic nature of each 
target gene regulation. Moreover, there exist single sam-
ple gene set enrichment analysis [29] techniques such as 

gene set variation analysis (GSVA [31]) and fast gene set 
enrichment analysis (FGSEA [52]) to estimate the enrich-
ment score for each TR in a given sample.

Recently, techniques such as Netfactor [20] have 
been devised which take a consensus-based approach 
to identifying signature-specific MRs. This is because it 
was shown in [16] that TR regulons estimated by a con-
sensus approach are more robust for downstream tasks 
with less risk of being influenced by false positives. Fol-
lowing the same notions, we determined MRs specific 
to INV-H and INV-L phenotypes by taking a consensus 

Fig. 2 Master Regulator Analysis Pipeline for a pancancer invasiveness phenotype. A A sample RNA-Seq matrix of genes vs samples where rows 
represents genes and columns represent tumor samples. B Reverse-engineered gene regulatory network using RGBM technique. Each big 
blog represents a transcription factor (TFs) and the small dots represent target genes. The regulatory network is divided into communities 
(color-coded) using Louvain clustering algorithm. C An example of the adjacency list corresponding to the inferred GRN as well as the correlation 
matrix between the TFs and target genes based on the RNA-seq matrix. D The sample-TF activity matrix as estimated by Eq. 2 where rows are TFs 
and columns are tumor samples. E Significantly enriched TRs (FDR-adjusted P-value < 0.05) referred to as master regulators (MRs) identified by using 
the FGSEA method. F The sample-MR activity matrix extracted from sample-TF activity matrix. The activity matrix has block diagonal structure 
with some MRs having high activity in INV-H but low activity in INV-L while other MRs vice versa activity profiles
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(in this case an intersection) of the MRs identified by 
four different MRA techniques: (a) RGBM + FGSEA, 
(b) RGBM + GSVA, (c) RGBM + VIPER and (d) 
ARACNE + VIPER.

Thus, in our pipeline, we use two different class of 
GRN inference techniques, one based on information 
theory (ARACNE) and other based on gradient boost-
ing machine (RGBM),and three different gene set enrich-
ment/activity estimation techniques to identify the key 
MRs specific to INV High and INV Low for each c.

Figure  2 provides an example of an RGBM + FGSEA-
based MRA pipeline.

Transcriptional regulators
We wanted to select TRs from an expanded pool of can-
didates, including genes involved in modulating the rate, 
frequency, and extent of cellular DNA-templated tran-
scription. Thus, we selected all genes annotated with 
the GO:0006355 (regulation of transcription) [53] gene 
ontology term. We had 3,674 TRs, including transcrip-
tion factors (TFs), receptors, growth factors, kinases, 
signal transduction proteins, transcription co-activators, 
and cofactors. Previous works using hubs of networks 
were focused on either surface receptors i.e. the receptors 
interactome to identify active ligand-receptor pairs [54], 
or signaling molecules, including Sigmaps [55] and not 
just TFs.

Inferring gene regulatory networks
Given Dc , we inferred GRN between the TRs and the 
target genes (i.e. TR-target edges, see Fig. 2B) using two 
different class of techniques, namely RGBM [24] and 
ARACNE [21]. The inferred GRNs were unsigned and 
weighted. RGBM belongs to the class of machine learn-
ing techniques based on feature selection where the 
expression vector of each target gene (i.e., t) is consid-
ered as a dependent variable ( Yt = gct  ) and the expression 
matrix corresponding to the list of TRs are the independ-
ent variables  (XTR). The goal of RGBM is to detect linear/
non-linear TR-target interactions using a gradient boost-
ing procedure [56] with a decision tree [57] as a base 
learner. ARACNE, on the other hand, is based on con-
cepts of mutual information (MI(gc

TF,  gc
t)) and prevents 

indirect transitive interactions using an information-the-
oretic property, the data processing inequality [21]. Using 
a bootstrapping procedure, ARACNE can also provide 
the strength (in terms of statistical significance) of a TR-
target interaction. For quality control, we remove those 
TRs whose regulon size is less than 10 in both RGBM and 
ARACNE inferred GRNs. We used the RGBM (v1.0.10) 

and corto (v1.1.11) packages in R to implement RGBM 
and ARACNE methods for GRN inference respectively.

Scoring TR activities
Given Dc and the GRN ( Gc ) for a particular cancer c, the 
level of activity of a TR in a sample can be estimated as 
a function of the collective mRNA levels of its targets as 
illustrated in RGBM (as illustrated in Eq.  2) and VIPER 
[50]. In RGBM, the regulon of a TR (see Fig.  2B) was 
divided into positively regulated targets and negatively 
regulated targets by performing a Pearson correlation 
between the expression of the TR  (gc

TR) and the expres-
sion of the target genes  (gc

t) in its regulon across all the 
samples for that cancer c (see Fig. 2C). The targets with 
positive correlations were considered as activated targets 
and the targets with negative correlations were identified 
as repressed targets in the TR’s regulon. This simplistic 
formulation for TR activity calculation was shown to be 
effective for the identification of differentially active TRs 
(i.e., MRs) [24, 58] (as illustrated in Eq.  2) and VIPER 
[50]. In RGBM, the regulon of a TR (see Fig.  2B) was 
divided into positively regulated targets and negatively 
regulated targets by performing a Pearson correlation 
between the expression of the TR  (gc

TR) and the expres-
sion of the target genes  (gc

t) in its regulon across all the 
samples for that cancer c (see Fig. 2C). The targets with 
positive correlations were considered as activated targets 
and the targets with negative correlations were identified 
as repressed targets in the TR’s regulon. This simplistic 
formulation for TR activity calculation was shown to be 
effective for the identification of differentially active TRs 
(i.e., MRs) [58].

Gene‑set enrichment analysis and MR selection
In VIPER [50], a probabilistic framework that directly 
integrates the target mode of regulation, i.e., whether 
targets are activated or repressed, confidence in regula-
tor-target interactions and target overlap between differ-
ent regulators, is utilized to compute the enrichment of 
a TRs’ regulon. A normalized enrichment score (NES) 
is computed analytically, assuming that in the null situ-
ation, the target genes are uniformly distributed on the 
gene expression signature. Since there is extensive co-
regulation of gene expression taking place in the cell, this 
assumption has been demonstrated to never hold [50], 
and this is the reason why a null model based on sam-
ple permutations is used. To generate NES for TRs in 
INV-H, we use the INV-M samples as a set of reference 
samples. The corresponding null model based on sample 
permutations can be obtained with the function ‘viper-
Signature’ function in the viper (v1.32.0) R package. Simi-
larly, to generate the NES for TRs in INV-L, we again use 
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the INV-M samples as a set of reference samples. Since 
VIPER expresses activity for all the TRs in the same scale, 
i.e., NES, we can now perform differential analysis using 
a Bayesian statistical framework such as LIMMA [59] 
package (v3.54.1) in R to identify differentially activated 
TRs (MRs) between INV-H and INV-L samples for a par-
ticular c.

In FGSEA [52], to identify the differentially active TR 
regulons between INV-H and INV-L primary tumor 
samples, we first estimate the average mRNA level dif-
ference of each gene between the two groups. This dif-
ference represents the fold change score (FC-score). All 
the genes are then sorted in decreasing order based on 
the estimated FC-score. To determine the enrichment 
score for specific TR regulons, we then use the ‘fgsea’ 
function in the fgsea (v1.24.0) package in R [52]. It imple-
ments an algorithm to calculate the empirical NES null 
distributions simultaneously for all the gene-set sizes 
(TR regulons), which allows up to several hundred times 
faster execution time compared to the original GSEA 
[29] implementation. This also enables FGSEA to provide 
statistical significance associated with the NES scores 
for TRs. We select TRs with FDR-adjusted [60] P-val-
ues ≤ 0.05 and |NESc|> 1 for all cancer types as the sta-
tistically significant differentially enriched TR regulons 
i.e. differentially activated MRs (see Fig. 2E). Here |NESc| 
is used for absolute values of the NES score for a cancer 
c. Figure 2F highlights the activity of the MRs indicating 
there are some MRs with high activity in the INV-H sam-
ples but low activity in the INV-L samples and vice-versa.

In GSVA [31], a non-parametric, unsupervised tech-
nique is used to estimate TR regulon enrichment scores 
as a function of genes inside and outside the regulons, 
analogously to a competitive gene set test. We use the 
‘gsva’ function in the GSVA (v1.46.0) package in R provid-
ing the expression information, TR regulons, a maximum 
and minimum size of a regulon as input, and keeping all 
other parameters to default settings. We obtain a sample-
specific enrichment score for each TR regulon, which can 
now be utilized to perform differential analysis using a 
Bayesian statistical framework such as LIMMA to deter-
mine the differentially activated TRs (MRs) between 
INV-H and INV-L samples for a cancer type c.

Pathway and GO term enrichment analysis
We use ConsensusPathDB for the functional (GO Term) 
and pathway enrichment analysis of MRs across the 
prognostic cancer types for INV-H and INV-L phenotype 
separately (latest version [33]). ConsensusPathDB allows 
us to perform over-expression analysis on top of differ-
entially activated MRs to identify significantly enriched 
molecular functions (m), cellular components (c), bio-
logical processes (b), and pathways (p). The advantage of 

using ConsensusPathDB over a popular tool like DAVID 
[61] is that it provides the option to search through mul-
tiple databases (different types of interactions) to find 
enriched pathways unlike DAVID, which only uses the 
KEGG database. Moreover, unlike Ingenuity Pathway 
Analysis, ConsensusPathDB is open-source software 
available for such enrichment analysis. Since we con-
sider well-annotated TRs, we only include databases such 
as WikiPathways, Reactome, and KEGG, all available in 
ConsensusPathdb, for downstream enrichment analysis. 
Visualizing the enriched pathways obtained via Con-
sensusPathDB is performed using the func2vis package 
(v1.0.2) in R [44].

The list of all abbreviations used in the manuscript and 
the full names of all the cancer types from TCGA are 
available in Tables 1 and 2 respectively.

Multi‑cancer master regulator activity matrix
Once we have identified the MRs specific to INV-H and 
INV-L groups based on the cancers where invasiveness 
phenotype is prognostically relevant, we illustrate that 
activity patterns of these MRs in invasiveness neutral can-
cers (INV-N) i.e. cancers where invasiveness phenotype is 
not significantly associated with overall survival. We esti-
mate the MR activity in each cancer sample for a particular 
cancer c using the RGBM + FGSEA approach. We consider 
the activities of all these MRs as a column vector grouped 
by the activity of MRs specific to INV-L first and followed 
by the activities of MRs specific to INV-H (see Fig. 5A). We 
collect all the column vectors of MR activity in the INV-L 
patient samples for the 22 different INV-N cancers and 
concatenate them to create the INV-L activity matrix. We 
perform hierarchical clustering across the column vectors 

Table 1 List of notations and abbreviations used

TR Transcription regulator

MR Master Regulator

GRN Gene Regulatory Network

INV Immunologic Constant of Rejection

NES Normalized Enrichment Score

MRA Master Regulator Analysis

TCGA The Cancer of Genome Atlas

PRECOG Prediction of Clinical Outcomes for Genomics profiles

RGBM Regularized Gradient Boosting Machines

GSEA Gene Set Enrichment Analysis

FGSEA Fast Gene Set Enrichment Analysis

GSVA Gene Set Variation Analysis

VIPER Virtual inference of protein activity by enriched regulons

INV-H Highest expression of INV genes

INV-L Lowest expression of INV genes

INV-M Medium expression of INV genes
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with the distance method set as Ward (‘ward.D2’) distance. 
Similarly, we collect all the column vectors of MR activity 
in the INV-H patient samples for the 22 different INV-N 
cancers and concatenate them to create the INV-H activity 
matrix. We again perform hierarchical clustering across the 
column vectors. Once we have the hierarchically clustered 
INV-L and INV-H matrices for the INV-N cancers, we 
concatenate (along the column axis) the two to obtain the 
multi-cancer MR activity matrix (see Fig.  5A) for INV-N 
cancers.

We use the same procedure to create the multi-cancer 
MR activity matrix (see Fig. 5B) for the PRECOG validation 
cancer datasets.

Experimental results
Prognostic impact of invasiveness clusters in different 
cancers subtypes
To improve our understanding of the role of invasive-
ness in cancer and to determine whether invasiveness 
has prognostic value in this context, we evaluated the 
24-gene invasiveness signature across 32 cancer types 
from TCGA. To group tumor samples based on the 
gene expression profiles of the invasiveness markers, 
we performed unsupervised consensus clustering for 
each c separately (BLCA provided as an example; see 
Fig. 1A). The consensus clustering identified three clus-
ters referred to as INV-H, INV-M, and INV-L, where 
tumors belonging to the INV-H cluster had a major-
ity of invasiveness markers highly expressed, thereby 

Table 2 TCGA cancer abbreviations

Cancer Cancer type Full name

LGG Primary Brain low grade glioma

KIRC Primary Kidney renal cell carcinoma

SKCM Metastatic Skin cutaneous melanoma

STAD Primary Stomach adenocarcinoma

COAD Primary Colon adenocarcinoma

ACC Primary Adrenocortical carcinoma

BLCA Primary Bladder urothelial cancer

BRCA Primary Breast invasive carcinoma

CESC Primary Cervical squamous cell carcinoma and endocervi-
cal adenocarcinoma

CHOL Primary Cholangiocarcinoma

ESCA Primary Esophageal carcinoma

GBM Primary Glioblastoma multiforme

HNSC Primary Head and neck squamous cell carcinoma

KICH Primary Kidney chromophobe

PAAD Primary Pancreatic adenocarcinoma

THYM Primary Thymoma

KIRP Primary Kidney renal papillary cell carcinoma

LIHC Primary Liver hepatocellular carcinoma

LUAD Primary Lung adenocarcinoma

DLBC Primary Lymphoid neoplasm diffuse large b-cell lymphoma

MESO Primary Mesothelioma

OV Primary Ovarian cystadenocarcinoma

PCPG Primary Pheochromocytoma and paraganglioma

PRAD Primary Prostate adenocarcinoma

READ Primary Rectum adenocarcinoma

TGCT Primary Testicular germ cell tumors

THCA Primary Thyroid carcinoma

UCS Primary Uterine carcinosarcoma

UVM Primary Uveal melanoma

UCEC Primary Uterine corpus endometrial carcinoma

LUSC Primary Lung squamous cell carcinoma

SARC Primary Sarcoma
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suggesting the possibility of enhanced invasiveness, and 
vice versa for the INV-L cluster (see Fig. 1B).

We also estimated a score referred to as the inva-
siveness score for each tumor sample. The invasive-
ness score was quantified as the average expression 
of the 24-gene signature in tumor samples (see Eq. 1). 
We observed that the invasiveness score varied 
among the tumor samples for a particular c, reflective 
of the intratumor heterogeneity (see Fig. 1C). The dif-
ference between the highest and lowest invasiveness 
varied between the different cancer types. We noticed 
a stark contrast between the median invasiveness 
scores in INV-H and INV-L groups for cancers such 
as BLCA, COAD, PAAD, OV, etc. (see Fig.  1C). We, 
therefore, sought to investigate the clinically relevant 
question i.e. how the presence of two contrasting 
invasiveness clusters (INV-H vs INV-L) contributed 
to the survival and how it varied across multiple can-
cer types.

To determine the clinical relevance of invasiveness 
clusters, we performed a univariate survival analy-
sis for each of the 32 different cancers comparing the 
survival of patients in the INV-H cluster (treatment 
group) to that of patients in the INV-L cluster (con-
trol group). The quantitative difference in survival was 
measured via hazard ratio (HR) along with a 95% con-
fidence interval (denoted in parentheses, see Fig.  1D). 
An HR above a value of 1 suggested that patients with 
tumors in the INV-H cluster had worse survival than 
patients in the INV-L cluster; an HR below a value of 1 
suggested that patients with tumors in the INV-H clus-
ter had better survival prognosis than patients in the 
INV-L cluster.

The invasiveness high phenotype was predomi-
nantly associated with worse OS across the major-
ity of cancers. However, there were ten cancer types 
for which INV-H was significantly prognostic, includ-
ing LGG (P-value <  < 0.001), KIRP (P-value <  < 0.001), 
PAAD (P-value = 0.007), MESO (P-value = 0.003), 
KIRC (P-value <  < 0.001), COAD (P-value = 0.08), 
BLCA (P-value = 0.011), STAD (P-value = 0.047), LUAD 
(P-value = 0.04) and OV (P-value = 0.09) with HR of 
13.3 (7.01–25.24), 5.13 (2.28–11.54), 3.08 (1.36–6.99), 
2.7 (1.39–5.22), 1.93 (1.32–2.83), 1.69 (0.93–3.06), 1.67 
(1.12–2.48), 1.51 (1.01–2.28), 1.48 (1.02–2.16), 1.35 
(0.95–1.9) respectively as observed from the forest plot in 
Fig. 1D and Kaplan–Meier plot in Additional file 1: Fig-
ure S1. We also observed a significant prognostic associa-
tion for ACC (P-value = 0.05) and GBM (P-value = 0.012). 
Still, since the total number of samples in the INV-H 
(N1) and INV-L (N2) was < 50 samples, we did not con-
sider these cancers further in our analysis.

Together these results suggested that patients could be 
clustered into three different groups for each c: INV-H, 
INV-M, and INV-L w.r.t gene expression profiles of inva-
siveness markers. Moreover, INV-H and INV-L clusters 
were associated with OS for 10 different cancer subtypes, 
highlighting their clinical relevance.

GRN comparison and consensus MRs
A detailed comparison of the inferred GRNs of RGBM 
and ARACNE methods (per cancer c) is available in 
[43]. It was observed in [43] that for each c with a large 
number of RNA-seq samples, the RGBM and ARACNE 
inferred GRNs tend to have a higher Jaccard coefficient. 
Jaccard coefficient is a measure of similarity, taking val-
ues between [0,1] and higher coefficient suggested higher 
similarity of the GRNs owing to similar sets of edges.

In this work, we used four different pipelines for per-
forming MRA: (a) RGBM + FGSEA; (b) RGBM + GSVA; 
(c) RGBM + VIPER, and (d); ARACNE + VIPER and took 
a consensus, i.e., intersection of the MRs determined 
by these varied pipelines as the differentially activated 
MRs between INV-H and INV-L samples for a par-
ticular c. For the RGBM + FGSEA method, we used the 
|NESc|> 1.0 and FDR-adjusted p-value ≤ 0.05 as the selec-
tion criterion for identifying the differentially activated 
TRs (MRs). Moreover, in RGBM + FGSEA method, the 
activity scores for all the TR regulons were normalized in 
the range [-1, 1] by dividing the positive activity values 
by maximum positive activity and negative activity values 
with the absolute minimum of negative activity (for each 
c, see Fig. 2D, Eq. 2). The raw activity profiles of TR regu-
lons for each c follow a normal distribution as observed 
in Additional file 1: Figure S3. However, for the other 3 
pipelines to be less restrictive, we selected all TRs with 
FDR-adjusted P-value ≤ 0.05 when comparing the enrich-
ment scores between INV-H and INV-L samples as our 
MRs.

We obtained a total of 737, 590, 547, 279, 741, 829, 744, 
661, 537, and 413 consensus MRs for LGG, KIRP, PAAD, 
MESO, KIRC, COAD, BLCA, STAD, LUAD and OV 
respectively by taking an intersection of the MRs identi-
fied by the 4 different MRA pipelines. Henceforth, we use 
terms such as consensus MRs or common MRs, or MRs 
interchangeably for differentially activated TRs common 
to the 4 MRA pipeline in the rest of the manuscript.

MR activities across primary tumors for invasiveness 
phenotype
We highlight the NES scores for common MRs, as deter-
mined by the FGSEA method, for each cancer c as a 
volcano plot in Fig.  3A. We demonstrated the median 
activity across INV-H and INV-L samples of these MRs 
for each cancer c in Fig. 3B. Moreover, an MR does not 
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have to be a TR in all the 10 cancers to be considered 
in our analysis. We observed that MRs whose NES > 0, 
tend to have high positive median activity across INV-H 
samples and negative median activity across INV-L sam-
ples i.e. points belonging to the 4th quadrant in Fig.  3B 
(see also Additional file  1: Figure S4). Thus, these MRs 
were considered to be specific to the INV-H phenotype. 
Similarly, MRs whose NES < 0, generally had high posi-
tive median activity across INV-L samples and negative 
median activity across INV-H samples i.e. points belong-
ing to the 2nd quadrant in Fig.  3B (see also Additional 

file 1: Figure S4). Thus, these MRs were considered to be 
specific to the INV-L phenotype.

It was noteworthy that the same MR could appear 
multiple times (with different colors/shapes) in Fig. 3A, 
B since we were showcasing the results for all ten can-
cers together. Additionally, we observed genes such as 
SFRP2, ENG, BCL6B, LUM, COL1A1, and SERPINE1 
were MRs for all the ten cancer subtypes (see Fig. 3C, D, 
Additional file 1: Table S1). Out of the 24-gene signature 
for invasiveness, only seven were in the list of 3,674 TRs 
(SFRP4, INHBA, GREM1, FBN1, SULF1, COL1A1, and 
DCN). Remarkably, 2 (COL1A1 and SFRP2, orthologous 

Fig. 3 Top MRs common across all the 10 cancers where invasiveness has a significant prognostic impact. A Volcano plot highlighted the NES 
for TRs along the x-axis and significance of enrichment along the y-axis across the 10 cancers of interest. The TRs above the ‘yellow’ line are 
considered as MRs. B Median activity of MRs in the INV High and INV Low samples for different cancers. The size of the plot reflects the significance 
of enrichment. C The six MRs common across all the ten prognostic cancers along with their median activity in INV High and INV Low samples. D 
The variation in activities of the six MRs common across all the ten cancers depicted as boxplots
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to SFRP4) were MRs consistently upregulated in all 
the 10 INV-H cancers (see Fig.  3C). Therefore, this 
provides a positive validation that our approach could 
capture expected known genes as MRs for the INV-H 
phenotype.

MR activities across prognostic cancers and enrichment 
analysis
Once the consensus MRs were identified for each of 
the ten cancer types, we then estimated the MRs com-
mon across the majority of the cancer types (> 5 cancer 
types), resulting in a set of 156 MRs (see Additional file 1: 

Table  S2) of which 91 MRs had median activity score 
significantly higher in INV-H samples when compared 
to INV-L samples across the ten cancer subtypes and 
65 MRs had median activity score significantly higher 
in INV-L samples vs INV-H samples (see Additional 
file  1: Table  S3). Therefore, these 91 and 65 MRs were 
considered specific to INV-H and INV-L phenotypes, 
respectively. The presence of shared MRs would indi-
cate the utilization of an underlying mechanism/process 
by the tumor microenvironment for prognostic cancers. 
The median activity of these MRs across all the samples 
belonging to INV-H and INV-L phenotypes respectively 

Fig. 4 MR activities and downstream pathway enrichment analysis. A Top MRs specific to INV High/Low phenotype (MR in > 5 out of 10 cancers). B 
Significantly enriched pathways associated with MRs specific to INV Low. C Significantly enriched pathways associated with MRs specific to INV High
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Fig. 5 A Validation of INV High and INV Low specific MR activity in cancers where INV is not prognostic. B Independent validation of INV High 
and Low specific MR activity in datasets obtained from PRECOG repository. The cancer samples where invasiveness has significant association 
with overall survival are indicated in ‘gold’ whereas those with no significant association with overall survival are depicted in ‘purple’
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for each of the ten prognostic cancers was depicted in 
Fig. 4A.

Once we had identified the MRs which were specific 
to INV-H (91 MRs) and INV-L (65) phenotypes respec-
tively, across all the ten cancer types of interest, we 
performed downstream (enrichment) analysis using Con-
sensusPathDB [62]. Firstly, we considered all the 91 MRs 
specific to the INV-H phenotype as enriched genes and 
the background to be the set of all target genes (23,216 
genes). We then utilized the over-expression analysis 
framework of ConsensusPathDB for determining gene 
ontology (GO) categories and enriched pathways. We 
identified 780 GO terms and 69 pathways that were sig-
nificantly enriched (FDR-adjusted p-value ≤ 0.05) for the 
MRs specific to the INV-H phenotype. We demonstrated 
the significantly enriched GO Terms and their categories: 
(1) biological processes, (2) molecular functions, and (3) 
cellular components in Additional file 1: Fig S5A. The top 
biological processes included the nucleobase-containing 
compound biosynthetic process, regulation of the bio-
synthetic process, heterocycle biosynthetic process, aro-
matic compound biosynthetic process, organic cyclic 
compound biosynthetic process, cellular macromolecule 
biosynthetic process, cellular nitrogen compound bio-
synthetic process, etc.. They were primarily associated 
with the biosynthetic processes in the cell.

The top 30 significantly enriched pathways and asso-
ciated MRs particular to the INV-H phenotype were 
depicted through the Sankey plot in Fig. 4B. These path-
ways include the Immune System (R-HSA-168256), 
Regulation of Toll-like Receptor signaling pathway 
(WP1449), Type II Interferon signaling (IFNG) (WP619), 
Fibrin Complement Receptor 3 signaling pathway 
(WP4136), Cytokine signaling in the immune system 
(R-HSA-1280215), Interaction between immune cells and 
microRNAs in the tumor microenvironment (WP4559), 
Epithelial to mesenchymal transition in colorectal can-
cer (WP4239), TGF-β signaling pathway (WP366), etc. 
as illustrated in Fig. 4B. Each of these pathways included 
at least three different MRs specific to INV-H phenotype 
(worse OS), thereby, suggesting higher activity of these 
MRs and enrichment of these pathways was detrimen-
tal to the survival of the patients categorized as INV-H 
across the ten cancers.

We then clustered the top 30 pathways (as well as 
the 69 pathways, see Additional file  1: Figure S6B) by 
estimating similarity in the set of enriched pathways 
using the extent of overlap between the MRs involved 
in 2 such enriched pathways. After obtaining the simi-
larity matrix, we performed clustering of the path-
ways using spectral clustering [63] to differentiate the 
pathways into cohesive groups (5 in the case of INV-H 

phenotype). The pathways were color-coded by the 
cluster to which they belonged and the set of MRs asso-
ciated with a particular pathway was depicted as an 
adjacency matrix (see Additional file  1: Figure S6A). 
Interestingly, we observed that the majority of the top 
significantly enriched pathways are hallmark pathways 
for inflammation (ApoE and miR-146 in inflamma-
tion, Cytokines, and Inflammatory Response), immune 
suppression (TGF-β signaling pathway, T-cell polari-
zation), innate immune signaling (Toll-like receptor 
signaling, Type II Interferon signaling, Signaling by 
Interleukins) and precursor for metastasis (Epithelial 
to Mesenchymal transition), as observed in Fig. 4B and 
Additional file 1: Figure S6A, justifying the INV-H phe-
notype and its worse survival prognosis across the ten 
cancers of interest.

A similar analysis for the INV-H phenotype was per-
formed for the 65 MRs specific to the INV-L phenotype. 
On over-expression analysis, we detected 70 GO terms 
and six pathways to be significantly enriched (FDR-
adjusted p-value < 0.05). The significantly enriched GO 
terms, along with their category-level stratifications 
for INV-L phenotype, were showcased in Additional 
file  1: Figure S5b. The top GO terms included nucleic 
acid metabolic process, heterocycle metabolic process, 
nucleobase-containing compound metabolic process, 
cellular aromatic compound metabolic process, gene 
expression, etc.. They were primarily associated with 
the metabolic process in the cell.

The six enriched pathways particular to the INV-L 
phenotype include Gene Expression (Transcrip-
tion) (R-HSA-74160), RNA Polymerase II Transcrip-
tion (R-HSA-73857), Generic Transcription Pathway 
(R-HSA-212436), Negative epigenetic regulation of 
rRNA expression (R-HSA-5250941), B-WICH complex 
positively regulates rRNA expression (R-HSA-5250924) 
and Chromatin modifying enzymes (R-HSA-3247509). 
The enriched pathways were clustered into two groups 
as depicted in Fig. 4C, and were majorly associated with 
transcriptional regulation. From Fig.  4C, we observed 
that the maximum ratio on the x-axis reached a value 
of ~ 0.125, indicating that at max only one-eighth of the 
genes in a pathway were overexpressed. The enrichment 
of these pathways and the higher activities of associated 
MRs were beneficial for the survival of patients belong-
ing to the INV Low group across the 10 cancers. 

Taken together, these results highlight candidate 
pathways such as TGF-β, Toll-like receptor signaling 
pathway, Epithelial to Mesenchymal transition path-
way, etc., were significantly enriched in highly invasive 
cancers (INV-H phenotype) across multiple cancer 
types and can be targeted for better survival outcomes 
against cancer invasiveness.
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Validation of MRs for INV‑N cancers & PRECOG datasets
Once we had identified the MRs which were specific to 
the INV-H (91 MRs) and INV-L (65 MRs) phenotype, we 
tried to validate these MRs in all cancers where invasive-
ness was not prognostic, hereby, referred as invasiveness 
neutral (INV-N) cancers. The goal of the validation is to 
showcase that MRs specific to INV-L and INV-H pheno-
type respectively have activity patterns in INV-N cancers 
similar to those in the 10 prognostically relevant cancer 
types. Moreover, the majority of MRs specific to INV-L 
and INV-H phenotypes have statisitically significant 
differential activity between INV-L vs INV-H samples 
across the invasiveness neutral cancers.

To achieve this aim, we create the multi-cancer (across 
all INV-N cancers) MR activity matrix comprising INV-L 
and INV-H specific MRs as detailed in the Materials and 
Method section and illustrated as a heatmap in Fig. 5A. 
We observed that the MRs which were specific to the 
INV-L phenotype had predominantly high activity pat-
terns in all INV-L samples independent of the type of 
cancer. In contrast, they had low activity patterns in the 
majority of the INV-H samples for all the 22 INV-N can-
cers in TCGA (see Fig. 5A and Additional file 1: Table S4 
for statistical significance of differential activity com-
parison using Wilcoxon rank-sum test). Similarly, for the 
MRs associated with the INV-H phenotype, we observed 
that a majority of these MRs (81 out of 91) had high 
activities in the INV-H samples, while they had negative 
activities in the majority of the INV-L samples, as dem-
onstrated in Fig.  5A (see Additional file  1: Table  S4 for 
statistical significance of differential activity comparison 
using Wilcoxon rank-sum test).

We performed a similar validation on the eight data-
sets (BLCA, BRCA, COAD, GBM, HNSC, LUAD, OV, 
and SKCM cancers) obtained from the PRECOG reposi-
tory. Each sample in a particular dataset was classified 
into INV-H or INV-L class using the 24-gene signa-
ture-derived invasiveness score. For an MR whose gene 
expression is not available in a particular dataset, referred 
as missing MR, we considered its activity value to be 0 for 
the INV-H and INV-L samples. We performed hierarchi-
cal clustering of the MRs specific to the INV-L phenotype 
based on their activity patterns in PRECOG datasets. 
Similar hierarchical clustering was performed for the 
MRs specific to the INV-H phenotype, and the two activ-
ity matrices were concatenated together along the col-
umn axis, as illustrated in Fig. 5B. We observed that the 
MRs which were specific to the INV-L phenotype had 
predominantly high activity patterns in all INV-L sam-
ples independent of the type of cancer. In contrast, they 
had low activity patterns in the majority of the INV-H 
samples in PRECOG datasets (see Fig. 5B and Additional 
file  1: Table  S5 for statistical significance of differential 

activity comparison using Wilcoxon rank-sum test). Sim-
ilarly, for the MRs associated with the INV-H phenotype, 
we observed that a majority of these MRs (80 out of 91) 
had high activities in the INV-H samples while they had 
negative activities in the majority of the INV-L samples, 
as demonstrated in Fig. 5B (see Additional file 1: Table S5 
for statistical significance of differential activity compari-
son using Wilcoxon rank-sum test).

Additionally, we performed differential activity analy-
sis between the INV-H and INV-L samples for individual 
cancer datasets from the PRECOG repository, to observe 
how many out of the 156 consensus MRs identified via 
TCGA dataset were differentially activated in a set of 
independent datasets. We identified 82, 48, 83, 78, 71, 73, 
81, 45 out of the 96 INV-H specific MRs were differen-
tially activated and 54, 20, 63, 58, 45, 56, 57, and 39 out 
of the 65 INV-L specific MRs were differentially activated 
(see Additional file 1: Fig S7 and Tables S6, S7) for BLCA, 
BRCA, COAD, GBM, HNSC, LUAD, OV and SKCM 
cancers respectively. Moreover, 13, 36, 3, 8, 16, 3, 3 and 8 
MRs were missing MRs for BLCA, BRCA, COAD, GBM, 
HNSC, LUAD, OV and SKCM cancer respectively. Thus, 
we observed that more than 80% of the MRs specific to 
INV-H and INV-L phenotypes were significantly acti-
vated on the Wilcoxon rank-sum test) for 6 out of the 8 
PRECOG validation datasets with the exception of the 
BRCA and SKCM cancer datasets. However, both BRCA 
and SKCM were cancers where the invasiveness pheno-
type was not prognostic (in TCGA) and in BRCA dataset 
36 out of the 156 MRs were missing. This could poten-
tially aid the observation that the majority of the con-
sensus MRs (48 out of 96 INV-H MRs and 20 out of 65 
INV-L MRs) were not differentially activated between the 
INV-H and INV-L samples for BRCA dataset.These two 
in-silico validations confirm that the MRs which we iden-
tified were specific to the INV-H and INV-L phenotypes, 
respectively and the MRs specific to the INV-H pheno-
type (worse OS) would likely be involved in inflamma-
tory and immune exclusion functions. Thus, the enriched 
pathways associated with these MRs could potentially 
represent molecular mechanisms driving cancer inva-
siveness and could be targeted to design better therapeu-
tic strategies to tackle cancer invasiveness.

Discussion
The estimation of TR activities from RNA-Seq data was a 
recent phenomenon and has attracted attention in cancer 
research [16, 58, 64]. While multiple techniques [16, 24] 
have been used to estimate TR activity profiles based on 
varying notions of TR regulons, the common consensus 
was that mRNA levels of target genes of a TR could be 
used to identify its activity profile. Moreover, TRs that 
were differentially activated w.r.t a phenotype of interest, 
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i.e., MRs could be considered prognostic markers while 
revealing novel mechanisms associated with the tumor 
microenvironment. However, the exploration of MRs as 
therapeutic targets, alone or in combination with other 
biomarkers was a recent occurrence [16, 24, 58].

Here, we designed and applied 4 different MRA pipe-
lines using the TCGA RNA-Seq data to discover dif-
ferentially activated TRs (MRs) w.r.t the invasiveness 
phenotype (INV-H vs INV-L). We took a consensus of 
the MRs identified by these varied MRA pipelines for our 
goal of identifying key driver MRs for the INV-H phe-
notype associated with worse survival outcomes. Our 
network-based framework led to the discovery of 91 MRs 
specific to the INV-H phenotype and 65 MRs specific to 
the INV-L phenotype. Downstream analysis of the MRs 
specific to INV-H using ConsensusPathDB showed sig-
nificant enrichment of pathways that were the hallmark 
of an inflammatory immune response.

Since, the primary goal of our work was to identify key 
driver genes and their associated mechanisms for higher 
cancer invasiveness (INV-H) leading to worse survival, 
downstream analysis of MRs specific to INV-H pheno-
type using ConsensusPathDB resulted in the enrichment 
of pathways such as local acute inflammatory response 
which is known to play a decisive role at different stages 
of tumor development including initiation, promo-
tion, invasion, and metastasis [65]. MRs mediate path-
ways such as toll-like receptor signaling. TLR2, TLR4, 
and inflammasome inducing MR, NLRP3 [66] can lead 
to tumor progression via the production of inflamma-
tory cytokines (IL6, IL16), increased cell proliferation, 
and resistance to apoptosis (TNFAIP3) [66, 67]. Moreo-
ver, enrichment of pathways such as epithelial to mes-
enchymal transition mediated by INV-H specific MRs: 
NOTCH3, NOTCH4, ZEB1, ZEB2, TGFB1, TGFB2, 
and extracellular matrix organization, ECM proteogly-
cans through activation of MRs: DCN, TGFB1, TGFB2, 
ITGB2, ITGA3, ACTN1, and ICAM1 are hallmarks of 
cancer metastasis [68] and stemness [69] respectively.

Similarly, TGF-β (TGFB1 and TGFB2) is a known 
immune suppressor [70]. Its high activation in INV-H 
samples of the ten prognostic cancers, along with 
enrichment of T-cell receptor (TCR) signaling and 
selective expression of chemokine receptors dur-
ing T-cell polarization (involving MRs: CD4, CD28, 
TGFB1, and TGFB2) suggests the occurrence of the 
phenomenon, such as immune exhaustion, leading to 
poor survival rates in these INV-H tumor samples. This 
observation agrees with very recent data in mice dem-
onstrating that blocking TGFB1 overcomes resistance 
to immune checkpoint inhibition [71]. The list of MRs 
generated by our analysis might be exploited for future 
targeted therapy combinations aimed at overcoming 

immune exhaustion or tumorigenesis, therefore, poten-
tially extending the benefit of immunotherapy.

Our results demonstrate that TR activity profiles 
inferred from RNA-Seq data using RGBM + FGSEA, 
RGBM + GSVA, RGBM + Viper, and ARACNE + Viper 
MRA pipelines can be used to discover key MRs asso-
ciated with the cancer invasiveness phenotype. In-
silico validation of this consensus MRs was performed 
in INV-N cancers and a set of 8 different datasets was 
collected from the PRECOG repository, suggesting 
that these MRs can be used as promising therapeutic 
markers.
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Additional file 1: Figure S1: Kaplan-Meier plot highlights the difference 
in survival between the INV High vs INV Low groups for the 10 cancers of 
interest. Here OV is Ovarian Cancer, LUAD is Lung Adenocarcinoma, STAD 
is Stomach Adenocarcinoma, BLCA is Bladder Urothelial Carcinoma, COAD 
is Colon Adenocarcinoma, KIRC is Kidney Renal Cell Carcinoma, MESO 
is Mesothelioma, PAAD is Pancreatic Adenocarcinoma, KIRP is Kidney 
Renal Papillary Cell Carcinoma and LGG is Low Grade Gliomas. Figure S2: 
Quantile-Normalized and log2 transformed gene expression profiles for 
BLCA tumor samples. Figure S3: Activity profiles of transcriptional regula-
tors follow a normal distribution for a particular cancer. Figure S4: Here 
we highlight that when the normalized enrichment scores (NES) for TRs 
are positive then, these TRs have high positive activity in INV-H samples 
and high negative activity in INV-L samples. Thus, TRs with positive NES 
scores are more specific to the INV-H phenotype. Similarly, when the NES 
are negative for TRs then, these TRs have high positive activity in INV-L 
samples and high negative activity in INV-H samples. Thus, TRs with nega-
tive NES are more specific to the INV-L phenotype (p-value < 1e-5). Figure 
S5: GO Terms including Biological Processes (b), Cellular Components 
(c ), Molecular Functions (m) which are significantly enriched when 
performing over-expression analysis of common MRs for INV-H and INV-L 
phenotype respectively. Figure S6: The top enriched pathways obtained 
by over-expression analysis for the top MRs peculiar to INV High pheno-
type are highlighted here. The pathways are clustered and color-coded 
according to their respective clusters. Figure S7: Heatmaps depicting the 
MR activity of the MRs specific to INV-H and INV-L phenotypes (based on 
the 10 prognostic cancers) and present in each of the 8 PRECOG valida-
tion datasets. Table S1: MRs common across all the 10 cancer types of 
interest and specific to INV-H phenotype (Mean FC > 0). Table S2: List of 
master regulators (differentially activated TRs) common across 6 or more 
prognostic cancer subtypes. We showcase the cancers for which these 
MRs are differentially active. Table S3: List of 156 significant MRs common 
across the majority of the prognostic cancers and are ranked based on 
fold change (FC) between activities in INV-H vs activities in INV-L samples 
across all the 10 cancers using Wilcoxon rank-sum test. Table S4: List of 
156 MRs specific to INV-L and INV-H phenotype and their activity profile 
for the set of 22 INV Neutral cancers. The significance (155 out of 156) of 
difference in activities in INV-H vs INV-L cancer samples is highlighted 
using Wilcoxon rank-sum test. Table S5: List of 156 MRs specific to INV-L 
and INV-H phenotype and their activity profile for the set of 8 PRECOG 
datasets. The significance (153 out of 156) of the difference in activities in 
INV-H vs INV-L cancer samples is highlighted using the Wilcoxon rank-sum 
test. Table S6: Differentially activated MRs (out of 156 MRs) in the PRECOG 
cancer datasets for BLCA, BRCA, COAD and GBM cancer types. Table S7: 
Differentially activated MRs (out of 156 MRs) in the PRECOG cancer data-
sets for HNSC, LUAD, OV and SKCM cancer types.
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