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Abstract 

Purpose Currently, there are no accurate markers for predicting potentially lethal prostate cancer (PC) before biopsy. 
This study aimed to develop urine tests to predict clinically significant PC (sPC) in men at risk.

Methods Urine samples from 928 men, namely, 660 PC patients and 268 benign subjects, were analyzed by gas 
chromatography/quadrupole time‑of‑flight mass spectrophotometry (GC/Q‑TOF MS) metabolomic profiling to con‑
struct four predictive models. Model I discriminated between PC and benign cases. Models II, III, and GS, respec‑
tively, predicted sPC in those classified as having favorable intermediate risk or higher, unfavorable intermediate risk 
or higher (according to the National Comprehensive Cancer Network risk groupings), and a Gleason sum (GS) of ≥ 7. 
Multivariable logistic regression was used to evaluate the area under the receiver operating characteristic curves 
(AUC).

Results In Models I, II, III, and GS, the best AUCs (0.94, 0.85, 0.82, and 0.80, respectively; training cohort, N = 603) 
involved 26, 24, 26, and 22 metabolites, respectively. The addition of five clinical risk factors (serum prostate‑specific 
antigen, patient age, previous negative biopsy, digital rectal examination, and family history) significantly improved 
the AUCs of the models (0.95, 0.92, 0.92, and 0.87, respectively). At 90% sensitivity, 48%, 47%, 50%, and 36% of unnec‑
essary biopsies could be avoided. These models were successfully validated against an independent validation cohort 
(N = 325). Decision curve analysis showed a significant clinical net benefit with each combined model at low thresh‑
old probabilities. Models II and III were more robust and clinically relevant than Model GS.

Conclusion This urine test, which combines urine metabolic markers and clinical factors, may be used to predict sPC 
and thereby inform the necessity of biopsy in men with an elevated PC risk.
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Introduction
Prostate cancer (PC) is a significant global health issue. 
In 2020, it affected over 1.4 million men and caused mor-
tality in over 0.3 million men [1]. In the United States, 
the age-standardized incidence of PC was 106.4 per 
100,000 population [2]. The diagnosis of PC depends on 
histopathological examination of prostate tissue samples 
obtained during biopsy or surgery. Treatment for PC is 
typically guided by key clinicopathological factors [3], 
including serum prostate-specific antigen (PSA) levels, 
clinical staging, biopsy Gleason sum (GS), patient age, 
and co-morbidities, as documented in the National Com-
prehensive Cancer Network (NCCN) guidelines [4] and 
the European Association of Urology guidelines [5]. Gen-
erally, localized or nonmetastatic disease is either treated 
definitively for potentially lethal or clinically significant 
PC (sPC) or conservatively for indolent or insignificant 
PC (isPC), depending on tumor aggressiveness [3, 4, 6]. 
The prognosis of PC is more favorable than that of other 
types of cancer [2]. Nevertheless, the 5-year survival rates 
for PC depend on the stage: > 99% for the localized non-
metastatic stage, 31% for the distant stage, and 98% for 
all stages combined [2]. Multiple factors can influence 
the prognosis of patients, including the tumor stage and 
grade at primary diagnosis, and the patient’s age and 
overall health [6]. Unfortunately, the GS of the tumor 
is unknown before prostate biopsy and staging involves 
postbiopsy advanced imaging modalities. Therefore, 
avoiding unnecessary biopsy and overdiagnosis using 
noninvasive tests that accurately predict tumor aggres-
siveness in men with an elevated risk of PC is an unmet 
clinical need [7].

Serum PSA is a powerful screening marker [8] and 
has helped reduce the metastatic PCs and mortality in 
PC patients [9, 10]; however, the PSA test for PC predic-
tion lacks a balance between sensitivity and specificity to 
the extent that when one aspect reaches 80%, the other 
decreases to 30% [11]. Thus, high false-positive rates 
are an issue faced by clinicians [12, 13]. Moreover, the 
test poorly differentiates sPC from isPC at levels below 
10–20 ng/mL [14, 15]. Most experts recognize that PSA 
testing increases the risk of overdetection of otherwise 
indolent diseases and the consequential risk of overtreat-
ment, which may potentially expose patients to anxiety 
and treatment-related morbidities [13]. Therefore, the 
NCCN guidelines emphasize using more techniques and 
biomarker tests, if available, to optimize the detection 
of sPC while minimizing the identification of those with 
isPC [13]. Generally, sPC is regarded as an aggressive and 
potentially lethal PC, usually characterized by higher PSA 
levels, higher GSs, and more advanced clinical stages [3, 
13]. In contrast, isPC is rarely lethal and exhibits lower 
PSA levels, GSs, and/or clinical stages. In men with 

elevated PSA levels, although the biopsy GS may reveal 
cancer aggressiveness [16], a postbiopsy staging workup 
remains necessary to inform treatment planning [4, 17]. 
Furthermore, a convenient, accurate, and robust test to 
differentiate sPC from isPC before a biopsy is currently 
unavailable.

Many clinical risk factor-based prediction models [18, 
19] are used to predict PC or high-grade PC (GS ≥ 7) in 
men at risk. These models incorporate serum PSA level, 
patient age, race, family history, previous biopsy results, 
and digital rectal examination (DRE) findings, which usu-
ally have area under the receiver operating characteristic 
(ROC) curve (AUC) values ranging from 0.61 to 0.77 [18, 
20, 21]. Notably, almost all these models define GS ≥ 7 as 
indicative of sPC and neglect tumor staging information, 
which may be less optimal than complete risk stratifica-
tion. Examples of such models include the D’Amico clas-
sification [22] and the NCCN risk groupings [4], which 
are based on PSA levels, GSs, and clinical stages.

Multiparametric magnetic resonance imaging 
(mpMRI) has emerged as an important diagnostic tool 
for PC [23]. In recent guidelines, it is recommended for 
routine use in men with elevated PSA levels to inform the 
need for biopsy and reduce unnecessary biopsies [24, 25]; 
however, the AUCs of mpMRI for predicting sPC ranged 
only from 0.79 to 0.84 [26]. Ideally, a test that predicts 
sPC should be more accurate and noninvasive, utilize 
samples that are easy to obtain (such as urine), and be 
predictive of complete risk stratification instead of the GS 
only.

In the era of precision medicine, liquid biopsies have 
uncovered useful biomarkers that facilitate the diagnosis 
and stratification of various cancers [27]. Liquid biopsy 
markers, such as the Prostate Health Index [28], 4  K 
score [29], urine RNA PCA3 [30], and SelectMDx [31] 
have been successfully used to estimate the risk of PC or 
sPC [32–34]. Moreover, liquid biopsies have emerged as 
a valuable tool for improving PC management by pre-
dicting castration-resistant PC prognosis [35], evaluating 
patients’ drug response [36], and identifying candidates 
for targeted therapy [37]. Urine metabolomics has been 
used in biomarker detection for not only urinary tract 
cancers but also other cancers [27]. Owing to its non-
invasive nature and the close anatomical proximity 
between the prostate and the urinary tract, urine metab-
olomics presents unique advantages over other liquid 
biopsies in PC. Over the past decade urine metabolomics 
has been investigated in biomarker studies for PC or sPC 
[38, 39]. Moreover, the urine metabolome recapitulates 
some dysregulated metabolic pathways in PC [39], sug-
gesting its potential application in other clinical contexts, 
such as predicting treatment response. However, most 
urine metabolomic studies have aimed to differentiate 
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benign subjects from those with PC [39]. Few studies 
have focused on discriminating isPC from sPC, and those 
that have were primarily proof-of-concept or small-sam-
ple (e.g., less than 80) studies and lacked validation [40, 
41]. In this large-scale study, we demonstrated that the 
combination of urine metabolic marker panels and clini-
cal risk factors can differentiate benign cases from cancer 
and isPC from sPC with very high accuracy. Thus, our 
models may greatly assist clinical decision-making before 
biopsy for men at risk.

Materials and methods
Subject enrollment and eligibility criteria
Between August 2017 and April 2021, 893 men with 
an elevated risk of PC at eight hospitals (the BigUro 
Study Team) in Taiwan were enrolled before the pros-
tate biopsy. Another group of 258 men with newly 
diagnosed treatment-naïve PC was enrolled at least six 
weeks after the biopsy to mitigate post-biopsy changes 
in urine omics profiling. All patients were ethnic Chinese 
men in Taiwan. The inclusion criteria were as follows: 
men ≥ 20  years old; PSA ≥ 4.0  ng/ml (with or without 
abnormal DRE); willingness to undergo prostate biopsy 
(for men without the diagnosis of PC yet) or subjects with 
untreated PC; and willingness to sign the informed con-
sent form. Men (N = 56) with atypical small acinar pro-
liferation or high-grade prostatic intraepithelial neoplasia 
were excluded from the analysis. The study was approved 
by the institutional review board of each hospital and 
registered at Clinicaltrials.gov (NCT03237702). All men 
signed an informed consent form before enrollment.

Fifty milliliters of spot urine and clinical informa-
tion were collected from the two groups of subjects 
(N = 1151). Urine samples were centrifuged at 2500 × g 
for 15 min at 4 °C to collect the supernatants, which were 
stored at − 80 °C before use. We added 100 U of urease 
to 100  μL urine samples (aliquoted from 50  mL urine) 
to deplete excess urea by incubating at 37  °C with mild 
shaking at 650 rpm for 1 h. Termination of urease activity 
and metabolite extraction were carried out by admixing 
1  mL methanol with a vortex for 30  s, and precipitated 
proteins were removed via centrifugation at 13,200 rpm 
for 15 min at 4 °C. The supernatants were transferred to 
2-mL microcentrifugation tubes and dried in SpeedVac 
concentrators. The dried metabolic extract was derivat-
ized using bis (trimethylsilyl)-trifluoroacetamide con-
taining 1% trimethylchlorosilane and analyzed via gas 
chromatography (GC)/mass spectrometry.

Gas chromatography quadrupole time‑of‑flight mass 
spectrophotometry
The derivatized samples were analyzed using an Agi-
lent 7890B GC system coupled with a 7250 quadrupole 

time-of-flight mass spectrometer (Q-TOF MS) equipped 
with electron ionization. Separation was performed 
on a Zorbax DB5-MS + 10  m Duragard capillary col-
umn (30  m × 0.25  mm × 0.25  mm, Agilent, California, 
USA). The GC temperature profile was held at 60 °C for 
1 min, raised to 325 °C at 10 °C/min, and held at 325 °C 
for 10  min. The transfer line and the ion source tem-
perature were set at 300 °C and 280 °C, respectively. The 
mass range monitored was from 50 to 600 Daltons. Mass 
spectra were compared against the NIST 2017, Fiehn, 
and Wiley Registry 11th Edition mass spectra libraries. 
Metabolites that appeared in more than 60% of samples 
from the same risk group of patients were included for 
further marker panel selection. Perfluorotributylamine 
was used as a calibration standard for GC. The personnel 
for specimen handling or data acquisition were blinded 
to the disease grouping.

Biopsy and staging workup
Prostate biopsy was performed using ≥ 12-core transrec-
tal and/or transperineal biopsy. All PC patients under-
went a postbiopsy staging workup, including mpMRI and 
bone scans. The NCCN risk groups [4] were assigned to 
all PC patients, ranging from very low risk (VLR), low 
risk (LR), favorable intermediate risk (FIR), unfavorable 
intermediate risk (UIR), high risk (HR), very high risk 
(VHR), and metastatic PC (mPC). Clinical staging was 
based on a combined review of DRE and MRI, whichever 
was higher.

Training and validation cohorts
The subjects were randomly divided into training and 
validation cohorts (Table  1). The former was used to 
build predictive models, while the latter was independ-
ent of the model construction. The percentage of benign 
subjects in the training cohort was lower than that in the 
entire subject pool, so each respective risk group was 
adequately represented during model construction. How-
ever, we restored the percentage of each risk group in the 
validation cohort to approximately that of the entire sub-
ject pool.

Predictive models
Three models (Models I–III) for predicting dichotomous 
endpoints, namely, benign versus cancerous cases (Model 
I) and isPC versus sPC (Models II and III), were designed. 
Model II applied to men with a long life expectancy 
(> 10–15 years), where VLR/LR disease was regarded as 
isPC and all other higher-risk groups (from FIR to mPC) 
were regarded as sPC. Model III applied to men with a 
shorter life expectancy (< 10–15  years) where VLR/LR 
and FIR were regarded as isPC [4] and all other higher-
risk groups were regarded as sPC. For comparison with 
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previously published studies, we constructed a fourth 
model (Model GS) to predict high-grade PC (GS ≥ 7) 
using the same subject pool.

Statistical analysis and marker selection
The significance of differences in clinical characteristics 
between the training and validation cohorts was deter-
mined using the Chi-square test (age, PSA level, and cre-
atinine level) and Mann–Whitney U test (positive family 

history, previous biopsy, and DRE result). The peak val-
ues of all metabolites identified in GC/Q-TOF MS were 
normalized by both urine creatinine (determined via LC‒
MS/MS) and total peak area values to reduce interbatch 
variances [42]. To select markers, K-fold (K = 5) cross-
validation was performed, with four subcohorts as the 
training set and one as the testing set. The process was 
repeated for five rounds, which generated five training 
and testing sets per round. In each training set, univari-
ate logistic regression was applied to exclude metabo-
lites with a p value of > 0.1. Backward elimination based 
on the Akaike information criterion (AIC) [43] was con-
ducted, followed by a multivariable logistic regression to 
exclude metabolites with a p value of > 0.1. The remain-
ing metabolites were applied to the five testing sets in the 
model construction and ROC generation. We produced 
100 models from 20 rounds. All the above stepwise logis-
tic regression procedures were conducted using R (ver-
sion 4.1.2). The top 30 highest-recurring metabolites 
from the top 75% of models were selected for conduct-
ing another multivariable logistic regression. The marker 
number per model was based on cumulative AIC nadir 
scores (Additional file  1: Fig. S1), which were obtained 
using R (version 4.1.2), to balance model fit and complex-
ity and avoid overfitting. Multivariable logistic regression 
and performance analyses (AUC, sensitivity and speci-
ficity at Youden’s index threshold, accuracy, and so on) 
were performed using both MedCalc (MedCalc Software 
Ltd., Ostend, Belgium) and R (version 4.1.2). Both the 
calculation of the p value for the AUC and the compari-
son of the AUCs of the two ROC curves were conducted 
according to the previously described method [44] using 
MedCalc. Decision curve analysis (DCA) was performed 
as previously described using R (version 4.1.2) [45]. 
Heatmaps with hierarchical clustering were generated 
using Python’s Seaborn clustermap (https:// github. com/ 
mwask om/ seabo rn/). Bubble plots, which were based on 
our logistic regression analyses, were created using the 
ggplot2 package in R (version 4.1.2).

Results
The study flowchart is presented in Fig. 1.

Baseline characteristics
Among all urine samples from the 1151 subjects, 928 
samples, namely, 660 samples from PC patients and 268 
randomly selected samples from 435 benign subjects, 
were sent for GC/Q-TOF MS. The median age of the sub-
jects was 69 years. The characteristics of the training and 
validation cohorts are shown in Table  1. The validation 
cohort contained a percentage (48.8%) of benign cases 
similar to that in the original 1,151-subject pool, in which 
benign cases, VLR/LR, FIR, UIR, HR/VHR, and mPC 

Table 1 Demographics and clinical characteristics of the 
training and validation cohorts

VLR very low risk, LR low risk, FIR favorable intermediate risk, UIR unfavorable 
intermediate risk, HR high risk, VHR very high risk, mPC metastatic prostate 
cancer, MWU Mann–Whitney U test, IQR interquartile range

Combined 
cohort (%) 
(n = 928)

Training cohort 
(%) (n = 603)

Validation 
cohort (%) 
(n = 325)

NCCN risk group subject no. (%)

 Benign

  VLR and LR 268 (28.9%) 110 (18.2%) 158 (48.6%)

  FIR 100 (10.8%) 74 (12.3%) 26 (8.0%)

  UIR 99 (10.7%) 74 (12.3%) 25 (7.7%)

  HR and VHR 139 (15.0%) 105 (17.4%) 34 (10.5%)

  mPC 268 (28.9%) 202 (33.5%) 66 (20.3%)

54 (5.8%) 38 (6.3%) 16 (4.9%)

Age (years)

 Median 
(mean)

69.0 (69.3) 69.0 (69.4) 69.0 (69.0)

 P for MWU 
test

0.534

PSA (ng/mL)

 Median (IQR) 9.26 (5.89–18.49) 9.92 (6.13–20.16) 8.65 (5.69–13.93)

 P for MWU 
test

0.005

Serum creatinine (mg/dL)

 Median (IQR) 1.0 (0.9–1.1) 1.0 (0.9–1.1) 1.0 (0.87–1.1)

 P for MWU 
test

0.850

Family history of PC

 Yes (%) 72 (7.9) 53 (9) 19 (6)

 No (%) 838 (92.1) 539 (91) 299 (94)

 P for Chi‑
square

0.1126

Previous negative biopsy

 Yes (%) 181 (22.1) 115 (21.3) 66 (23.7)

 No (%) 637 (77.9) 424 (78.7) 213 (76.3)

 P for Chi‑
square

0.4486

Abnormal DRE

 Yes (%) 322 (35.3) 236 (39.9) 86(27)

 No (%) 589 (64.7) 356 (60.1) 233 (73)

 P for Chi‑
square

0.0001

https://github.com/mwaskom/seaborn/
https://github.com/mwaskom/seaborn/
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accounted for 52.0%, 8.7%, 7.4%, 11%, 18.3%, and 2.6% of 
cases, respectively.

Model performance
There were 1,941 identifiable metabolites in the GC/Q-
TOF MS setting, of which, 172 outstanding metabolites 
fulfilled the filtering criteria for quality control and were 
included in the model construction. According to an AIC 
nadir search, 26, 24, 26, and 22 markers (Additional file 1: 
Fig. S1 and Table  S1) were selected in the final panels 
for Models I, II, III, and GS, respectively, with AUCs of 
0.94, 0.85, 0.82, and 0.80, respectively (training cohort, 
Table 2). When the five clinical risk factors—age, serum 
PSA, family history of PC, previous negative biopsy, and 
abnormal DRE—were added to the models, the combined 
Models I, II, III, and GS showed significantly improved 
AUCs (0.95, 0.92, and 0.92, and 0.87, respectively; all 
p < 0.0001), which were higher than those achieved by 
adding PSA alone to the models (0.94, 0.90, 0.90, and 0.85, 
respectively; all p < 0.05). The NCCN risk grouping-based 
Models II and III outperformed the GS-based Model GS. 
Model performance at 90% sensitivity is shown in Table 2 
(training) and Table  3 (validation). Additional details 
regarding logistic regression parameters for panels and 
model performance at 95% sensitivity are provided in the 
supplementary information (Additional file  1: Table  S2 
and Table  S3). Detailed properties of these markers are 
also listed in the supplementary information (Additional 
file 1: Table S1). Regarding the relative significance of the 

panel metabolites, bubble plots (Additional file 1: Fig. S2) 
revealed two major dysregulated metabolites: monopal-
mitin levels were frequently lower in the urine of cancer 
(Model I) or sPC (Models II, III, and GS) patients, while 
1-stearoyl-rac-glycerol levels were higher in the urine of 
sPC (Models II, III, and GS) patients.

As shown in Fig. 2 and Table 2 (training cohort), Model 
I distinguished benign cases from cancer cases with an 
AUC of 0.94, which was significantly higher than the 
AUCs for PSA (0.68, p < 0.0001) and the five clinical risk 
factors (0.75, p < 0.0001). The AUC of Model I was sig-
nificantly improved by adding the PSA level (AUC = 0.94, 
p = 0.046) or clinical factors (AUC = 0.95, p = 0.0019). 
Model II had a higher AUC (0.85) than PSA (0.78, 
p = 0.0046), but a similar AUC to clinical factors (0.82, 
p = 0.139) for predicting sPC, reaching an AUC of 0.92 
when it was combined with clinical factors. Model III had 
an AUC of 0.82, similar to that of PSA (0.81, p = 0.693), 
and clinical factors (0.85, p = 0.110). The combined 
Model III (with both markers and clinical factors) had a 
significantly improved AUC of 0.92. The AUC (0.80) of 
Model GS was lower than that of Models II and III and 
higher than that of PSA (0.73, p = 0.0133), but it did not 
differ from that of clinical factors (0.78, p = 0.597). The 
AUC of the combined GS model increased significantly 
to 0.87, which was lower than that of the combined Mod-
els II (0.92) or III (0.92). In addition, heatmaps based on 
logit values demonstrated the relative effectiveness of the 
four models in predicting PC and sPC (Fig. 3 and Addi-
tional file  1: Fig. S3). Furthermore, the heatmaps of the 
panel metabolites in the four models are presented in 
Additional file 1, Fig. S4. 

Validation
The four predictive models were successfully validated 
in the independent external cohort (N = 325) (Fig.  2 
and Table 3), which had a risk group composition simi-
lar to the entire subject pool at enrollment (N = 1151) 
(Table 1). The results showed that these models did not 
overfit and were robust for predicting either PC (Model 
I) or sPC (Models II, III, and GS). Additional validation 
was conducted in two subgroups of men, namely, those 
aged ≥ 70 years and those with PSA levels less than 10 ng/
ml, and the results showed that the models also per-
formed well in the two subgroups, with AUCs similar 
to that of the entire validation cohort (Additional file 1: 
Tables S4 and S5).

Avoidance of unnecessary biopsies
At 90% sensitivity, the marker panels in  Models I, II, 
III, and GS could have avoided 41%, 40%, 35%, and 29% 
of unnecessary biopsies, respectively (Table  2). These 
percentages increased to 48%, 47%, 50%, and 36%, 

Training cohort 
(N = 603)

Final model construc�on 
based on AIC values;
Performance analysis

Urine metabolomics 
analysis using GC/Q-TOF MS

Valida�on cohort 
(N = 325)

Spot urine from men
with elevated risk of PC and 

treatment-naïve PC (N = 928)

Stepwise logis�c
regression, selec�ng top 

metabolites from 100 panels

Fig. 1 A flowchart of this study. Four predictive models derived 
from the training cohort were validated using an independent 
validation cohort. AIC: Akaike information criterion
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respectively, in the combined models. The corresponding 
statistics for the validation cohort are shown in Table  3 
and Additional file 1: Table S3.

Decision curve analysis
DCA showed that the combined Models II and III had 
greater clinical net benefit than the marker panels, clini-
cal risk factors, or PSA alone (Fig. 4). However, the addi-
tion of PSA or clinical risk factors to the panel did not 
improve the net benefit of Model I. Notably, in Models 
II, III, and GS, DCA showed a significantly greater ben-
efit in the validation cohort than in the training cohort, 
probably because the validation cohort had a proportion 
of benign cases (48.6%) more similar to those (52.0%) in 
the entire subject pool compared with the training cohort 
(18.2%) (Table  1). In contrast, the training cohort com-
prised 18.2% subjects with benign disease and 81.8% PC 
patients, resulting in a rightward shift of the ’biopsy-
for-all’ curve (indicating a higher threshold probabil-
ity), thereby compressing the net benefit of the models. 

At a 10% threshold probability, the numbers of biopsies 
potentially avoided per 1,000 at-risk subjects in the train-
ing cohort were 50, 35, and 43 for Models II, III, and GS 
(marker panel alone), and 70, 148, and 33 for the com-
bined models, respectively.

Discussion
Metabolomics reveals functional information about the 
interactions of genes and the environment, unique from 
other omics approaches. Although progress has been 
made in urine metabolomics for PC biomarker research 
[38, 39, 46], a universally recognized biomarker/panel for 
predicting PC or sPC remains elusive. The urine metab-
olomics models presented in this study, especially the 
combined models, robustly predicted PC or sPC before 
biopsy in men at risk. Our urine-based tests have several 
advantages over others. First, we used the NCCN risk 
groupings instead of GS ≥ 7, which is used in most other 
popular tests [18, 21, 31, 47, 48], because sPC may not 
necessarily be a GS ≥ 7 disease and not only grading but 

Table 2 Performance of the four predictive models (training cohort, 90% sensitivity)

P: p value for AUC (null hypothesis: AUC = 0.5)

Sen sensitivity, Spe specificity, NPV negative predictive value, PPV positive predictive value, Bx biopsy, CI confidence interval, GS Gleason score
a Sensitivity set at 90% for clinical relevance
b The percentage of biopsies avoided was calculated after the cohort was normalized to the original risk group composition of the entire cohort enrolled during the 
study period
c Five clinical risk factors; age, PSA value, family history of PC, previous negative biopsy for PC, abnormal DRE
d Metabolite marker panel plus 5 clinical factors. Table S3 (Additional file 1) shows similar statistics at 95% sensitivity

AUC (95% CI) P Sen (%)a Spe (%) NPV (%) PPV (%) Accuracy (%) Bx 
avoided 
(%)b

Model I: Benign vs Cancer (Marker number in model = 26)

 5 clinical  factorsc 0.75 (0.71–0.80)  <  10–4 90 30 40 85 79 16

 Marker panel 0.94 (0.91–0.96)  <  10–4 90 79 64 95 88 41

 Marker panel + PSA 0.94 (0.92–0.96)  <  10–4 90 82 65 96 89 43

  Combinedd 0.95 (0.93–0.97)  <  10–4 90 92 67 98 90 48

Model II: (Benign + VLR/LR) vs (FIR + UIR + HR/VHR + mPC) (Marker number in model = 24)

 5 clinical  factorsc 0.82 (0.78–0.85)  <  10–4 90 42 65 78 75 26

 Marker panel 0.85 (0.82–0.89)  <  10–4 90 63 74 85 82 40

 Marker Panel + PSA 0.90 (0.88–0.93)  <  10–4 90 73 77 88 85 46

  Combinedd 0.92 (0.89–0.94)  <  10–4 90 75 77 89 86 47

Model III: (Benign + VLR/LR + FIR) vs (UIR + HR/VHR + mPC) (Marker number in model = 26)

 5 clinical  factorsc 0.85 (0.82–0.88)  <  10–4 90 49 79 70 72 34

 Marker panel 0.82 (0.78–0.85)  <  10–4 90 50 79 71 73 35

 Marker Panel + PSA 0.90 (0.87–0.92)  <  10–4 90 67 84 79 80 47

  Combinedd 0.92 (0.90–0.94)  <  10–4 90 71 84 81 82 50

Model GS: (Benign + GS < 7) vs (GS ≥ 7) (Marker number in model = 22)

 5 clinical  factorsc 0.78 (0.75–0.82)  <  10–4 90 30 65 67 67 19

 Marker panel 0.80 (0.76–0.83)  <  10–4 90 46 74 73 73 29

 Marker Panel + PSA 0.85 (0.81–0.87)  <  10–4 90 55 77 76 76 35

  Combinedd 0.87 (0.84–0.90)  <  10–4 90 56 78 77 77 36
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also tumor staging may impact oncological outcomes. In 
contrast, small GS 3 + 4 tumors with low Gleason score 4 
lesions may also be managed conservatively [4]. Second, 
our models were constructed to predict disease pheno-
types rather than cancer potential, as reflected by the GS. 
The results showed that Models II and III outperformed 
Model GS, which also confirmed this advantage. In addi-
tion, according to the NCCN guidelines [4], FIR PC can 
be managed by active surveillance or watchful waiting, 
depending on life expectancy and tumor phenotype. In 
this study, we designed Models II and III for two different 
scenarios in which FIR PC was regarded as sPC and isPC, 
respectively [4]. This strategy allows flexible application 
by both physicians and men at risk.

In our study, the benign control group comprised men 
with an elevated risk of PC but a negative biopsy rather 
than healthy men without an elevated PSA level or men 
with benign prostatic hyperplasia (BPH) without any 
suspicion of PC. A limited number of previous studies 
reported urine tests that predicted PC with AUCs > 0.90 

[49, 50]. One study demonstrated a high AUC (0.98) for 
differentiating PC patients from healthy controls but a 
low specificity (< 53%) for differentiating PC patients 
from those with BPH without elevated risk [49], which 
suggests that differences in urine metabolome profiles 
between PC patients and healthy controls are greater 
than those between PC and BPH patients. Similarly, dif-
ferences in urine profiles between men with PC and 
benign controls at risk, as in our study, may be much 
more difficult to detect, but they are more clinically rel-
evant. Therefore, previous studies [39, 51] that enrolled 
men at no risk as controls may not have addressed the 
real unmet need because men without risk of PC do not 
need to be evaluated for PC or sPC.

Previously published liquid biopsy models that adopted 
readily available clinical factors exhibited limited power 
in predicting high-grade PC (AUCs 0.61–0.77) [18, 20, 
21]. Leyten et  al. demonstrated that adding serum PSA 
to a urine 3-mRNA panel (HOXC6, TDRD1, and DLX1) 
increased the AUC from 0.77 to 0.81 [52]. Van Neste et al. 

Table 3 Performance of the four predictive models (validation cohort, 90% sensitivity)

P: p value for AUC (null hypothesis: AUC = 0.5)

Sen sensitivity, Spe specificity, NPV negative predictive value, PPV positive predictive value, Bx biopsy, CI confidence interval, GS Gleason score
a Sensitivity set at 90% for clinical relevance
b The percent biopsy avoided was calculated after the cohort was normalized to the original risk group composition of the entire cohort enrolled during the study 
period
c Five clinical risk factors, including age, PSA value, family history of PC, previous negative biopsy for PC, abnormal DRE
d Metabolite marker panel plus 5 clinical factors. Table S3 (Additional file 1) shows similar statistics at 95% sensitivity

AUC (95% CI) P Sen (%)a Spe (%) NPV (%) PPV (%) Accuracy (%) Bx 
avoided 
(%)b

Model I: Benign vs Cancer (Marker number in model = 26)

 5 clinical  factorsc 0.75 (0.70–0.80)  <  10–4 90 30 75 58 61 16

 Marker panel 0.87 (0.83–0.91)  <  10–4 90 44 81 63 68 23

 Marker panel + PSA 0.88 (0.84–0.92)  <  10–4 90 44 81 63 68 23

  Combinedd 0.89 (0.86–0.93)  <  10–4 90 57 85 69 74 30

Model II: (Benign + VLR/LR) vs (FIR + UIR + HR/VHR + mPC) (Marker number in model = 24)

 5 clinical  factorsc 0.81 (0.76–0.86)  <  10–4 90 42 85 55 63 26

 Marker panel 0.93 (0.90–0.95)  <  10–4 90 77 91 75 83 49

 Marker Panel + PSA 0.94 (0.92–0.97)  <  10–4 90 81 91 78 85 51

  Combinedd 0.95 (0.93–0.97)  <  10–4 90 87 92 84 88 55

Model III: (Benign + VLR/LR + FIR) vs (UIR + HR/VHR + mPC) (Marker number in model = 26)

 5 clinical  factorsc 0.84 (0.80–0.89)  <  10–4 90 51 91 50 65 36

 Marker panel 0.88 (0.84–0.92)  <  10–4 90 70 93 63 78 49

 Marker Panel + PSA 0.92 (0.92–0.96)  <  10–4 90 82 94 74 85 57

  Combinedd 0.93 (0.90–0.96)  <  10–4 90 84 94 76 86 59

Model GS: (Benign + GS < 7) vs (GS ≥ 7) (Marker number in model = 22)

 5 clinical  factorsc 0.78 (0.72–0.83)  <  10–4 90 25 82 41 49 16

 Marker panel 0.89 (0.86–0.93)  <  10–4 90 76 93 69 81 48

 Marker Panel + PSA 0.91 (0.88–0.94)  <  10–4 90 79 94 71 83 50

  Combinedd 0.91 (0.88–0.94)  <  10–4 90 80 94 72 84 51
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Comparison P value

PSA vs 5F  0.0015

26 m vs 5 F < 0.0001

(26 m + PSA) vs 26 m 0.0463

(26 m + 5 F) vs 26 m 0.0019

(26 m + 5 F) vs (26 m + PSA) 0.0123

Variable AUC (95% CI)

Combined (26 m + 5 F) 0.95 (0.93-0.97)

26 m + PSA 0.94 (0.92-0.96)

26 m 0.94 (0.91-0.95)

5 F 0.75 (0.72-0.79)

PSA 0.68 (0.64-0.72)
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Fig. 2 Area under the receiver operating characteristic curve analysis of the four predictive models for the training (A) and validation (B) 
cohorts. Model I was constructed to distinguish benign cases from all PC patients. Model II was constructed to distinguish isPC (benign + VLR/LR) 
from sPC (UIR + HR/VHR + mPC). Model III was constructed to distinguish isPC (benign + VLR/LR + FIR) from sPC (UIR + VHR/HR + mPC). Model GS 
was constructed to predict high‑grade cancer (GS ≥ 7). PSA, prostate‑specific antigen; isPC, insignificant prostate cancer; sPC, significant prostate 
cancer; VLR, very low risk; LR, low risk; FIR, favorable intermediate risk; UIR, unfavorable intermediate risk; HR, high risk; VHR, very high risk; mPC, 
metastatic prostate cancer; GS, Gleason score; AUC, area‑under‑the‑curve. 26 m (in Models I and III): 26 metabolite markers, 24 m (in Model II): 24 
metabolite markers, 22 m (in Model GS): 22 metabolite markers
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combined urinary HOXC6 and DLX1 mRNA levels with 
several clinical factors, obtaining AUCs of 0.85–0.90 [31]. 
The results of these studies suggest that, although better 
than PSA alone, conventional clinical factors are limited 
in predicting high-grade PC, and including molecular 
markers may better stratify disease risks. Our results also 
showed that compared with clinical risk factors, metabo-
lite markers, or PSA alone, the combined Models II, III, 
and GS showed improved AUCs (0.92, 0.92, and 0.87, 
respectively) for sPC prediction.

mpMRI has also been recommended to inform biopsy 
[23]. However, evidence has indicated a wide discrepancy 
among the findings of radiologists at the same center 
regarding the Prostate Imaging Reporting and Data Sys-
tem (PI-RADS) scores and cancer detection, with high-
grade PC detection rates ranging from 40 to 80% for 
PI-RADS 5 lesions [53]. Such discrepancies could be 
even greater across institutions [54]. These data high-
light the importance of objective tests or a combination 
of both. In our case, it may be inappropriate to combine 
the urine tests with mpMRI before biopsy. Because the 
AUCs of our models were sufficiently high, combining 
our tests and mpMRI, which would not be cost-effective, 
may not have been necessary. Therefore, we recommend 
a new strategy in which urine tests are conducted for 
men at risk and mpMRI should only be implemented in 
men with model-predicted PC or sPC, and then used to 
evaluate the necessity for a targeted biopsy, which may 
be more cost-effective because it would reduce the num-
ber of MRI evaluations in patients with benign disease. 
A previous study proposed a similar strategy in which 
mpMRI would be performed only in SelectMDx-positive 
men if quality mpMRI was not readily available [47].

Of note, the metabolite markers identified in our 
study may represent novel targets for PC research. Some 
markers, such as guanidinoacetic acid, 4-acetamidobu-
tyric acid, pseudouridine, and monopalmitin, appeared 
repeatedly in three or four models. The first three mark-
ers increased, while the last one decreased in the PC or 
sPC. Guanidinoacetic acid, an arginine metabolite, is 

a precursor for the biosynthesis of creatine, which has 
been demonstrated in recent studies to promote tumor 
invasion and metastasis [55]. Whether the enriched 
guanidinoacetic acid in sPC acts as an oncometabolite to 
promote progression through creatine or other pathways 
remains to be investigated. 4-Acetamidobutyric acid 
is another arginine metabolite; its production requires 
monoamine oxidase, an actionable target in PC, the inhi-
bition of which blocks the growth of castration-sensitive 
and castration-resistant cancers [56]. Pseudouridine is 
considered a potential biomarker for several cancers, 
including PC [57]. Monopalmitin, a monoglycerol ester 
of palmitic acid, has been reported to be decreased in 
the metabolome of lung cancer cells compared to normal 
epithelial cells [58]. In addition, the consistent promi-
nence of monopalmitin and 1-stearoyl-rac-glycerol in our 
bubble plots suggested that these two specific metabo-
lites held particular value in the context of our study. 
1-Stearoylglycerol, a long-chain fatty alcohol, is formed 
as a product of lipid catabolism. Notably, men with ele-
vated levels of serum 1-stearoylglycerol were reported to 
have a reduced likelihood of developing PC [59]. Further 
study of their roles in carcinogenesis may reveal crucial 
mechanisms and therapeutic targets in PC.

Our models may have a great translational impact for 
several reasons. First, they surpassed or equaled the per-
formance of most other liquid biopsies [32–34, 38, 39, 
46], including the widely used PCA3 [48] and Select-
MDx [47] tests, as well as the most recent ones [60, 61], 
greatly improving the accuracy of predicting sPC before 
biopsy. Second, our data showed that unnecessary biop-
sies could be reduced, lessening the burden on patients 
and healthcare resources. Third, our DCA demon-
strated a significant clinical benefit in Models II and III 
at lower threshold probabilities. Additionally, our models 
are noninvasive, eliminating the need for prostate mas-
sage or RNA handling, and offer enhanced clinical rel-
evance through the NCCN risk groupings, while also 
being tailored to patients of different age groups com-
pared to other popular models [38, 39, 46] in PC and sPC 

Fig. 3 A heatmap of the four combined models. The heatmap was generated using patient logit values and the dichotomous method 
with the criterion corresponding to the Youden index J. It shows the probability of each patient belonging to a specific dichotomous end in four 
different models that combine distinct marker metabolites and clinical factors. Blue represents benign or isPC, while red represents PC or sPC. 
Darker color intensity reflects a higher probability of belonging to one end in the dichotomous models
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diagnoses. In the future, to optimize the effectiveness of 
our tests and maximize their impact, we will utilize tar-
geted GC‒MS to accurately quantify metabolite markers. 
We will also assess the feasibility and prediction rate of 

using mpMRI to guide biopsy after positive results of our 
tests and compare it to other strategies. This novel strat-
egy has the potential to change the landscape of PC man-
agement for at-risk men. Last, long-term utility analyses 
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cohort than in the training cohort in all four models



Page 11 of 13Huang et al. Journal of Translational Medicine          (2023) 21:714  

with diverse racial groups will determine whether our 
models are able to reduce unnecessary biopsies and over-
treatment, without increasing the PC-specific mortality 
in the long run.

Finally, despite making headway, this study still had 
several limitations. First, because all subjects enrolled 
in our study were of Asian ethnicity, the generalizabil-
ity of our results to other ethnic groups may be limited. 
However, our pioneering work may provide a founda-
tion for future studies based on other ethnic groups. Sec-
ond, our models apply to men at risk, but not to men at 
no risk, indicating that they may not be used to screen 
healthy men without risk. Third, most of our subjects 
did not receive prebiopsy MRI or postbiopsy molecular 
tests (e.g.,  Decipher® Prostate Cancer Test). Therefore, 
we could not compare or combine our tests with mpMRI 
and other molecular tests.

Conclusions
The models presented in this study, which combined 
urine metabolite markers and five clinical risk factors, 
predict NCCN-based sPC with very high accuracy. The 
two different sPC-predictive Models II and III may be 
applied to men with varied life expectancies. These novel 
urine tests may substantially address the unmet clini-
cal need by effectively informing biopsy and avoiding 
approximately 40% of unnecessary biopsies, thus greatly 
modifying current clinical practice in the management of 
men with an elevated risk of PC.
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