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Abstract 

Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one 
of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant 
percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating 
the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these 
patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addi-
tion to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such 
signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, 
MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic 
role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing 
the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, 
and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncR-
NAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers 
in BC patients.
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Background
Breast cancer (BC) is the second-most common cause of 
cancer-related deaths that is considered as a health chal-
lenge among women [1]. Novel diagnostic and thera-
peutic strategies have decreased the mortality rate of 
breast cancer. However, approximately 279,100 new cases 

and 42,690 deaths due to breast cancer have occurred 
worldwide in 2020 [2]. Although, chemotherapy, radio-
therapy, and surgery are major treatment options for the 
breast cancer, these modalities are not effective for the 
metastatic breast cancer patients [3, 4]. In fact, tumor 
metastasis is responsible for about 90% of cancer-related 
mortalities. Prevention of the tumor metastasis has 
been a major obstacle in the treatment of breast cancer. 
Therefore, investigating the underlying mechanisms of 
breast cancer metastasis is required to introduce novel 
and efficient therapeutic targets to reduce breast tumor 
invasion and metastasis. Early detection of breast can-
cer is critical for effective treatment. Diagnostic methods 
typically involve examination, ultrasonography, magnetic 
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resonance imaging, mammography, and biopsy. Besides, 
constitutional treatments usually entail mastectomy, 
lumpectomy, hormone therapy, chemotherapy, and radi-
otherapy [5]. Non-coding RNAs (ncRNA) are considered 
as the key regulators of BC development and metastasis 
that can be suggested as the novel therapeutic approachs 
[6–8]. Long non-coding RNAs (lncRNAs) are a group of 
noncoding RNAs that are implicated in pivotal cellular 
processes in several tumors via interactions with protein, 
RNA, and DNA [9]. LncRNAs function as microRNA 
sponges in the cytoplasm and regulate gene expression 
post-transcriptionally through guiding RNA-binding 
proteins that are involved in active polysomes and mRNA 
decay [10–13]. In the nucleus, lncRNAs modulate RNA 
processing, transcription, and chromatin remodeling 
[14]. They are involved in various processes, including 
organogenesis, embryogenesis, and tumorigenesis [15, 
16]. LncRNAs are implicated in the growth, metastasis, 
aggressiveness, migration, and programmed cell death 
of various cancers [17, 18]. Impared expression of lncR-
NAs has been detected in multiple human cancers, and 
they are pivotal regulators of tumor occurrence and pro-
gression via diverse signaling pathways [19, 20]. They are 
potent markers in early tumor diagnosis and targeted 
therapy [21–23]. Regarding the role of lncRNAs in regu-
lation of signaling pathways in breast tumor cells, in the 
present review we discussed their role in regulation of 
PI3K/AKT, TGF-β, and MAPK signaling pathways dur-
ing breast tumor progression and metastasis to suggest 
them as the reliable diagnostic and therapeutic options 
among BC patients (Table 1).

PI3K/AKT signaling pathway
PI3K/AKT/mTOR pathway is a crucial axis in regulation 
of various pathophysiological cellular processes such as 
cell proliferation, metabolism, and tumor progression 
[24, 25]. Majority of the growth factors, cytokines, and 
mitogens affects the cellular growth via the PI3K/AKT 
pathway. This signaling pathway is activated via vari-
ous receptors such as receptor tyrosine kinases (RTKs), 
cytokine receptors, and G-protein-coupled receptors 
(GPCRs) that promote PI3K to produce PIP3. Subse-
quently, PIP3 activates the AKT to regulate cellular 
metabolism and growth via the modulation of various 
effectors such as GSK3β and mTOR. Despite the extracel-
lular stimuli, AKT can also be activated by the other sign-
aling pathways including WNT and TGF-β [25]. PI3K/
Akt pathway functions as an oncogenic signaling axis in 
the progression of various cancers [26, 27]. PI3K hyper 
activation is critical in the pathogenesis of breast cancer 
that modulates cell survival, motility, growth, and metab-
olism [28, 29]. PI3K/Akt/mTOR pathway has a key role 
in endocrine resistance of breast tumor cells. Therefore, 

inhibitors of this pathway can be used in combination 
with other therapeutic modalities in breast cancer. It has 
been reported that PIK3CA mutations increased sen-
sitivity toward the PI3K inhibitors [30]. LncRNAs have 
key roles during breast tumor progression by regulation 
of PI3K/AKT signaling pathway (Fig.  1). hnRNPA2B1 
is an essential modulator of several normal processes 
such as mRNA stability and translation, RNA traffick-
ing, and mRNA splicing [31]. LINC01133 increased cell 
proliferation in TNBC through PI3K-independent acti-
vation of AKT. LINC01133 stimulated PROTOR1 as a 
part of the mTORC2 complex via hnRNPA2B1 spong-
ing that induced AKT [32]. The stimulated mTOR sign-
aling pathway has been correlated with poor prognosis 
and reduced survival in BC patients [33]. Interactions 
between Polycomb Repressive Complex 2 (PRC2) and 
HOTAIR change the chromatin structure to accelerate 
the tumor cells metastasis [34, 35]. HOTAIR inhibition 
significantly down regulated the mTOR, AKT, and PI3K. 
The precise mechanism by which HOTAIR triggers the 
expression of PI3K, Akt, and mTOR is not fully under-
stood; however, it is hypothesized that HOTAIR regulates 
transcription factors [36]. Doxorubicin (DOX) is one of 
the well-known and most effective drugs in BC; however, 
tumor cells may develop drug resistance that results in 
treatment failure [37–39]. HOTAIR inhibition reduced 
DOX resistance in BC cells via suppression of the PI3K/
AKT/mTOR pathway following the negative regula-
tion of PI3K, AKT and mTOR. HOTAIR inhibition also 
induced apoptosis in DOXR-MCF-7 cells via regulating 
Bax, Bcl-2, and caspase-3 [40]. KB-1980E6.3 up regula-
tion was significantly associated with breast tumor pro-
gression and poor prognosis. KB-1980E6.3 increased the 
growth, migration, and aggressiveness of BC cells. KB-
1980E6.3 was also significantly correlated with MMP-2, 
MMP-9, and vimentin. Moreover, it stimulated the PI3K/
AKT pathway through AKT and PI3K phosphorylations 
[41]. GHET1 inhibition mitigated cell growth and inva-
sion while promoted programmed cell death. GHET1 
downregulation inhibited the c-Myc, which resulted in 
PI3K/AKT inactivation. Therefore, its inhibition reduced 
BC progression through PI3K/AKT repression. GHET1 
inhibition also hindered the MCF-7 cell migration via 
negative regulation of MMP-2 and MMP-9. Accord-
ingly, inhibition of GHET1 attenuated PI3K/AKT, c-Myc, 
and their downstream effectors such as MMP-2/9 and 
CCND1 [42]. FOXD2-AS1 has been found to be upregu-
lated in bladder, gastric, and ovarian cancers and was also 
involved in the tumor cells migration, growth, invasion, 
and prognosis [43–45]. There was significant FOXD2-
AS1 upregulation in antiadriamycin-resistant breast 
tumor cells and tissues. FOXD2-AS1 also down regulated 
the p-AKT and pPI3K to inhibit the PI3K/AKT signaling 
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Table 1 Role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells

Study Year LncRNA Target Samples Function Clinical application

TU [32] 2022 LINC01133 PRR5/AKT MDA-MB-231, MDA-
MB-468, and Hs578T cell 
lines
Xenograft model

Oncogene Diagnosis

SADEGHALVAD [36] 2022 HOTAIR PI3K/AKT MCF-7 cell line Oncogene Diagnosis

LI [40] 2019 HOTAIR PI3K/AKT MCF-7 and SKBR3 cell 
lines

Oncogene Diagnosis

HE [41] 2022 KB-1980E6.3 PI3K/AKT 51T 51N*
BT-549, MDA-
MB-231, SKBR3, MDA-
MB-468 and MCF-7 cell 
lines
Xenograft model

Oncogene Diagnosis and prognosis

HAN [42] 2019 GHET1 c-Myc and PI3K/AKT 
pathways

30T 30N
MCF-7 cell line
Xenograft model

Oncogene Diagnosis

NONG [46] 2021 FOXD2-AS1 PI3K/AKT 60T 60N
MCF-7 cell line

Oncogene Diagnosis

SHENG [47] 2020 SOX21-AS1 PI3K/AKT 88T 88N
MCF-7, BT-20, MDA-
MB-231, and MCF-10A 
cell lines
Xenograft model

Oncogene Diagnosis and prognosis

FANG [49] 2022 MBNL1-AS1 miR-423-5p/CREBZF 60T 60N
MCF-10A, BT474, MDA-
MB-231, MDA-MB-453, 
ZR-75–30, and MCF-7 
cells lines
Xenograft model

Tumor suppressor Diagnosis and prognosis

ZHANG [51] 2020 ZFAS1 miR-589/PTEN MCF-10A, T47D, 
MCF-7, MDA-MB-435 
and BT-549 cell lines

Tumor suppressor Diagnosis

GAO [52] 2019 PTENP1 miR-20a/PTEN 52T 52N
MDA-MB-231, T-47D 
and MCF-7 cell lines
Xenograft model

Tumor suppressor Diagnosis and prognosis

SHI [55] 2018 PTENP1 miR-19/PTEN/PI3K/Akt 20T 20N
MCF-7 and MDA-MB-231 
cell lines

Tumor suppressor Diagnosis

LEI [56] 2022 DUXAP8 PI3K/AKT and EZH2 50T 50N
MCF-12A, MCF-12 F, 
MCF-7, T47D, ZR-75–1, 
HCC-1806, MDA-MB-468, 
BT-549, and MDA-
MB-231 cell lines
Xenograft model

Oncogene Diagnosis and prognosis

WANG [59] 2021 SNHG6 miR-543/LAMC1 28T 28N
MCF-7, SK-BR-3, 
MDAMB-231, and BT-549 
cell lines
Xenograft model

Oncogene Diagnosis

LI [60] 2019 UCA1 EZH2 and AKT 10 ER + 10 ER-
MCF-7, T47D, LCC2, 
and LCC9 cell lines

Oncogene Diagnosis

FANG [61] 2022 TTN-AS1 miR-107/ZNRF2 MCF-7 cell line Oncogene Diagnosis

ZHOU [74] 2022 HULC IGF1R MCF7 and MDA-MB-231 
cell lines
Xenograft model

Oncogene Diagnosis
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Table 1 (continued)

Study Year LncRNA Target Samples Function Clinical application

ZHANG [75] 2021 IGF2-AS IGF2 95T 95N
MCF-7, SK-BR-3, T47D, 
and MDA-MB-231 cell 
lines
Xenograft model

Tumor suppressor Diagnosis and prognosis

LI [76] 2018 GAS5 miRNA-196a-5p/FOXO1 103T 50N
MDA-MB-231 and MDA-
MB-468 cell lines

Tumor suppressor Diagnosis and prognosis

ZHANG [77] 2019 ZEB2‐AS1 ZEB2 98T 98N
MCF‐10A, T47D, 
MDA‐MB‐435, MCF‐7, 
and MDA‐MB‐23 cell 
lines
Xenograft model

Oncogene Diagnosis and prognosis

LIN [81] 2020 BDNF-AS RNH1/TRIM21 162T 162N
MCF-7R and MDA-
MB-231 cell lines
Xenograft model

Oncogene Diagnosis and prognosis

CHEN [84] 2019 HOTAIR PTEN SK-BR-3 cell line
Xenograft model

Oncogene Diagnosis

CHEN [88] 2020 Linc00839 PI3K/AKT 837T 105N (TCGA)
32T 32N
MCF‐7, BT549 and MDA‐
MB‐231 cell lines
Xenograft model

Oncogene Diagnosis and prognosis

ZHONG [90] 2021 AC012213.3 RAD54B 1109T 113N (TCGA)
11T 11N
MCF-7, T47D, MDA-
MB-231 and MDA-
MB-469 cell lines

Oncogene Diagnosis and prognosis

TAO [92] 2020 SCAMP1-TV2 PUM2 20T 20N
MCF-10A, MCF-7, 
and MDA-MB-231 cell 
lines
Xenograft model

Oncogene Diagnosis

WANG [100] 2021 ARHGAP5-AS1 SMAD7 1109T 113N (TCGA)
MDA-MB-231 and LM2 
cells, SKBR3 and BT549 
cell lines

Tumor suppressor Diagnosis

WU [101] 2017 CCAT2 TGF-β 60T 60N
LCC9, MDA-MB_231
and MCF-7 cell lines

Oncogene Diagnosis

HOU [102] 2018 Linc-ROR TGF-β 94T 94N
MDA-MB-231 and MCF-7 
cell lines
Xenograft model

Oncogene Diagnosis and prognosis

LI [103] 2021 HNF1A-AS1 miR-363/SERTAD3 82T 82N
MCF-7, BT549, ZR-75–30, 
MDA-MB-231, HCC1937 
and MDA-MB-436 cell 
lines
Xenograft model

Oncogene Diagnosis and prognosis

DONG [105] 2021 LINC00052 miR-145-5p/TGFBR2 45T 45N
MDA-MB-231, MDA-
MB-468, T47D, SKBR3 
and MCF-7 cell lines

Oncogene Diagnosis

ZHANG [106] 2019 CASC2 TGF-β 52T 52N
LCC9, MDA-MB-231, 
and MCF-7 cell lines

Tumor suppressor Diagnosis
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Table 1 (continued)

Study Year LncRNA Target Samples Function Clinical application

LI [118] 2017 ANCR RUNX2 25T 25N
MCF7, T47D, MDA-
MB-231, MDA-MB-
231HM and BT549 cell 
lines
Xenograft model

Tumor suppressor Diagnosis

LI [119] 2021 TPA TGF-β MCF-7 cell line
Xenograft model

Oncogene Diagnosis

ZHOU [121] 2019 lncRNA-NORAD TGF-β 21T 10N
MDA-MB231 and MCF-7 
cell lines
Xenograft model

Oncogene Diagnosis and prognosis

LI [127] 2018 AC026904.1 and UCA1 Slug 60T 60N
MDA-MB-231 and luc-
D3H2LN cell lines
Xenograft model

Oncogene Diagnosis and prognosis

REN [135] 2018 HOTAIR H3K27 39T(invasive) 20T (in 
situ)
MDA-MB-231 and MCF-7 
cell lines
Xenograft model

Oncogene Diagnosis and prognosis

TANG [138] 2020 DCST1-AS1 ANXA1 MDA-MB-231, BT-549, 
T-47D, and MCF7 cell 
lines

Oncogene Diagnosis

FANG [140] 2017 HOXA-AS2 miR-520c-3p/ TGFBR2/
RELA

38T 38N
MDA-MB-231, MDA-
MB-453, and MCF-7 cell 
lines
Xenograft model

Oncogene Diagnosis and prognosis

NI [146] 2021 ADAMTS9-AS2 RPL22 62T 62N
MDA-MB-231 
and HCC1937 cell lines
Xenograft model

Tumor suppressor Diagnosis and prognosis

ZHOU [152] 2022 TGFB2-AS1 SMARCA4 281T 281N
MDA-MB-231, 
SUM159PT and BT-549 
cell lines
Xenograft model

Tumor suppressor Diagnosis and prognosis

ZHANG [161] 2021 CBR3-AS1 miR-25-3p/MEK4/JNK1 96T 96N
MCF-7, T47D, MDA-
MB-231 and HEK-293 T 
cell lines
Xenograft model

Oncogene Diagnosis and prognosis

CHEN [162] 2017 PTENP1 AKT and MAPK MCF7 and 293T cell lines Tumor suppressor Diagnosis

LU [163] 2018 lncCAMTA1 miR-20b/VEGF MDA-MB-231 cell line Oncogene Diagnosis

OUYANG [164] 2021 PRNCR1 miR-377/CCND2 64T 64N
MDA-MB-231, MCF-7, 
BT-549, MDAMB-468 
and SK-BR-3 cell lines

Oncogene Diagnosis and prognosis

PENG [167] 2017 Linc- ROR DUSP7 MCF-7 cell line Oncogene Diagnosis

CHEN [172] 2020 MIR100HG miR-5590-3p/OTX1 20T 20N
MDA-MB-231, MDA-
MB-453, MDA-MB-468 
and MDA-MB-415 cell 
lines
Xenograft model

Oncogene Diagnosis

ZENG [184] 2022 SNHG5 IGF2BP2 30T 30N
Xenograft model

Oncogene Diagnosis

*Tumor (T) tissues and Normal (N) margins
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pathway in BC cells. Furthermore, inhibition of FOXD2-
AS1 negatively regulated the growth, aggressiveness, and 
migration of BC cells while induced apoptosis and che-
mosensitivity [46]. There was SOX21-AS1 up regulation 
in BC tissues that was correlated with tumor stage, grade, 
metastasis, and clinical outcomes. SOX21-AS1 suppres-
sion significantly reduced EMT, cell growth, and invasion 
in BC cells. Repression of SOX21-AS1 also inhibited the 
PI3K/AKT signaling pathway, which underscored their 
potential interaction. Hence, SOX21-AS1 increased cell 
proliferation, invasion, and EMT via targeting the PI3K/
AKT pathway in BC [47]. CREBZF belongs to the ATF/
CREB family of transcription factors that regulates p53 
mediated apoptosis [48]. The MBNL1-AS1 functioned as 

a tumor suppressor in BC through miR-423-5p/CREBZF 
axis that regulated PI3K/AKT pathway [49].

PTEN as a well-known tumor suppressor inhibits 
the PI3K/AKT axis via dephosphorylation of PIP3 [50]. 
ZFAS1 enhanced apoptosis while mitigated cell growth 
and migration via miR-589 sponging that up regulated 
PTEN to inhibit the PI3K/AKT pathway [51]. There 
were PTENP1 and PTEN downregulations in BC tis-
sues in comparison with normal margins that was cor-
related with a higher TNM stage and decreased overall 
survival in BC patients. PTENP1 inhibited tumor prolif-
eration, colony formation, invasion, and tumor growth 
in BC. It regulated the chemoresistance, apoptosis, 
metastasis, and proliferation of BC cells by regulation 

Fig. 1 Role of lncRNAs during breast tumor progression by regulation of PI3K/AKT signaling pathway. (Created with BioRender.com)



Page 7 of 16Maharati and Moghbeli  Journal of Translational Medicine          (2023) 21:556  

of miR-20a/PTEN axis that inhibited PI3K/Akt path-
way [52]. DUXAP8 exerts an oncogenic function in 
various cancers via targeting EZH2 and PTEN [53, 54]. 
PTENP1 suppressed BC cell invasion, colony formation, 
and survival while induced cell death via miR-19 spong-
ing and subsequent regulation of PTEN/PI3K/Akt axis 
[55]. DUXAP8 induced the radioresistance of BC cells 
via stimulation of the PI3K/AKT/mTOR pathway and 
inhibition of EZH2 target genes including RHOB and 
E-cadherin [56]. Laminin subunit gamma 1 (LAMC1) 
is an extracellular matrix protein that has key roles in 
basement membranes, cell proliferation, movement, and 
development [57]. It also enhances the development of 
hepatocellular carcinoma via the PTEN/AKT axis [58]. 
SHNG6 induced the breast tumor cell growth and move-
ment via miR-543 sponging and subsequent activation of 
LAMC1/PI3K/AKT axis [59].

Tamoxifen (TAM) is a widely used endocrine therapy 
that operates as an antagonist of estrogen in BC patients 
[5, 6]. Although, tamoxifen therapy is effective for most 
of the ER+ breast cancers, many patients eventually 
develop resistance to tamoxifen [7, 8]. Therefore, under-
standing the underlying mechanism of TAM resistance 
will decrease its adverse effects and facilitate overcom-
ing resistance and sensitizing breast tumors. Enhancer 
of zeste homolog 2 (EZH2) is a member of polycomb 
proteins that is involved in the modulation of tumorigen-
esis [28, 29]. There was remarkable UCA1 upregulation 
in tamoxifen-resistant breast cancer relative to sensi-
tive samples. Loss of UCA1 in LCC2 cells interrupted 
the cell cycle at G2/M phase and dysregulated p21 and 
CCND1. EZH2 negatively regulated p21 transcription 
via H3K27me3, which was induced by UCA1 in BC cells. 
Inhibition of UCA1 significantly reduced CREB and 
p-CREB expression levels. There was a positive associa-
tion between the expression levels of AKT and UCA1. 
Therefore, UCA1 modulated the CREB via targeting the 
AKT and PI3K/AKT signaling pathways [60]. TTN-AS1 
induced the breast tumor cell proliferation, aggressive-
ness, and tamoxifen resistance by targeting miR-107/
ZNRF2 axis. ZNRF2 inhibition activated the PI3K/AKT 
pathway, which resulted in increased tamoxifen resist-
ance in BC cells [61].

Triple Negative Breast Cancer (TNBC) as the most 
aggressive form of BC is characterized by a lack of estro-
gen receptor (ER), epidermal growth factor receptor 2 
(HER-2), and progesterone receptor (PR) that results in 
the failure of targeted therapies in these patients [62]. 
About two-thirds of TNBC patients have a poor chem-
otherapy response [63]. IGF binds with IGF1R receptor 
to activate anti-apoptotic pathways and cell growth via 
the PI3K/AKT and RAS/MAPK signaling axes [64]. The 
downstream pathways of IGF1R induce the stemness and 

epithelial-to-mesenchymal transition (EMT) [65]. IGF1R 
is associated with the expression of EMT-related mark-
ers (Twist and Snail) and self-renewal factors (SOX2, 
OCT4, and NANOG) [66–72]. Additionally, IGF1R pro-
motes cell growth and inhibits apoptosis via the Ras/Raf/
MEK, PI3K/AKT/mTOR pathways [64, 73]. The HULC-
IGF1R axis increased the growth and metastasis of breast 
tumor cells. HULC also enhanced IGF1R transcription 
through acetylation of H3K9 histone, intergenic chromo-
somal loop construction, and interaction with cis-acting 
elements. Accordingly, the HULC-IGF1R axis increased 
cisplatin resistance by up regulation of stem cell markers 
[74]. There was significant downregulation of IGF2-AS in 
BC plasma, tissues, and cell lines. IGF2-AS down regu-
lated the IGF2 via DNMT1 that inhibited PI3K/AKT/
mTOR and tumor progression in BC [75]. There was 
GAS5 downregulation in TNBC tissues that was asso-
ciated with an invasive morphology in TNBC patients. 
GAS5 impeded cell growth while enhanced apoptosis in 
TNBC cells. GAS5 also attenuated TNBC development 
via miR-196a-5p sponging, which subsequently overex-
pressed FOXO1 and inhibited PI3K/AKT phosphoryla-
tion [76]. ZEB2-AS1 induced the growth, metastasis, and 
EMT in TNBC cells through regulating the PI3K/Akt/
GSK3β/Zeb2 axis and polymerization of F‐actin [77].

Hormone receptor (HR)-positive BC patients may 
develop intrinsic and acquired resistance to hormone 
therapies, which is responsible for tumor relapses in 
these patients [78]. PI3K or mTOR inhibitors are used to 
restrain drug resistance, underscoring the critical role of 
PI3K/AKT/mTOR in endocrine therapy resistance [79, 
80]. BDNF-AS stimulated the mTOR signaling pathway 
in endocrine-resistant BCs and TNBCs by RNH1 pro-
tein degradation. MEF2A is a transcription factor that 
up regulates the BDNF-AS. Interaction between RNH1 
and RISC was involved in the destruction of mTOR 
mRNA. TRIM21 is an E3 ligase that degraded RNH1. 
BDNF-AS functioned as molecular glue for the TRIM21/
RNH1 interaction that resulted in RNH1 degradation 
[81]. Trastuzumab as an anti-HER2 monoclonal anti-
body deactivates the downstream pathways and inhib-
its the production of HER2 dimers, which results in the 
suppression of tumor growth while apoptosis induction 
[82]. Trastuzumab resistance is one of the leading causes 
of treatment failure in HER2-positive BC patients. There-
fore, developing new targeted therapies to overcome 
chemoresistance is an ideal strategy that improves the 
survival rate of HER2-positive BC patients [83]. HOTAIR 
mediated PTEN methylation activated PI3K/AKT to 
promote trastuzumab resistance. HOTAIR inhibition 
downregulated CCND1, p-MAPK, and p-AKT while 
upregulated P27 and PTEN. The upregulation of TGF-β, 
Snail, and Vimentin and impaired expression of CDH1 
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were reported in resistant BC cells. HOTAIR regulated 
acquired resistance through epigenetic changes, includ-
ing demethylation of TGF-β and PTEN methylation, 
which increased the HER2-independent MEK/MAPK 
activity and subsequent proliferation and invasion of 
malignant cells [84].

Myc oncogene is a pivotal transcription factor that is 
implicated in tumor cell reprogramming and apoptosis 
[85, 86]. Lin28B facilitates the Myc nuclear transloca-
tion to increase AKT phosphorylation [87]. There was 
remarkable upregulation of Linc00839 in BC tissues that 
was corelated with an unfavorable prognosis. Linc00839 
was regulated by Myc, which in turn modulated the 
expression of Lin28B and Myc proteins. Moreover, 
Linc00839 induced chemoresistance and growth via the 
PI3K/AKT signaling pathway and also phosphorylated 
the P38, STAT3, and Akt proteins. Therefore, Linc00839 
ameliorated the breast tumor cell proliferation and chem-
oresistance through the Lin28B-induced Myc upregula-
tion and PI3K/AKT activation [88]. RAD54B exhibits 
oncogenic function due to its pivotal role in the DNA 
repair and genomic instability [89]. AC012213.3 inhibi-
tion remarkebaly restrained the growth and invasion of 
BC cells. AC012213.3 regulated the RAD54B/PI3K/AKT 
axis to exert its oncogenic function in tumor cells. There 
was also AC012213.3 upregulation in BC tissues that was 
correlated with survival. Moreover, AC012213.3 targeted 
RAD54B, which resulted in tumor progression [90]. 
RNA-binding proteins (RBPs) are the key posttranscrip-
tional regulators that have pivotal roles in tumor progres-
sion. Pumilio RNA binding family member 2 (PUM2) is 
a PUF family member of RBPs that modulates malignant 
tumors [91]. SCAMP1-TV2 suppression impeded the 
malignant characteristics of BC cells via decreasing their 
attachment to PUM2 and inducing the binding of PUM2 
to INSM1 which finally downregulated the INSM1. 
Reduced expression of INSM1 inhibited SASH1 which 
suppressed the PI3K/AKT pathway in breast tumor cells 
[92].

TGF‑β signaling pathway
Transforming growth factor β (TGF-β) signaling is an 
important pathway during the development of different 
tumors. Deregulation of TGF-β pathway facilitates tumor 
cell proliferation, dissemination, metastasis, and immune 
scape [93]. TGF-β ligand binds to the TGF-βII/I recep-
tors that phosphorylates and activates the SMAD2/3 
(R-SMADs). Activated R-SMADs form a complex with 
SMAD4 and translocates to the nucleus to regulate the 
transcription of TGF-β target genes [94]. TGF-β has key 
role during breast cancer metastasis. Regarding the role 
of TGF-β in regulation of EMT process and stemness, 
it has a pivotal role in modulation of breast cancer stem 

cells [95]. LncRNAs have pivotal roles during breast 
tumor progression by regulation of TGF-β signaling 
pathway (Fig. 2). SMAD6 and SMAD7 inactivate TGF-β 
pathway via antagonistic signals and feedback loops [96]. 
SMAD7 is an important modulator of TGF-β signaling 
that inhibits the pathway through several proceses [97]. 
It functions within the cytoplasm by interfering with 
SMAD2/3 for the binding site of TGFβR1, thereby pre-
venting the SMAD2/3 phosphorylation and suppress-
ing signal transduction [98]. SMAD7 also facilitates the 
recruitment of SMURF1 and SMURF2 to TGF-βR1 and 
subsequent receptor degradation [99]. ARHGAP5-AS1 
inhibited breast tumor cell migration via stabilizing 
SMAD7 [100]. CCAT2 suppression restrained tumor 
growth and invasion while induced apoptosis in BC 
cells via targeting the TGF-β signaling pathway. CCAT2 
downregulation negatively regulated the TGF-β, α-SMA, 
and Smad2 proteins in BC cells [101]. There were linc-
ROR upregulations in BC cell lines and tissues that was 
associated with an unfavorable prognosis. Linc-ROR also 
increased in-vivo tumor growth and invasion in BC via 
up regulation of the key components in TGF-β pathway 
[102]. HNF1A-AS1 induced TAM resistance in BC cells 
via the miR-363/SERTAD3 axis that promoted TGF-β/
Smad [103]. TGFBR2 and TGF-β combination stimulates 
the TGF-β/Smad pathway that results in p21 and p15 up 
regulations, while c-Myc down regulation [104]. There 
was LINC00052 upregulation in BC that sponged miR-
145-5p to induce TGF-βR2 expression [105]. CASC2 
reduced BC progression by down regulation of TGF-β, 
Smad2, and a-SMA [106].

Epithelial-mesenchymal transition (EMT) process 
attenuates cell–cell adhesion via downregulation of the 
epithelial markers such as E-cadherin, whereas it induces 
cell mobility and the expression of mesenchymal mark-
ers including fibronectin, CDH2, and vimentin. EMT 
has also a pivotal role in breast tumor cell invasion and 
metastasis [107, 108]. TGF-β induces and preserves EMT 
process to promote tumor metastasis [109–111]. Runt-
related transcription factor 2 (RUNX2) is a well-known 
regulator of osteoblast morphology and osteogenesis. 
The role of RUNX2 in tumorigenesis has been also inves-
tigated in recent years [112–117]. RUNX2 is involved 
in TGF-β-mediated EMT in which it is up regulated by 
TGF-β1 [115]. TGF-β1 inhibited the acetylation of the 
ANCR promoter and promoted HDAC3 enrichment at 
the ANCR promoter. ANCR modulated the TGF-β path-
way via negative regulation of RUNX2. TGF-β also down 
regulated the ANCR that reduced BC cell invasion and 
migration. ANCR mitigated TGF-β1-induced EMT by 
RUNX2 down regulation [118]. LncRNA TPA provoked 
the aggressiveness and metastasis of BC through the ini-
tiation of EMT by targeting TGF-β signaling pathway 
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[119]. RUNX2 provokes the EMT process by downreg-
ulation of CDH1 while up regulation of Vimentin and 
Snail2. TGF-β promotes BC metastasis by RUNX2 upreg-
ulation [120]. There was lncRNA-NORAD upregulation 
in BC, which was correlated with tumor growth, inva-
sion, and poor prognosis. LncRNA-NORAD modulated 
TGF-β pathway to up regulate the RUNX2 [121]. Several 
pleiotropic transcription factors, such as Twist, ZEB1/2, 
Slug, and Snail, regulate the EMT process by promot-
ing the mesenchymal while suppressing epithelial mark-
ers. Multiple intracellular and extracellular pathways 
also regulate the expression of these critical transcrip-
tion factors [122]. TGF-β signaling pathway regulates 
a broad range of downstream genes, such as EMT tran-
scription factors, via Smad and non-Smad pathways [123, 
124]. TGF-β regulates the interaction between Smad and 
ERK signaling pathways, which enhance and preserve 
the expression of Slug [125, 126]. There were significant 
upregulations of UCA1.1 and AC026904 by TGF-β path-
ways. UCA1.1 and AC026904 enhanced the expression of 
Slug, thereby inducing EMT process and tumor metasta-
sis. AC026904.1 played as a ceRNA to stimulate SLUG, 

whereas UCA1 up regulated the Slug via miR-203a and 
miR-1 spongings [127]. TGF-β promoted the DOX resist-
ance and EMT process by UCA1 up regulation in breast 
tumor cells [128].

Cancer-associated fibroblasts (CAFs) as the piv-
otal components of the tumor microenvironment are 
involved in tumor growth, angiogenesis, invasion, and 
chemoresistance through cytokines and growth factors 
such as PDGF, b-FGF, VEGF, and TGF-β1 [129–133]. 
CDK5 has been reported to be a critical regulator of 
TGF-β1-mediated EMT during breast cancer progres-
sion [134]. CAFs increased the metastasis of BC cells 
via TGF-β1, which regulates the stroma-tumor cell 
interaction. CAFs also activated HOTAIR to promote 
EMT. HOTAIR was a direct transcriptional target of 
SMAD2/3/4. CAFs induced HOTAIR transcription 
to promote H3K27 trimethylation of EGR-1 and 
CDK5RAP1 promoters that up regulated the CDK5 
and increased EMT. CAFs also activated HOTAIR, 
which in turn reinforced the EMT process. SMAD2/3/4 
directly regulated the HOTAIR transcription. CAFs 
induced EMT and metastasis in BC cells via regulation 

Fig. 2 Role of lncRNAs during breast tumor progression by regulation of TGF-β signaling pathway. (Created with BioRender.com)
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of  TGF-β1-mediated interactions between cancer cells 
and stromal cells [135]. Annexin A1 (ANXA1) belongs 
to the Ca2+ -dependent phospholipid-binding pro-
tein family that is involved in regulation of the leu-
kocytes mediated immune responses [136]. ANXA1 
is also engaged in regulation of signaling pathways to 
affect the tumor cell growth, invasion, angiogenesis, 
and apoptosis [137]. DCST1-AS1 attached to ANXA1 
to promote TGF-β-mediated EMT in BC cells. DCST1-
AS1 also increased the paclitaxel and doxorubicin 
resistances of BT-549 cells through targeting ANXA1. 
Additionally, DCST1-AS1 inhibition affected TGF-
β-induced MMP2/9 releasing in MDA-MD-231 cells. 
DCST1-AS1 regulated the IGF2BP1; thereby DCST1-
AS1 may perform its regulatory function on ANXA1 
mRNA via targeting IGF2BP1. DCST1-AS1 enhanced 
TGF-β-mediated EMT and induced resistance to pacli-
taxel and doxorubicin via regulation of ANXA1 in 
TNBC cells [138].

RELA (p65, NF-κB3) is a NF-κB family member that 
modulates the proliferation and malignancy of several 
tumors via pro-survival and pro-inflammatory factors 
[139]. There was HOXA-AS2 upregulation in BC that 
was correlated with invasion, lumph node involve-
ment, TNM staging, and survival. HOXA-AS2 inhibi-
tion significantly suppressed breast tumor cell growth 
via targeting miR-520c-3p/RELA and TGFBR2 axis 
[140]. RPs are a type of RNA-binding protein that are 
found in all cells [141]. RPL22 is a 60S ribosomal sub-
unit and is associated with bacterial macrolide resist-
ance by its mutation [142]. RPL22 promotes TGF-β 
pathway during tumor progression [143–145]. There 
was significant reduced expression of ADAMTS9-AS2 
in TNBC samples compared to normal tissues that was 
correlated with tumor size, lymph node involvement, a 
higher TNM stage, patient age, and worse prognosis. 
ADAMTS9-AS2 attenuated the growth and invasion of 
TNBC cells via the TGF-β-mediated regulation of the 
ADAMTS9-AS2/RPL22 axis [146]. LncRNAs interact 
with PRC, SWI/SNF, and Pol II machinery to regu-
late gene expression inside the nucleus [34, 147–150]. 
Chromatin remodeling plays a crucial role in regulation 
of gene expression via proteins or protein complexes. 
SWI/SNF complex as a chromatin remodeller moves 
the nucleosomes and makes the DNA more accessi-
ble via recruitment of transcription factors to certain 
DNA regions [151]. There was TGFB2-AS1 downregu-
lation in the metastatic TNBC patients. TGFB2-AS1/
SMARCA4 interaction suppressed the SWI/SNF that 
was followed by TGFB2 and SOX2 down regulations. 
There was also up regulation of mesenchymal markers 
(slug, vimentin, and fibronection) while downregulation 

of epithelial markers (β-catenin) in breast tumor cells 
[152].

MAPK signaling pathway
MAPK is a pivotal pathway for the regulation of tumor 
invasion in multiple malignant cancers [153–156]. The 
genes involved in the MAPK pathway play important 
roles in numerous biological processes, including apop-
tosis, proliferation, and differentiation [157, 158]. MAPK 
cascades transmit and amplify the extracellular stimuli 
such as growth factors and steroid hormones which are 
associated with cell proliferation and apoptosis. ERK 
is the most important effector of the MAPK during 
breast cancer progression. Steroid hormones can acti-
vate MAPK. It has been reported that MAPK activation 
was higher in about half of breast tumors compared with 
normal margins [159]. LncRNAs have key roles during 
breast tumor progression by regulation of MAPK signal-
ing pathway (Fig. 3). MEK4 activates JNK via phosphoryl-
ation that promotes its nuclear accumulation to activate 
the ELK21, ATF-22, and c-Jun transcription factors [160]. 
CBR3-AS1 upregulation was correlated with poor prog-
nosis in ADR-resistant BC cell lines and patients. CBR3-
AS1 increased resistance to ADR in BC cells through 
targeting the miR-25-3p/MEK4/JNK1 axis and inten-
sifying the MAPK pathway [161]. PTENP1 suppressed 
the migration and growth of BC cells via the AKT sign-
aling pathway and cell cycle associated genes such as 
CDK2 and cyclin A2. PTENP1 also inhibited the growth 
and migration of BC cells via the MAPK signaling path-
way by repressing the phosphorylation of key proteins 
in this pathway including Erk1/2 and p38 [162]. Lnc-
CAMTA1 promoted the BC progression via miR-20b/
VEGF axis that induced JAK/STAT3 and MAPK/ERK 
pathways [163]. PRNCR1 inhibition impaired cell sur-
vival and increased apoptosis and the number of cells in 
the G0/G1 phase following increased Bax and decreased 
Bcl-2 expressions. PRNCR1 inhibition reduced CCND2 
expression, while suppression of miR-377 restored 
CCND2 expression levels. CCND2 also increased p38 
MAPK and MEK1 phosphorylation. Therefore, PRNCR1/
miR-377/CCND2 axis repressed cell apoptosis while 
enhanced cell proliferation in breast cancer via acceler-
ating the MEK/MAPK pathway [164]. Around 70–80% 
of breast cancer cases are ER+ that plays a vital role in 
tumor growth and patients survival [165]. Therefore, 
adjuvant targeted therapies with tamoxifen or aromatase 
inhibitors are the primary treatment options for ER+ BC 
patients [166]. However, resistance to hormonal therapy 
can occur due to the development of estrogen-independ-
ent growth. Linc-RoR induced tamoxifen resistance and 
estrogen-independent growth in BC cells. It activated the 
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MAPK/ERK signaling axis via destabilizing DUSP7 as a 
suppressor of ERK, indicating the regulatory function of 
linc-RoR on the MAPK/ERK axis under estrogen depri-
vation [167]. MiRNA-host gene lncRNAs (lnc-miRHGs) 
are certain lncRNAs that contain miRNAs within their 
DNA sequences [168]. OTX1, as a homeobox gene is a 
pivotal regulator of early human fetal retina and mam-
mary gland development [169]. ERK/MAPK signaling 
pathway plays a critical role in tumor cell growth, differ-
entiation, angiogenesis, and metastasis [170, 171]. There 
was MIR100HG upregulation in TNBC tissues and cell 
lines that increased proliferation, invasion, and migration 
via targeting the miR-5590-3p/OTX1 axis. MIR100HG 
inhibition also repressed the ERK/MAPK pathway in 
TNBC cells [172].

The premetastatic niche (PMN) of primary 
tumors is a pivotal factor for the metastasis and 

colonization of tumor cells in certain secondary tissues 
via organotropism, immunosuppression, angiogenesis, 
and vascular permeability [173]. CAFs as the principal 
stromal constituents of the tumor microenvironment 
regulate tumor progression [174]. CAFs induce tumor 
proliferation and metastasis via metabolic and extracel-
lular remodeling, cytokines, and exosomes in the primary 
tumor microenvironment [175–179]. CAFs are pivotal 
modulators of angiogenesis by WNT5a, WNT2, SDF1, 
PDGFC, and VEGFA release [180–183]. There was signif-
icant SNHG5 up regulation in primary breast CAFs that 
modulated generation of PMN through angiogenesis. 
The interaction of SNHG5 and IGF2BP2 stabilized the 
ZNF281 mRNA in an m6A-dependent manner. ZNF281 
modulated CCL2 and CCL5 expressions in CAFs, which 
resulted in p38 signaling activation in endothelial cells 
and subsequent PMN construction in the metastatic 

Fig. 3 Role of lncRNAs during breast tumor progression by regulation of MAPK signaling pathway. (Created with BioRender.com)
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environment. Recruitment of IGF2BP2 by SNHG5 
elevated the ZNF281 levels via m6A regulation, which 
induced CCL2/5 transcription and secretion to form 
PMN. CCL2 and CCL5 that were released by CAFs stim-
ulated the p38 MAPK axis in endothelial cells, thereby 
regulating PMN generation [184].

Conclusions
Cytokine and growth factor-dependent signaling path-
ways play a key role during BC progression. In addition to 
growth factors and cytokines, lncRNAs have also pivotal 
roles in regulation of these signaling pathways. There-
fore, here we discussed the role of lncRNAs in regulation 
of PI3K/AKT, MAPK, and TGF-β signaling pathways in 
breast tumor cells. It has been reported that lncRNAs 
mainly have an oncogenic role through the activation of 
these signaling pathways during BC progression. There-
fore, the inhibition of lncRNAs can be introduced as a 
suitable therapeutic strategy to reduce the breast tumor 
growth by suppression of PI3K/AKT, MAPK, and TGF-β 
signaling pathways. Regarding, the tissue-specific char-
acteristics of lncRNAs, they can also be suggested as 
the next generation tumor markers. Considering the up 
regulation of the majority of lncRNAs in tumor tissue 
and serum of BC patients, lncRNAs expression profiling 
can be introduced as an efficient non-invasive diagnostic 
method among these patients. However, regarding the 
role of lncRNAs in chronic disorders such as diabetes and 
metabolic disorders, it is required to assess the circulat-
ing levels of various lncRNAs in breast cancer patients to 
introduce a multi lncRNA panel marker instead of a sin-
gle lncRNA as a non-invasive diagnostic method in these 
patients. While, the oncogenic lncRNAs can be inacti-
vated using the antisense methods, tumor suppressive 
lncRNAs can be synthetically-engineered and employed 
to inhibit breast tumor growth. However, as the breast 
cancer is a heterogenic malignancy, the personalized 
medicine is required to use the lncRNAs as the thera-
peutic factors in breast cancer patients. Therefore, more 
clinical trials and in-vivo studies are required to bring the 
lncRNAs as the diagnostic and therapeutic options into 
the clinics for the breast cancer patients.
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