
Yang et al. Journal of Translational Medicine          (2023) 21:586  
https://doi.org/10.1186/s12967-023-04422-x

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of 
Translational Medicine

Suppressive stroma-immune prognostic 
signature impedes immunotherapy in ovarian 
cancer and can be reversed by PDGFRB 
inhibitors
Dong Yang1†, Mei‑Han Duan1,3†, Qiu‑Er Yuan1,2†, Zhi‑Ling Li1†, Chuang‑Hua Luo2, Lan‑Yue Cui1, Li‑Chao Li1, 
Ying Xiao1,4, Xian‑Ying Zhu1,4, Hai‑Liang Zhang1, Gong‑Kan Feng1, Guo‑Chen Liu2, Rong Deng1*, 
Jun‑Dong Li1,2* and Xiao‑Feng Zhu1* 

Abstract 

Background As the most lethal gynecologic cancer, ovarian cancer (OV) holds the potential of being immunother‑
apy‑responsive. However, only modest therapeutic effects have been achieved by immunotherapies such as immune 
checkpoint blockade. This study aims to propose a generalized stroma‑immune prognostic signature (SIPS) to identify 
OV patients who may benefit from immunotherapy.

Methods The 2097 OV patients included in the study were significant with high‑grade serous ovarian cancer 
in the III/IV stage. The 470 immune‑related signatures were collected and analyzed by the Cox regression and Lasso 
algorithm to generalize a credible SIPS. Correlations between the SIPS signature and tumor microenvironment were 
further analyzed. The critical immunosuppressive role of stroma indicated by the SIPS was further validated by tar‑
geting the major suppressive stroma component (CAFs, Cancer‑associated fibroblasts) in vitro and in vivo. With 
four machine‑learning methods predicting tumor immune subtypes, the stroma‑immune signature was upgraded 
to a 23‑gene signature.

Results The SIPS effectively discriminated the high‑risk individuals in the training and validating cohorts, 
where the high SIPS succeeded in predicting worse survival in several immunotherapy cohorts. The SIPS signature 
was positively correlated with stroma components, especially CAFs and immunosuppressive cells in the tumor micro‑
environment, indicating the critical suppressive stroma‑immune network. The combination of CAFs’ marker PDGFRB 
inhibitors and frontline PARP inhibitors substantially inhibited tumor growth and promoted the survival of OV‑bearing 
mice. The stroma‑immune signature was upgraded to a 23‑gene signature to improve clinical utility. Several drug 
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types that suppress stroma‑immune signatures, such as EGFR inhibitors, could be candidates for potential immuno‑
therapeutic combinations in ovarian cancer.

Conclusions The stroma‑immune signature could efficiently predict the immunotherapeutic sensitivity of OV 
patients. Immunotherapy and auxiliary drugs targeting stroma could enhance immunotherapeutic efficacy in ovarian 
cancer.

Keywords Ovarian cancer, Immunotherapy, Stroma, Prognostic signature

Background
Ovarian cancer (OV), the deadliest gynecological cancer, 
has become the eighth leading cause of female cancer 
death [1]. Genomic instability, a critical factor that can 
significantly increase tumor mutation burden (TMB) and 
neoantigen production, especially “BRCAness,” can be 
detected in many OVs; thus, OV is recognized as immu-
nogenic and potentially responsive to immunotherapy 
[2–5]. However, recent studies have reported that neither 
the immune monotherapy based on PD1/PDL1/CTLA4 
blockade (objective response rate of 10 ~ 30%) nor the 
combination of immune checkpoint blockade and chem-
otherapy/PARP inhibition achieved satisfactory results 
[5–10].

The tumor microenvironment (TME), a cancer-cell-
established variable ecosystem, is crucial in determining 
responsiveness and non-responsiveness to immunothera-
pies [11]. TME is classified into three subtypes: the hot 
subtype with inflamed T cells, the excluded subtype 
with stroma-confined T cells, and the cold subtype with 
absent T-cell infiltration [5]. According to the classi-
fication of OV (CLOVAR), OV is further classified into 
four distinct yet overlapping subtypes: immunoreactive, 
differentiated, proliferative, and mesenchymal subtype 
[5]. Based on pan-cancer analysis by Bagaev et  al., OV 
was categorized as immune-enriched/fibrotic (IE/F), 
immune-enriched/non-fibrotic (IE), fibrotic, and desert 
subtype [12]. Accordingly, OV patients of hot, immuno-
reactive, or immune-enriched/non-fibrotic subtype had 
the best prognosis compared to other subtypes. Those 
inflamed tumor subtypes are characterized by anti-
tumor immune cell infiltration, more potent activation of 
interferon signaling, higher level of chemokine secreting 
such as CXCL9/10, and less immune-suppressive stroma 
including CAFs, abnormal tumor endothelium, etc [5]. 
Therefore, identification and quantification of TME com-
ponents could identify tumor subtypes and precisely dis-
criminate patients responsive to immunotherapies.

Due to genomic and transcriptomic information, 
researchers recently aimed to screen potential prognos-
tic biomarkers to model immune components in TME 
[13]. Several studies focused on the expression level of 
immune-related genes in tumor tissue. Ding et  al. con-
cluded the nine-gene signature containing UBD, GBP2, 

CXCL11, CXCL13, D4S234E, VSIG4, CXC3R1, C5AR1, 
and TFPI2 [14]. Shen et  al. constructed a 129-gene 
immunogenic prognostic signature of which the major-
ity were cytokine-related genes and antimicrobial-signal-
ing-related genes [15]. Such signatures efficiently classify 
OV patients into high- and low-risk immune subgroups, 
where the high-risk subgroup tends to have more sup-
pressive immune cells, such as M2 macrophages, and less 
positive immune cells, such as  CD8+T cells, while the 
low-risk group is characterized by more positive immune 
cells and significant activation of interferon signaling and 
chemokine signaling [13]. However, few signatures in the 
previous studies emphasized the critical immunosup-
pressive role of stroma components in TME.

In the present study, to fully explore the immune status 
in the tumor microenvironment to find new biomarkers 
for the prediction of immunotherapeutic efficacy in OV 
patients and to provide new strategies for the treatment 
of the OV patients, a total of 470 immune-related signa-
tures are submitted to develop the significant immune-
related prognostic model in the 2097 OV patients from 
multiple cohorts. The correlation between the prognostic 
model and tumor microenvironment is further analyzed 
in the OV and other immunotherapeutic cohorts. Our 
work may shed light on the pathogenesis of OV tumors 
with immune resistance.

Materials and methods
Materials
Details of all inhibitors, primers’ sequences, and datasets 
mentioned in this research were displayed on GitHub 
(https:// github. com/ Yangd 38).

Data collection and processing
The RNA-seq data, SNV data (simple nucleotide vari-
ation), CNV data (copy number variation), and cor-
responding clinical information were obtained from 
the Cancer Genome Atlas cohorts (TCGA-OV). The 
microarray data of the Affy ovarian cancer cohort were 
extracted from Gene Expression Omnibus (GSE82191, 
GSE18520, GSE30161, GSE19829, GSE63885, GSE26193, 
GSE9891, GSE14764, GSE23554, GSE26712). The micro-
array data of the Agilent ovarian cancer cohort were 
extracted from Gene Expression Omnibus (GSE53963, 

https://github.com/Yangd38
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GSE73614, GSE17260, GSE32062, GSE32063). The 
immunotherapeutic cohorts were collected from the five 
cancers, including Bladder Urothelial Carcinoma (BLCA), 
Skin Cutaneous Melanoma (SKCM), Non-small cell lung 
cancer (NSCLC), Gastrointestinal cancer (GC), Breast 
invasive carcinoma (BRCA). The single-cell sequenc-
ing data were obtained from Gene Expression Omni-
bus (GSE165897). The stroma-related datasets were also 
obtained from Gene Expression Omnibus (GSE115635, 

GSE38666, GSE9890, GSE164088). The corresponding 
clinical information of these immunotherapeutic cohorts 
was listed in Additional file  2: Supplementary Table  S1. 
The drug-induced expression signatures were obtained 
from the CMAP database (https:// clue. io/). The study 
design and workflow were presented in Fig. 1.

Fig. 1 The study design and workflow

https://clue.io/
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Single sample Gene Set Enrichment Analysis (ssGSEA)
The 470 immune-related signatures (Additional file  3: 
Supplementary Table  S2) were obtained from the work 
of Shiyuan et al. [16] and the MSigDB database [17]. The 
normalized enrichment scores (NESs) of 470 immune 
cell signatures in each ovarian cancer sample and the cor-
responding expression data were quantified by ssGSEA 
function in R package GSVA (v1.45.5) [18]. The poten-
tial batch effects between the NESs in different cohorts 
were removed by the ComBat function in R package sva 
(v3.44.0).

Construction of the stroma‑immune prognostic signature
The combated NESs of 470 immune-related signatures 
from the Affy cohort as the discovery cohort were ana-
lyzed by univariable Cox proportional hazards regres-
sion analysis. Twenty-two immune-related signatures 
were significantly correlated with overall survival (the 
adjusted P-value < 0.05, Additional file 4: Supplementary 
Table S3). Then, based on R package glmnet (v4.1-4), the 
LASSO-Cox regression model was applied to identify the 
most valuable prognostic factors among the 22 immune 
cell signatures in the discovery cohort. Ultimately, 15 
immune-related signatures with nonzero coefficients 
were selected according to the minimized lambda. SIPS 
was constructed using the NESs of 15 immune cell signa-
tures to multiply the regression coefficients derived from 
univariable Cox proportional hazards regression analy-
sis. Then, SIPS was further averaged by the 15 signatures 
and normalized to 0 ~ 1 by subtracting the minimum and 
dividing by the range (maximum-minimum). Since over-
all survival records of patients in the BRCA cohort were 
unavailable, the parameters of SIPS in the Affy cohort 
were applied to calculate the SIPS of the patients from 
the BRCA cohort.

The nomogram construction and ROC analysis
SIPS, FIGO stage, histopathological grade, and debulking 
status were used to establish a nomogram model to pre-
dict 3/5-year overall survival in the discovery and testing 
cohort based on R package rms (v6.3-0). The validation of 
the nomogram was processed by testing the discrimina-
tion and calibration abilities with the internal (discovery) 
and external (validation) sets, respectively. Moreover, the 
concordance index (C-index) and the Receiver Operating 
Characteristic (ROC) curves were also applied to evalu-
ate the nomogram model. The ROC analysis was per-
formed on R package timeROC (v0.4).

Tumor microenvironment analysis
TME components were analyzed by xCell algorithm 
based on R package immunedeconv (v2.0.4). Default 

parameters were adopted in the R package immune-
deconv. The tracking tumor immunophenotype (TIP) 
analysis was performed on the TIP website (http:// biocc. 
hrbmu. edu. cn/ TIP/ index. jsp). The immunogram analysis 
was applied to explore the cancer-immunity interactions. 
The activation levels of 10 immunogram signatures were 
estimated based on ssGSEA function in R package GSVA 
(v1.45.5).

Hub functional analysis
Differentiated expression of genes (DEGs) between the 
high and low SIPS subtypes in the Affy and TCGA-OV 
cohorts were identified by R package Limma (v3.52.4). 
RNA-seq data of the TCGA-OV cohort were collected to 
perform weighted gene co-expression network analysis 
(WGCNA) of the common differentiated genes between 
Affy and TCGA-OV cohort based on R package WGCNA 
(v1.71). Eigengenes from each module were collected to 
run the STRING protein–protein interaction (PPI) anal-
ysis and cluster eigengenes by k-means methods on the 
STRING Web (https:// cn. string- db. org/) separately, out 
of which 60 most connected eigengenes in each mod-
ule cluster were collected to run STRING PPI analysis. 
STRING PPI result was then analyzed to determine hub 
genes by CytoHubba (v0.1) function in Cytoscape (v3.9.1) 
to determine hub genes from the STRING PPI result. The 
R package clusterProfiler (v3.18.1) was applied for gene 
ontology (GO) biological process enrichment analysis of 
the hub genes. The results of the hub functional analysis 
were in the Additional file  5: Supplementary Table  S4. 
Detail parameters were displayed in the corresponding 
Rscript file on Github (https:// github. com/ Yangd 38).

scRNA‑seq data process and analysis
TME was analyzed based on 51,786 selected single cells 
from 11 HGSOC patients in GSE165897. R package Seu-
rat (v4.2.0) was applied to run cell quality control and 
normalize the gene expression in each cell with default 
parameters. Each cell was defined by cell definition in 
this dataset, and cell clusters were displayed by uni-
form manifold approximation and projection (UMAP) 
algorithms. R package scGSVA (v0.0.11) was adopted to 
calculate each cell’s NESs of 15 immune-related signa-
tures in the SIPS. The communication signaling network 
between tumor and stroma cells was examined by the R 
package Cellchat (v1.4.0).

Genomic instability analysis
R package scarHRD (v0.0.1) was adopted to ratiocinate 
HRD Score, LOH (Loss of Heterozygosity), TAI (Telo-
meric Allelic Imbalance), LST (Large Scale Transitions) 
from the CNV data of TCGA-OV cohort. R package 
maftools (v2.12.0) was utilized to display the landscape of 
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30 most-mutated genes and calculate the TMB. R pack-
age sigminer (v2.1.8) was applied to determine the muta-
tional signatures in each OV patient.

Construction of 23‑gene signature by machine‑learning 
models
Four machine-learning models (Boruta, xgboost, Random 
Forest, LASSO) were applied to screen the generalized 
key genes to identify tumor immune-subtypes (MFP sub-
type). R package Boruta (v7.0.0), xgboost (v1.6.0.1), caret 
(v6.0-93) and glmnet (v4.1-4) were used to perform the 
machine-learning process.

Decision tree modeling
The survival decision tree was built by R package rpart 
(v4.1.19), partykit (v1.2-16), and survival (v3.4-0). Over-
all survival and status of the TCGA-OV cohort were the 
response factors. HRD Score and SIGPS were independ-
ent variables, and other parameters adopted the default. 
The cutoff value of pruning was set to maximize the sig-
nificance of the tree and simplify the tree.

Connectivity map analysis
Potential drugs targeting stroma were selected using 
CMAP web (the largest perturbation-driven gene expres-
sion dataset) to screen drugs with expression-suppress-
ing profiles similar to SIGPS genes. 49 common genes 
concluded by any three machine-learning methods 
were collected to search potential drugs on the CMAP 
web. Experimentally-examined L1000 sub-database was 
selected, and drugs with raw connective scores < 0 and 
FDR < 0.05 were selected. The results of CMAP analysis 
were in the Additional file 6: Supplementary Table S5.

Cell culture
Ovarian cell lines SKOV3, OVCAR5, and TOV21G were 
purchased from ATCC. The ID8 cell line was a gift from 
Pro. Xia Xiaojun in Sun Yat-sen University Cancer Center. 
 Trp53−Brca2−-ID8 cells were constructed by transfecting 
ID8 cells with lentiCRISPRv2-bsd-sgTp53 and lentiC-
RISPRv2-puro-sgBrca2 virus.  Tp53−Brca2−ID8-Luc cells 
were built by transfecting  Tp53−Brca2−ID8 cells with the 
PGF-GFP-LUC virus, and monoclonal cells were sorted 
out by flow cytometric sorting. ID8-OVA cells were con-
structed by transfecting ID8 cells with PCDH-puro-OVA. 
All cells were cultured in DMEM supplemented with 7% 
FBS and antibiotics (50 mg/mL penicillin/streptomycin). 
All cell lines were verified to be mycoplasma-free. The 
primary cancer-associated fibroblasts (CAFs) were iso-
lated from an HGSOC patient’s tumor sample obtained 
from surgery in our cancer center. The detailed proce-
dure of CAFs isolation and culture followed the proto-
col by Mercedes et al. [19]. Informed consent regarding 

the sample collection has signed by the patient, and all 
related procedures were performed with the approval of 
internal review and ethics boards in Sun Yat-sen Univer-
sity Cancer Center.

RNA isolation and qRT‑PCR
After treatment, total RNA from cell lines was isolated 
using EZ-press RNA Purification Kit (EZBioscience, cat: 
B0004D) and converted to cDNA using the HiScript II 
Q RT SuperMix for qPCR (Vazyme, cat: R223-01). qRT-
PCR was performed according to the manufacturer’s 
protocol (ChamQ SYBR qPCR Master Mix (Vazyme, cat: 
Q311-02), Roche Applied Science LightCycler 480). The 
relative expressions of genes were calculated using the 
 2−ΔΔCt method, and GAPDH/β-actin was adopted as the 
control. The qPCR primers were in the Additional file 7: 
Supplementary Table S6.

OT‑I in vitro killing assay
Splenocytes isolated from OT-I mice were activated 
with 2  ng/ml OVA257–264 (N4, Sangon Biotech, cat: 
T510212) and 10  ng/ml IL-2 for 3  days. ID8 cells were 
pulsed by 1  ug/ml OVA peptide for 30  min. The acti-
vated  CD8+T cells were co-cultured with ID8-OVA cells 
in RPMI 1640 medium supplemented with 2% FBS) at 
the ratios of 0.5:1 and 1:1 for 4  h, then cells were incu-
bated with anti-CD45.1 and anti-caspase3 for 30  min, 
followed by flow cytometry to analyze the percentage of 
 CD45−Caspase3+ cells.

Animal experiments
The 6-week-old female C57BL/6 mice were purchased 
from the Guangdong GemPharmatech Co., Ltd (Guang-
zhou, China). All animal experiments were conducted 
following the institutional guidelines and approved 
by our cancer center’s Animal Care and Use Commit-
tee. C57BL/6j mice were intraperitoneally injected with 
5 ×  106  Trp53−/−Brca2−/−-ID8-luc cells to construct ani-
mal models. Tumor-bearing mice were sorted by In Vivo 
Imaging System (IVIS; PerkinElmer, Inc.) after 3  weeks 
and randomly divided into four subgroups (Vehicle, Nira-
parib, Sunitinib, and Niraparib–Sunitinib subgroup; five 
mice per subgroup). Mice were treated with Niraparib 
10  mg/kg and sunitinib 10  mg/kg intraperitoneal injec-
tion every 5  days. Tumor progression was monitored 
weekly by IVIS. The applied cytokines and chemical 
inhibitors were in the Additional file  8: Supplementary 
Table S7.

Statistics
All values were presented as mean ± SEM. Kruskal–Wal-
lis test and Wilcoxon test were adopted to compare differ-
ences among groups. R package ggstatsplot (v0.9.5) was 
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used to plot the percentage stacked bar and analyze the 
statistical significance. *p < 0.05; **p < 0.01, ***p < 0.001 
were defined to be statistically significant and p > 0.05 
was n.s. (non-significant).

Results
Immune related signatures for the prognostic prediction 
of ovarian cancer
Three integrated cohorts (Affy, Agilent, and TCGA 
cohorts) containing 2097 ovarian cancer samples with 
overall survival information were used for prognos-
tic model construction (Additional file  1: Fig. S1A–B). 
There were 15 out of 470 immune-related signatures 
significantly correlated with overall survival, which was 
selected by LASSO-Cox regression in the Affy cohort 
(Fig. 2A, B). The relationships between the 15 immune-
related signatures and overall survival were illustrated in 
the forest plot (Fig. 2C). Previous studies have reported 
that the 15 immune-related signatures were correlated 
with chronic inflammation signatures and tumor stromal 

signatures [20, 21]. Thus, stroma-immune prognostic 
signature (SIPS) was constructed by integrating the 15 
immune-related signatures. Patients in the Affy cohort 
were stratified into high and low SIPS subtypes according 
to the optimal cutoff of survival risk score (Fig. 2D). The 
Kaplan–Meier survival analysis indicated that patients 
with low SIPS had better overall survival, disease-free 
survival, and progress-free survival, compared to those 
with high SIPS (32.8 versus 50.0 months) (Fig. 2E, Addi-
tional file 1: Fig. S1C–D). To further examine the robust-
ness of the SIPS model, SIPS performance was tested in 
the Agilent and TCGA-OV cohorts. Similarly, patients 
were stratified into high and low SIPS subtypes based 
on the corresponding optimal cutoff values (Additional 
file  1: Fig. S1E–F). Similar results were observed in the 
TCGA cohort and the Agilent cohort, where patients 
of the high SIPS subtype had significantly worse overall 
survival than those of the low SIPS subtype (40.4 versus 
49.7 months, TCGA cohort) (51 versus 80 months, Agi-
lent cohort) (Additional file 1: Fig. S1G–H).

Fig. 2 Immune related signatures for the prognostic prediction of ovarian cancer. A Partial likelihood revealed by the LASSO regression model 
in Affy cohort. B LASSO coefficient profiles of 15 selected immune‑related signatures in Affy cohort. A, B The vertical dotted lines were drawn 
at optimal values by the minimum and 1‑SE criteria. C The forest plot of the associations between the 15 immune‑related signatures and overall 
survival in Affy cohort. The HR, log value of interquartile range (IQR), and false discovery rate (FDR) were determined by univariate Cox regression 
analysis. D The heatmap of Affy cohort plotted by the NESs of 15 immune‑related signatures. E The Kaplan–Meier estimate of the overall survival 
in Affy cohort, divided by two SIPS subtypes
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To realize quantitative prediction of OV patient prog-
nosis in the clinic, a nomogram that integrated both 
the SIPS and other clinical characteristics was con-
structed based on patients from the Affy cohort, the 
TCGA cohort, and the Agilent cohort, by which scores 
could quantify an individual’s 3/5-year overall survival. 
The SIPS was a key risk point in the nomogram (Addi-
tional file  1: Fig. S1I). The calibration curves and AUC 
curves of the Affy cohort, the TCGA cohort, and the 
Agilent cohort were presented in Additional file  1: Fig. 
S2A–L, respectively. The calibration curves fitted well 
to the ideal curve except for the testing part of the Affy 
cohort, the TCGA cohort, and especially the calibration 
curves of 5-year overall survival. However, AUCs of the 
nomogram model for predicting 3-year overall survival 
were 0.61, 0.58, and 0.57 in the Affy cohort, the TCGA 
cohort, and the Agilent cohort, respectively. Altogether, 
these findings indicated that the nomogram required 
improvement.

To further characterize the biological and clinical dif-
ferences between the high and low SIPS subtypes, a 
TCGA cohort containing 379 OV patients was adopted 
for stratified analysis. Regarding clinical subtypes, 
patients at the high FIGO stage had higher SIPS levels 
than those at the low FIGO stage (Additional file 1: Fig. 
S2M). The debulking status was significantly correlated 
with the SIPS levels. Patients with optimal debulking 
status had lower SIPS levels than those with suboptimal 
status (Additional file 1: Fig. S2N). Furthermore, patients 
sensitive to platinum therapies had slightly lower SIPS 
values than those with platinum resistance (Additional 
file  1: Fig. S2O). Thus, the SIPS level could predict the 
clinical status of OV patients.

The immune therapeutic benefit of the SIPS index
Due to the lack of published transcriptome of ovar-
ian cancer patients who received immunotherapy, five 
integrated immunotherapy cohorts from the bladder 
urothelial carcinoma (BLCA), skin cutaneous melanoma 
(SKCM), non-small cell lung cancer (NSCLC), Gastro-
intestinal cancer (GC), and invasive breast carcinoma 
(BRCA) were selected to validate the predictive value of 
SIPS. Similar to before, patients were stratified into high 
and low SIPS subtypes by corresponding optimal cutoff 
values. In the BLCA cohort, patients in the high SIPS 
group had significantly worse overall survival than those 
with low SIPS (16.23 versus 7.39 months) (Fig. 3A). The 
time-dependent ROC analysis showed that the AUCs of 
the SIPS prognostic model for 1/2-year overall survival 
were 0.61 and 0.593, respectively, which were higher than 
that of TIDE predictive model (Fig.  3B) [22]. The SIPS 
values of BLCA patients with CR/PR were significantly 

lower than those with SD/PD (Fig.  3C). The predictive 
value of SIPS was also confirmed by the waterfall plots 
(Fig.  3D). In SKCM cohort, patients with low SIPS had 
a better prognosis than those with high SIPS (Fig. 3E, F). 
Furthermore, the AUCs of the SIPS prognostic model for 
2/3-year overall survival were 0.586 and 0.629, respec-
tively (Fig. 3G), and in the SKCM cohort, the AUCs for 
1/2-year progress-free survival were 0.736 and 0.707, 
respectively (Fig.  3H). Immunotherapeutic respond-
ers had lower SIPS levels than the unresponsive ones 
(Fig. 3G). The predictive value of SIPS was also confirmed 
by the waterfall plots in the SKCM cohort (Additional 
file  1: Fig. S2P). Interestingly, SIPS value didn’t change 
significantly during immunotherapy (Additional file  1: 
Fig. S2Q).

Moreover, in the NSCLC cohort, SIPS value was also 
substantially anti-correlated with the progress-free sur-
vival (16.23 versus 7.39 months) (Fig. 3J). The AUCs for 
1/2-year progress-free survival were 0.641 and 0.588, 
respectively (Fig.  3K). In the GC cohort, patients with 
low SIPS had substantially longer relapse-free survival 
than those with high SIPS (16.23 versus 7.39  months) 
(Fig.  3L), and the AUCs for 2/3-year relapse-free sur-
vival were 0.677 and 0.769, respectively (Fig. 3M). In the 
BRCA cohort, the patients with complete pathological 
responses had slightly higher SIPS than those without 
complete pathological responses (Fig.  3N). In conclu-
sion, SIPS could predict the immunotherapeutic benefit 
among these cancers.

The tumor microenvironmental landscape 
between the high and low SIPS patients
TME is intimately related to clinical immunotherapeu-
tic response and can be classified into several subtypes. 
Our study indicated that the inflamed immune subtypes, 
including the immune-enriched/non-fibrotic (IE) sub-
type and immunoreactive subtype, had the lowest SIPS 
level compared to other TME subtypes (Fig. 4A, B). Dif-
ferential immune landscapes between high and low SIPS 
subtypes are displayed in Fig. 4C. Patients with low SIPS 
had higher immune scores, while those with high SIPS 
had higher stroma scores. In detail, patients with low 
SIPS had higher proportions of cell types, including mac-
rophages, class-switched memory B cells, activated mye-
loid dendritic cells, plasmacytoid dendritic cells, effector 
memory  CD4+T cells, central memory  CD8+T cells, and 
NKT cells. Patients with high SIPS had higher propor-
tions of cancer-associated fibroblasts (CAFs), a major 
stromal component in TME. The Agilent cohort also 
found similar tumor environment compositions (Addi-
tional file 1: Fig. S3A).

Moreover, several immune-related key molecules were 
found to be significantly different between the two SIPS 
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subtypes (Fig.  4D). The expression levels of several key 
cytokines, such as IFNB1, IFNG1, and TNF, were sub-
stantially higher in the low SIPS subtype. In contrast, the 
TGFB1 level was much higher in the high SIPS subtype. 
Although IL2 expressions were not significantly differ-
entiated between the two SIPS subtypes, the IL2 recep-
tor subtype IL2RA/B expression was markedly higher 
in the low SIPS subtype. Correlations between SIPS and 
several crucial immune checkpoint molecules, including 
PD-1, PD-L1, IDO1, CTLA-4, and B7H3, were investi-
gated (Fig.  4D). Expression levels of PD-L1, IDO1, and 
CTLA-4 were more significant in low IRRS subtype than 
in high SIPS subtype. Meanwhile, B7H3 expression was 
much higher in the high SIPS subtype. Chemokines, 
including CXCL9/10/11/12/13, were key attractants 

that can promote immune cells infiltrating into TME. 
In this study, CXCL10/11, and their receptor CXCR3 
were examined to be much more highly expressed in the 
low SIPS subtype than in the high SIPS subtype, while 
CXCL12 expression was much higher in the high SIPS 
subtype. Consistently, SIPS level was significantly asso-
ciated with the infiltration of  CD8+T cells and NK cells 
during the cancer-immunity cycle (Fig. 4E). The associa-
tion between TME and SIPS was like that in the BLCA 
cohort (Additional file 1: Fig. S3B). The Exclusion, TIDE, 
and Dysfunction scores were substantially higher in the 
high SIPS subtype than in the low SIPS subtype (Addi-
tional file  1: Fig. S3B–C). Similarly, MDSCs and CAFs 
were significantly upregulated in the high SIPS subtype 
(Additional file 1: Fig. S3B, D, E).

Fig. 3 The immune therapeutic benefit of the SIPS index. A The Kaplan–Meier estimate of the overall survival in BLCA cohort, divided by two SIPS 
subtypes. B The time‑dependent ROC curve at 1/2‑year OS in BLCA cohort. C The boxplot showed the levels of SIPS score of patients with different 
immunotherapy responses in BLCA cohort. D The waterfall plot illustrated the distribution of SIPS in patients with different immunotherapy 
responses in BLCA cohort. The Kaplan–Meier estimate of the (E) overall survival and F progress free survival of SKCM cohort, divided by two 
SIPS subtypes. G The boxplot showed the levels of SIPS score of patients with different immunotherapy responses in SKCM cohort. H The 
time‑dependent ROC curve at 1/2‑year OS in SKCM cohort. I The time‑dependent ROC curve at 1/2‑year PFS in SKCM cohort. J The Kaplan–Meier 
estimate of the progress free survival of NSCLC cohort, divided by two SIPS subtypes. K The time‑dependent ROC curve at 1/2‑year PFS in NSCLC 
cohort. L The Kaplan–Meier estimate of the relapse‑free survival of GC cohort, divided by two SIPS subtypes. M The time‑dependent ROC curve 
at 1/2‑year of RFS in the NSCLC cohort. N The boxplot showing the levels of SIPS score of patients with different immunotherapy responses in BRCA 
cohort
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The WGCNA algorithm was adopted to analyze the 
differentiated expressions of genes between the low and 
high SIPS subtypes to identify the different hub func-
tional modules between the two subtypes (Additional 
file  1: Fig. S3F–I). Among five different co-expression 
modules, SIPS level was significantly anti-correlated with 
the yellow module and positively correlated with the 
other four modules (Additional file 1: Fig. S3I).

STRING-Cytoscape analysis was utilized to identify 
150 hub genes from all the modules. The 150 hub genes 
were clustered into two significant signaling subnetworks 
(Additional file 1: Fig. S4A) and enriched in the immune-
related and stroma-related subnetworks (Additional 
file 1: Fig. S4B). The immune-related subnetwork, includ-
ing response to the virus, was significantly downregulated 

in the high SIPS subtype, while the stroma-related sub-
network, including extracellular structure organization, 
was significantly upregulated in the high SIPS subtype 
(Fig. 4F). Thus, stroma components were mainly enriched 
in the TME in high SIPS subtype, which could suppress 
immune cell infiltration and immune response. Further-
more, microenvironment cell types characterized by SIPS 
were analyzed based on a single-cell ovarian cancer data-
set (Fig. 4G). In TME, a large part of SIPS-related signa-
tures were consistently highly activated in the stromal 
components and tumor cells (Fig. 4H). We explored three 
datasets containing OV-associated stroma and epithelial 
tumor samples to determine the different activation of 
SIPS-related signatures between stroma cells and tumor 
cells (Additional file 1: Fig. S4C–E). Stroma components 

Fig. 4 The tumor microenvironmental landscape between the high and low SIPS patients. The boxplot showed the levels of SIPS score of patients 
with different immune subtypes including A MFP and B TCGA subtypes in TCGA‑OV cohort. C The boxplots showed the tumor microenvironmental 
components estimated by xCell algorithm in TCGA‑OV cohort. D The heatmap showed the expression levels of several immune‑related 
key genes in patients with different SIPS subtypes in Affy cohort. E The radar plot showed the correlation between SIPS and the tracking 
tumor immunophenotype in TCGA‑OV cohort. F The ridge plot showed the enriched GO biological progress of the 150 hub genes derived 
from the WGCNA‑STRING‑Cytoscape analysis. G The UMAP plot showed a total of 51,786 cells in tumor microenvironment, and cell clusters were 
color‑coded and labeled according to the original definition in the GSE165897 dataset. H The dot plot showed the levels of the 15 immune‑related 
signatures derived from SIPS in the tumor microenvironment components
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had higher activation of Chemokine receptors signaling 
and TGFB signaling than the tumor components. Con-
clusively, the stroma components in TME presented high 
SIPS levels and contributed to the formation of an immu-
nosuppressive microenvironment.

Correlation between SIPS and genomic instability
Almost half of OV harbor homologous recombination 
deficiency (HRD) [23]. HRD causes tumor genomic 
instability, which induces considerable TMB and neo-
antigen load, activating the innate immune system 
[24]. There was no significant difference between SIPS 
subtypes and HRD scores, including LOH, LST, and 
TAI (Fig. 5A–D). Only two mutational signatures were 
found different between the low SIPS subtype. The 
high SIPS subtype, namely COSMIC 16/25, which were 
observed in liver cancer and Hodgkin lymphoma with-
out specific etiology (Fig.  5E). Furthermore, few gene 

mutations were found different between the low SIPS 
subtype and the high SIPS subtype, except for TAF4B, 
KCTD1, and CASR, et  al. (Fig.  5F, G). OV patients 
with P53 or BRCA1 mutation had similar SIPS lev-
els compared to those with the wild-type (Fig.  5H, I). 
No significant TMB difference was found between the 
SIPS subtypes (Fig. 5J). However, in the BLCA cohort, 
patients with low SIPS had more mutation burden and 
neoantigens than those with high SIPS (Fig. 5K, L). In 
summary, SIPS was slightly associated with genomic 
instability in OV, indicating SIPS could not function on 
tumor antigenicity.

Targeting to stroma promoted anti‑tumor immunity
Abundant stroma indicated a worse prognosis for 
patients with high SIPS, based on which we hypoth-
esized that stroma-targeting drugs could enhance the 
immunotherapeutic effect by reversing the suppressive 

Fig. 5 Correlation of SIPS with genomic instability. The boxplots showed the levels of A HRD Score, B LOH, C LST, and D TAI in patients with different 
SIPS subtypes in TCGA‑OV cohort. E The heatmap showed the levels of the 30 most mutational signatures in patients with different SIPS subtypes. 
F The oncoprint showed the landscape genome changes in patients with different SIPS subtypes. G The bar plot showed the most mutated genes 
in patients with different SIPS subtypes. The boxplots showed the levels of SIPS score in patients with different H P53 and I BRCA1 mutational 
statuses in TCGA‑OV cohort. J The boxplot showed the levels of tumor mutation burden in patients with different SIPS subtypes in TCGA‑OV cohort. 
The boxplots showed the levels of K tumor mutation burden and L neoantigen in patients with different SIPS subtypes in BLCA cohort
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immune microenvironment. As shown in Fig.  6A, the 
stroma of the SIPS subtype indeed presented more 
immunosuppressive components, including CAF and 
angiogenesis. The fibroblast marker PDGFRB was 
mainly expressed in cancer-associated fibroblasts in 
OV (data not shown) [25]. Moreover, OV cell-derived 
PDGFB was the primary source that activated PDG-
FRB in CAFs, indicating tumor cells promoted CAF 
formation (Fig.  6B). By checking the signaling net-
work between CAFs and cancer cells, IL6 signaling was 
found to be of significance (Additional file 1: Fig. S5A). 
IL6 was a potent pro-tumor stimulator and strongly 
interacted with other hub genes in the SIPS network 
(Additional file 1: Fig. S4A). Hence, we proposed that 

immune-suppressive stroma could be vigorously pro-
moted through a positive feedback loop of PDGFB 
signaling and IL6 signaling between cancer cells and 
CAFs. IL6 and TGFB1/2 expression was significantly 
upregulated by treating CAFs with PDGFB stimula-
tion in  vitro, which was blocked by PDGFRB inhibi-
tors (Fig. 6C, Additional file 1: Fig. S5B). Accordingly, 
PDGFB expression in cancer cells was significantly 
upregulated by IL6 and TGFB1 in  vitro (Fig.  6D, E). 
Previous studies indicated that PDGFRB-associated 
pathways were also activated in OV cells, which hin-
dered survival [26]. Data in Fig.  6F, Additional file  1: 
Fig. S5C indicated that PDGFRB blockade inhibited 
the expression of immune checkpoint molecules in 

Fig. 6 Targeting stroma promoted anti‑tumor immunity. A The radar plot showed the correlation between SIPS and the immunogram developed 
by Bagaev et al. [12] to explore the cancer‑immunity interactions in TCGA‑OV cohort. B The dot plot showed the PDGFB–PDGFRB signaling 
among the tumor microenvironmental components in GSE165897 dataset. C The boxplot showed the expression levels of IL6 and TGFB1/2 
in CAFs following 24 h‑treatment of PDGFB and Sunitinib. D The boxplot showed the PDGFB expression levels in SKOV3, TOV21G, OVCAR5, 
and ID8 cells following 24 h‑treatment of TGFB1. E The boxplot showed the PDGFB expression level in SKOV3, TOV21G, OVCAR5, and ID8 cells 
following 24 h‑treatment of IL6. F The boxplot showed the expression levels of the immune checkpoint molecules IDO1, PD‑L1, B7H4, and B7H3 
in OVCAR5 cells following 24 h‑treatment of the PDGFRB inhibitors Crenolanib and Imatinib. The G boxplot and H pseudo color plot showed 
the percentage of cleaved caspase‑3 positive cells in  Trp53−/−Brca2−/−‑ID8 cells. The cells were pre‑treated by PDGFRB inhibitor Sunitinib, followed 
by co‑culturing with activated OT‑1 T cells for 3 h. I The circle plot showed the enriched GO biological processes following Niraparib treatment 
in GSE164088 dataset. J Bioluminescence of C57BL/6j mice after inoculation of  Trp53−/−Brca2−/−‑ID8‑luc cells
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cancer cells, including IDO1, PD-L1, B7H3, B7H4, 
and Tim-3. OT-I killing assays verified that PDG-
FRB blockade enhanced tumor apoptosis by  CD8+T 
cells (Fig.  6G, H, Additional file  1: Fig. S5D–E). Poly 
(ADP-ribose) polymerase inhibitors (PARPi), agents 
with specific efficacy in HRD ovarian cancer, activated 
the extracellular matrix-related pathways and PDGF 
receptor signaling in tumor stroma cells (Fig. 6I, Addi-
tional file  1: Fig. S5F). Moreover, the combination of 
PARPi Niraparib and PDGFB inhibitor significantly 
promoted IL6 expression of fibroblasts (Additional 
file  1: Fig. S5G). Activating stroma-related pathways 
and IL6 signaling could induce PARPi resistance in 
OV. Based on the results of in  vitro experiments, the 

combination of PARP inhibitor and PDGFRB inhibitor 
was applied to treat OV in vivo. PDGFRB and VEGFR2 
can be inhibited by Sunitinib with IC50s of 2 nM and 
80  nM, respectively [27]. Hence, it was hypothesized 
that Sunitinib could reverse the immune-suppres-
sive stroma by potently inhibiting CAFs and angio-
genesis. Data in Fig.  6J, Additional file  1: Fig. S5H 
illustrated that Niraparib and Sunitinib inhibited 
 Trp53−/−Brca2−/−-ID8-luc cancer cells growth in vivo. 
In summary, stroma-targeting PDGFRB and PARP 
inhibitors could significantly inhibit tumor growth.

Fig. 7 Construction of the convenient SIPS prognostic model in ovarian cancer. A The Venn diagram showed the common genes of the four 
machine‑learning methods (Boruta, Xgboost, Random Forest, and Lasso). B The boxplot showed the levels of SIGPS in patient with different MFP 
subtypes in TCGA‑OV dataset. C The network plot showed the enriched functional modules of SIGPS genes. D The UMAP plot showed the levels 
of the SIGPS in tumor microenvironment in GSE165897 dataset. The SIGPS level of each cell was calculated by the AddModuleScore function 
based on R package Seurat. E The decision tree of HRD and SIGPS in TCGA‑OV cohort. In the tree, Node 3:  HRD+SIGPS−; Node 4:  HRD+SIGPS+; 
Node 6:  HRD−SIGPS−; Node 7:  HRD−SIGPS+. F The boxplot showed the estimate score levels of Estimate Score, Immune Score, and Stroma 
Score among the four subgroups of the decision tree in TCGA‑OV dataset. G The boxplot demonstrated the normalized camp scores of agents 
suppressing the SIGPS, and the horizontal axis showed the agent types. Each dot in the plot represented one agent. H The heatmap showing 
the expression levels of stroma‑related genes, including TGFBI, FBLN2, and COL16A1, in the CAFs after the treatment of several drugs as indicated
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Construction of the convenient SIPS prognostic model 
in ovarian cancer
The SIPS index included 15 immune-related pathways, 
out of which four overlapped with TGFB signaling, 
causing redundancy and inconvenience in clinical prac-
tice. Hence, four machine-learning methods, including 
Bortua, Xgboost, Random Forest, and Lasso algorithms, 
were applied to rebuild a more convenient SIPS prog-
nostic model and get the hub genes that could predict 
the immune subtypes (MFP subtypes) in OV. The aver-
age expression of the 23 common genes produced by four 
learning methods was defined as the stroma-immune 
gene prognostic signature (SIGPS) (Fig.  7A). Consist-
ently, the immune-enriched/Non-Fibrotic (IE) subtype 
had the lowest SIGPS level among the conserved can-
cer microenvironment subtypes (Fig.  7B). The pathway 
enrichment analysis unveiled that SIGPS level was sig-
nificantly correlated with pathways including Extra-
cellular matrix organization, Angiogenesis, Cartilage 
development, Negative regulation of cell adhesion, Cel-
lular response to interferon-gamma, and Collagen bio-
synthesis and modifying enzymes (Fig.  7C). Single-cell 
analysis demonstrated that stromal components espe-
cially CAFs had the highest SIGPS level among the three 
components in TME (Fig. 7D). The majority of 23 com-
mon genes were highly expressed in stromal component 
(Additional file 1: Fig. S6A), and further CAF clustering 
showed the highest SIGPS level in myofibroblast (Addi-
tional file  1: Fig. S6B–D). Together, like SIPS, SIGPS 
could reflect the immune suppressive stroma. SIGPS 
was further integrated with histologic grade, FIGO stage, 
and debulking status to predict overall survival in OV. 
The c-indices of the SIGPS prognostic model in indi-
cating the overall survival were 0.63, 0.639, and 0.63 in 
the TCGA-OV cohort, Affy cohort, and Agilent cohort, 
respectively. The AUCs of the SIGPS prognostic model 
for 3/5-year overall survival were 0.603/0.568, 0.57/0.572, 
and 0.531/0.556 in the TCGA-OV cohort, Affy cohort, 
and Agilent cohort, respectively (Additional file  1: Fig. 
S6E–G). Taken together, the SIGPS prognostic model 
required improvement.

Considering HRD was slightly negatively associ-
ated with SIGPS (Additional file  1: Fig. S6H), the com-
bined prognostic value of SIGPS and HRD was further 
validated. According to the decision tree of SIGPS and 
HRD, there were four subgroups termed  HRD+SIGPS+, 
 HRD+SIGPS−,  HRD−SIGPS+,  HRD−SIGPS− (Fig.  7E). 
The SIGPS substantially affected the overall survival of 
HRD patients, and the  HRD+SIGPS− subgroup had the 
best overall survival among four subgroups (Fig.  7E, 
Additional file 1: Fig. S6I). Furthermore, HRD, SIGPS, and 
other clinical information were integrated to construct 
the nomogram. The SIGPS and HRD Score accounted 

for the most risk points compared to additional informa-
tion (Additional file 1: Fig. S6J). The c-index of the nomo-
gram model was 0.66 (0.62 ~ 0.70). Regarding TME, HRD 
patients had higher Immune Scores than HRP patients, 
and in the HRD subgroup, the SIGPS-positive patients 
had higher Stroma Scores (Fig.  7F). Taken together, the 
HRD ovarian patients with high SIGPS levels had much 
higher levels of immune suppressive stroma, which cor-
responded to a worse prognosis.

Drug-inducing expression signatures from the CMAP 
web were compared with SIGPS to screen SIGPS-sup-
pressing drugs, which could enhance immunotherapeutic 
sensitivity and reverse the dire prognosis of HRD patients 
with high SIGPS levels. Remarkably, inhibitors that tar-
get the TGFB receptor, Aurora kinase, CDKs, HDACs, 
RAF signaling, EGFR signaling, etc., could significantly 
inhibit the SIGPS-like signature (Fig.  7G). Furthermore, 
the drug efficiency was examined with CAFs mainly 
expressing SIGPS signatures. As shown in Fig. 7H, drugs, 
including RAF inhibitor, EGFR inhibitor, Aurora inhibi-
tor, HDAC inhibitor, CDK inhibitor, and PDGFRB inhibi-
tor, significantly suppressed the expression of the many 
SIGPS-related genes. Thus, these agents had the potential 
to reverse poor survival of HRD OV patients with high 
SIGPS by inhibiting the immune suppressive stroma.

Discussion
Although previous research suggested that ovarian can-
cer may be immunogenic, related clinical immunother-
apy trials, haven’t achieved a promising outcome yet [5]. 
Developing a potent prognostic signature to identify 
patients sensitive to immunotherapy is urgent. In this 
study, the stroma-immune prognostic signature (SIPS) 
containing 15 immune-related pathways was constructed 
to predict the immunotherapeutic sensitivity of ovar-
ian cancer. Patients with high SIPS had worse survival 
than their counterparts. Meanwhile, the responders in 
the immunotherapy cohorts had lower SIPS. Further-
more, the constructed nomogram indicated that SIPS 
was a critical prognostic factor among other clinical fea-
tures such as grade. Higher SIPS levels were detected in 
patients at the advanced FIGO stage, in the suboptimal 
status, or from the platinum-resistant group, indicating 
that SIPS was significantly correlated with tumor pro-
gression. Therefore, SIPS could be a potent prognostic 
index for immunotherapy in ovarian cancer.

SIPS was significantly correlated with TME. Patients in 
the fibrotic, dessert, mesenchymal, or proliferative sub-
type tended to have high SIPS levels, while patients in 
the immune-enriched subtype had the lowest SIPS level. 
Notably, upregulated fibrotic components significantly 
reversed the SIPS level in the immune-enriched subtype. 
Patients with high SIPS levels had higher stroma scores 
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and lower immune scores than those with low SIPS lev-
els. The proportions of cancer-associated fibroblasts were 
significantly upregulated in the high SIPS subtype.

Meanwhile, the cytotoxic immune components, such 
as B cells, activated myeloid dendritic cells, and  CD8+T 
cells, were significantly enriched in the low SIPS sub-
type. Furthermore, SIPS was anti-correlated with the 
expression levels of the IFNB1, IFNG, and the immune 
checkpoints molecules such as IDO1, PD1/PD-L1, and 
CTLA4, which indicated the potential applicative value 
of immune checkpoint blockades. Moreover, upregu-
lated chemokines such as CXCL9/10/11/13 and related 
receptor CXCR3 in low SIPS subtype showed the recruit-
ing step of  CD8+T cells, Th1, and NK cells. Patients in 
the high SIPS subtype had a highly activated stroma and 
slightly activated immune modules. Almost 15 hub path-
ways in SIPS were highly expressed in stroma and tumor 
cells. However, SIPS was not dominantly induced tumor 
immunogenicity, considering that SIPS was only slightly 
correlated with genomic instability in OV. In conclusion, 
SIPS was significantly positively associated with stroma 
and anti-correlated with the immune, determining the 
positive correlation between SIPS level and immune 
suppression.

We found that the positive feedback loop of PDGFB 
signaling and IL6 signaling between cancer cells and 
CAFs could substantially benefit the immune-suppres-
sive stroma. Inhibition of PDGFRB signaling could result 
in the down-regulation of IL6 and TGFB1/2 in CAFs and 
suppressed expression of immune checkpoints in tumor 
cells, leading to immune cytotoxicity. PDGFRB inhibitor 
Sunitinib can block CAFs activation and angiogenesis, 
and PARP inhibitor can promote stroma-related signa-
tures, including PDGF receptor signaling. Theoretically, 
PGFRBi–PARPi combination could reverse the immune-
suppressive stroma and further enhance tumor immu-
nogenicity. The potential values of the combination were 
verified in vivo. SIGPS was further developed to identify 
immune subtypes based on the average expression of 
the 23 common genes to endow SIPS with better clinical 
practicability. Like SIPS, SIGPS was significantly positive-
correlated with the stroma components. According to 
the decision model of SIGPS and HRD, high SIGPS cor-
responded to the substantially shortened overall survival 
of HRD patients. Several drug types that suppress the 
SIGPS-like signatures in CAFs were further identified, 
including RAF, EGFR, Aurora, HDAC, and CDK inhibi-
tors, which could combine with immunotherapy.

Numerous studies have reported multiple immunologi-
cal prognostic biomarkers in ovarian cancer [13]. Such 
biomarkers focused on tumor immunogenicity, such as 
the expression of cytokines and genomic instability in 
cancer cells. Other biomarkers directly estimated the 

proportions of immune cells in TME, including T cell 
activation and macrophage polarization. Additionally, 
most reported biomarkers were developed and tested 
with small sample size, and the immunotherapeutic pre-
diction of many biomarkers was tested without immu-
notherapy cohorts. Furthermore, there needs to be more 
in  vitro mechanical experiments and in  vivo immuno-
competent models to validate such biomarkers. In our 
study, the SIPS/SIGPS signature identified the key prog-
nostic role of the immunosuppressive stroma compo-
nents in ovarian cancer. The sample size was much larger 
than most studies before, which made it more robust. 
Although there were no available transcriptomic data of 
immunotherapy cohorts in ovarian cancer, the immuno-
therapeutic prediction of SIPS was validated by immuno-
therapy cohorts of several other epithelial cancers, such 
as melanoma and breast cancer. Indeed, the SIPS/SIGPS 
signature was further validated by various experiments, 
which indicated targeting the SIPS/SIGPS could substan-
tially enhance immunotherapeutic efficacy in ovarian 
cancer.

The current study included several limitations as well. 
Firstly, the extraordinary intratumor or interpatient het-
erogeneity of ovarian cancer was not considered. Sec-
ondly, a large part of the collected cohorts in our study 
needed complete clinicopathological information, which 
made it impossible to identify whether the SIPS/SIGPS 
was an independent prognostic factor when the clin-
icopathological information was thoroughly adjusted. 
Thirdly, the c-indices and AUCs of SIPS or SIGPS were 
less than 0.7 in ovarian cohorts, but the AUCs of SIPS 
were higher in the immunotherapy cohorts. Despite the 
drawbacks, according to the extensive collection of ovar-
ian cancer and immunotherapy cohorts, SIPS, as a pre-
dictive marker based on tumor microenvironment, is 
outstanding for its precision and efficiency. In conclu-
sion, the SIPS model proved reliable for ovarian cancer 
survival prediction and therapy guidance.

Conclusions
In summary, our findings clarified the SIPS/SIGPS as the 
critical negative indicator for the prognosis in ovarian 
cancer patients, which revealed the vital immunosup-
pressive role of microenvironmental tumor stroma. The 
combination of PARP inhibitors and agents targeting the 
SIPS/SIGPS-like signature in the stroma could substan-
tially inhibit tumor growth, providing a promising immu-
notherapeutic strategy for treating HRD ovarian cancer.
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SIGPS  Stroma‑immune gene prognostic signature



Page 15 of 16Yang et al. Journal of Translational Medicine          (2023) 21:586  

CAF  Cancer associated fibroblast
HRD  Homologous recombination deficiency
TIDE  Tumor Immune Dysfunction and Exclusion
CAMP  Connectivity Map
CR  Clinical remission
PR  Pathological remission
SD  Stable disease
PD  Progressive disease

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967‑ 023‑ 04422‑x.

Additional file 1: Figure S1. Immune related signatures for the prog‑
nostic prediction of ovarian cancer. Figure S2. The immune therapeutic 
benefit of the SIPS index. Figure S3. The tumor microenvironmental 
landscape between the high and low SIPS patients. Figure S4. The tumor 
microenvironmental landscape between the high and low SIPS patients. 
Figure S5. Targeting stroma promoted anti‑tumor immunity. Figure 
S6. Construction of the convenient SIPS prognostic model in ovarian 
cancer. Figure S7. The summarized presentation of the stroma‑immune 
prognostic signature.

Additional file 2: Table S1. Dataset information.

Additional file 3: Table S2. 470 immune related signatures.

Additional file 4: Table S3. The Unicox results in the affy cohort.

Additional file 5: Table S4. Hub functional analysis.

Additional file 6: Table S5. cmap drug.

Additional file 7: Table S6. qPCR primers.

Additional file 8: Table S7. Cytokines inhibitors.

Acknowledgements
Not applicable.

Author contributions
DY: Data curation, formal analysis, investigation, software, methodology, 
writing‑original draft, writing‑review and editing. MHD: formal analysis, valida‑
tion, methodology, writing‑review and editing. QEY: resources, validation, 
writing‑review and editing. ZLL: data curation, investigation, writing‑original 
draft. CHL, LYC: data curation, investigation. LCL: writing‑original draft. YX, 
XYZ: investigation, methodology. HLZ: visualization, investigation. GKF: 
methodology. GCL: methodology and funding acquisition. DR: formal analysis, 
supervision, writing‑review and editing. JDJ: resources, supervision, funding 
acquisition, writing‑review and editing. XFZ: conceptualization, resources, 
supervision, funding acquisition, writing‑review and editing. All authors read 
and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(81972442, 82102783, 82203128), the Natural Science Foundation of Guang‑
dong Province (2019A1515011194).

Availability of data and materials
All the datasets could be downloaded directly from the indicated websites. 
Datasets and custom scripts are available upon request.

Declarations

Ethics approval and consent to participate
All animal experiments were conducted following the institutional guidelines 
and approved by our cancer center’s Animal Care and Use Committee.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 State Key Laboratory of Oncology in South China, Collaborative Innovation 
Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal 
Carcinoma Diagnosis and Therapy, Sun Yat‑Sen University Cancer Center, 651 
Dongfeng Road East, Guangzhou 510060, China. 2 Department of Gyneco‑
logical Oncology, Sun Yat‑Sen University Cancer Center, Guangzhou, China. 
3 Department of Medical Imaging, Sun Yat‑Sen University Cancer Center, 
Guangzhou, China. 4 Department of Intensive Care Unit, Sun Yat‑Sen University 
Cancer Center, Guangzhou, China. 

Received: 29 March 2023   Accepted: 6 August 2023

References
 1. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. 

Ovarian cancer statistics, 2018. Ca‑Cancer J Clin. 2018;68:284–96.
 2. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16:110–20.
 3. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherni‑

ack AD, et al. Genomic and molecular landscape of DNA damage repair 
deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–54.

 4. Network CGAR. Integrated genomic analyses of ovarian carcinoma. 
Nature. 2011;474:609–15.

 5. Kandalaft LE, Dangaj LD, Coukos G. Immunobiology of high‑grade 
serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer. 
2022;22:640–56.

 6. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety 
and activity of anti‑PD‑L1 antibody in patients with advanced cancer. 
New Engl J Med. 2012;366:2455–65.

 7. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, 
et al. Safety and antitumor activity of anti‑PD‑1 antibody, nivolumab, 
in patients with platinum‑resistant ovarian cancer. J Clin Oncol. 
2015;33:4015–22.

 8. Liu JF, Gordon M, Veneris J, Braiteh F, Balmanoukian A, Eder JP, et al. Safety, 
clinical activity and biomarker assessments of atezolizumab from a Phase 
I study in advanced/recurrent ovarian and uterine cancers. Gynecol 
Oncol. 2019;154:314–22.

 9. Pujade‑Lauraine E, Fujiwara K, Ledermann JA, Oza AM, Kristeleit R, Ray‑
Coquard IL, et al. Avelumab alone or in combination with chemotherapy 
versus chemotherapy alone in platinum‑resistant or platinum‑refractory 
ovarian cancer (JAVELIN Ovarian 200): an open‑label, three‑arm, ran‑
domised, phase 3 study. Lancet Oncol. 2021;22:1034–46.

 10. Konstantinopoulos PA, Waggoner S, Vidal GA, Mita M, Moroney JW, Hol‑
loway R, et al. Single‑arm phases 1 and 2 trial of niraparib in combination 
with pembrolizumab in patients with recurrent platinum‑resistant ovar‑
ian carcinoma. JAMA Oncol. 2019;5:1141–9.

 11. Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportu‑
nity towards effective cancer therapy. J Biomed Sci. 2022;29:83.

 12. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. 
Conserved pan‑cancer microenvironment subtypes predict response to 
immunotherapy. Cancer Cell. 2021;39:845–65.

 13. James NE, Woodman M, Ribeiro JR. Prognostic immunologic signatures in 
epithelial ovarian cancer. Oncogene. 2022;41:1389–96.

 14. Ding Q, Dong S, Wang R, Zhang K, Wang H, Zhou X, et al. A nine‑gene 
signature related to tumor microenvironment predicts overall survival 
with ovarian cancer. Aging (Albany NY). 2020;12:4879–95.

 15. Shen S, Wang G, Zhang R, Zhao Y, Yu H, Wei Y, et al. Development and 
validation of an immune gene‑set based prognostic signature in ovarian 
cancer. EBioMedicine. 2019;40:318–26.

 16. Wang S, Xiong Y, Zhang Q, Su D, Yu C, Cao Y, et al. Clinical significance 
and immunogenomic landscape analyses of the immune cell signature 
based prognostic model for patients with breast cancer. Brief Bioinform. 
2021;22:bbaa311.

 17. Wolf DM, Lenburg ME, Yau C, Boudreau A, Van’t Veer LJ. Gene co‑expres‑
sion modules as clinically relevant hallmarks of breast cancer diversity. 
PLoS ONE. 2014;9:e88309.

https://doi.org/10.1186/s12967-023-04422-x
https://doi.org/10.1186/s12967-023-04422-x


Page 16 of 16Yang et al. Journal of Translational Medicine          (2023) 21:586 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 18. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA‑seq data. BMC Bioinform. 2013;14:7.

 19. Herrera M, Herrera A, Larriba MJ, Ferrer‑Mayorga G, Herreros AGD, Bonilla 
F, et al. Colon cancer‑associated fibroblast establishment and culture 
growth. Bio‑Protoc. 2016;6:e1773.

 20. Desbois M, Wang Y. Cancer‑associated fibroblasts: key players in shaping 
the tumor immune microenvironment. Immunol Rev. 2021;302:241–58.

 21. Bu MT, Chandrasekhar P, Ding L, Hugo W. The roles of TGF‑beta and VEGF 
pathways in the suppression of antitumor immunity in melanoma and 
other solid tumors. Pharmacol Ther. 2022;240:108211.

 22. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunc‑
tion and exclusion predict cancer immunotherapy response. Nat Med. 
2018;24:1550–8.

 23. Nguyen L, Martens JWM, Van Hoeck A, Cuppen E. Pan‑cancer landscape 
of homologous recombination deficiency. Nat Commun. 2020;11:5584.

 24. van Wilpe S, Tolmeijer SH, Koornstra R, de Vries I, Gerritsen WR, Ligtenberg 
M, et al. Homologous recombination repair deficiency and implications 
for tumor immunogenicity. Cancers. 2021;13:2249.

 25. De Nola R, Menga A, Castegna A, Loizzi V, Ranieri G, Cicinelli E, et al. The 
crowded crosstalk between cancer cells and stromal microenvironment 
in gynecological malignancies: biological pathways and therapeutic 
implication. Int J Mol Sci. 2019;20:2401.

 26. Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, et al. Inte‑
grated proteogenomic characterization of human high‑grade serous 
ovarian cancer. Cell. 2016;166:755–65.

 27. Sun L, Liang C, Shirazian S, Zhou Y, Miller T, Cui J, et al. Discovery of 
5‑[5‑fluoro‑2‑oxo‑1,2‑dihydroindol‑(3Z)‑ylidenemethyl]‑2,4‑dimethyl‑
1H‑pyrrole‑3‑carboxylic acid (2‑diethylaminoethyl) amide, a novel tyros‑
ine kinase inhibitor targeting vascular endothelial and platelet‑derived 
growth factor receptor tyrosine kinase. J Med Chem. 2003;46:1116–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Suppressive stroma-immune prognostic signature impedes immunotherapy in ovarian cancer and can be reversed by PDGFRB inhibitors
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Materials and methods
	Materials
	Data collection and processing
	Single sample Gene Set Enrichment Analysis (ssGSEA)
	Construction of the stroma-immune prognostic signature
	The nomogram construction and ROC analysis
	Tumor microenvironment analysis
	Hub functional analysis
	scRNA-seq data process and analysis
	Genomic instability analysis
	Construction of 23-gene signature by machine-learning models
	Decision tree modeling
	Connectivity map analysis
	Cell culture
	RNA isolation and qRT-PCR
	OT-I in vitro killing assay
	Animal experiments
	Statistics

	Results
	Immune related signatures for the prognostic prediction of ovarian cancer
	The immune therapeutic benefit of the SIPS index
	The tumor microenvironmental landscape between the high and low SIPS patients
	Correlation between SIPS and genomic instability
	Targeting to stroma promoted anti-tumor immunity
	Construction of the convenient SIPS prognostic model in ovarian cancer

	Discussion
	Conclusions
	Anchor 35
	Acknowledgements
	References


