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Abstract 

To gain deeper insights into the microenvironment of breast cancer, we utilized GeoMx Digital Spatial Profiling (DSP) 
technology to analyze transcripts from 107 regions of interest in 65 untreated breast cancer tissue samples. Our 
study revealed spatial heterogeneity in the expression of marker genes in tumor cell enriched, immune cell enriched, 
and normal epithelial areas. We evaluated a total of 55 prognostic markers in tumor cell enriched regions and 15 
in immune cell enriched regions, identifying that tumor cell enriched regions had higher levels of follicular helper 
T cells, resting dendritic cells, and plasma cells than immune cell enriched regions, while the levels of resting CD4 
memory in T cells and regulatory (Treg) T cells were lower. Additionally, we analyzed the heterogeneity of HLA gene 
families, immunological checkpoints, and metabolic genes in these areas. Through univariate Cox analysis, we identi-
fied 5 prognosis-related metabolic genes. Furthermore, we conducted immunostaining experiments, including EMI-
LIN2, SURF4, and LYPLA1, to verify our findings. Our investigation into the spatial heterogeneity of the breast cancer 
tumor environment has led to the discovery of specific diagnostic and prognostic markers in breast cancer.

Keywords Breast cancer, Tumor microenvironment, Immune infiltration, Metabolic marker, Immunological 
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Introduction
Breast cancer is the most prevalent and lethal malig-
nant tumor in women, representing a significant global 
threat to their life and health. Traditional clinical and 

pathological staging of breast cancer, along with molec-
ular biological characteristics, offers clinical criteria 
for prognostic evaluation of breast cancer patients [1]. 
Nevertheless, the molecular subtypes based on immu-
nohistochemical analysis and intrinsic subtypes based 
on genomic analysis have certain limitations, and nei-
ther can completely explain the clinical heterogeneity of 
breast cancer prognosis and treatment. The intratumoral 
heterogeneity theory diverges from the classification 
theory of breast cancer [2]. Heterogeneity theory implies 
the existence of multiple subtypes (spatial heterogeneity) 
within the same tumor and the ability of tumors to trans-
form between different phenotypes at different stages 
(temporal heterogeneity). Such heterogeneities are driven 
by tumor cell state heterogeneity and clonal evolution, as 
well as by the tumor microenvironment and metabolic 
reprogramming.
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The tumor microenvironment (TME) is a complex net-
work system composed of various cells and cytokines 
that exhibit high heterogeneity. This heterogeneity 
contributes to different treatment responses and clini-
cal outcomes in cancer patients [3], posing a significant 
obstacle to the realization of precision medicine in breast 
cancer. Tumor-infiltrating immune cells are primary 
cells in TME that play a dual role in anti-tumor or pro-
tumor activities. Numerous studies have shown that the 
immune-suppressive TME significantly affects the clini-
cal efficacy of immunotherapy and other cancer treat-
ments  [4]. The intricate interplay between cancer cells 
and the tumor immune microenvironment (TIME) is a 
crucial feature of cancer. Tumors can exert immunosup-
pressive signals, evade immune recognition, or promote 
pro-tumor inflammation, thereby affecting the immune 
microenvironment and driving cancer progression [5]. 
Mechanisms of immune evasion include weakened 
immune surveillance, downregulation of co-stimulatory 
molecules, and/or overexpression of co-inhibitory mole-
cules, which reduce the activity of CD8 + T cells. Immune 
evasion is a critical condition for breast cancer progres-
sion and a key step in the transition from non-invasive 
to potentially lethal invasive diseases [6]. Further explo-
ration of intratumor heterogeneity can help elucidate the 
biological mechanisms underlying breast cancer behavior 
and contribute to the development of reliable prognostic 
and predictive molecular markers for breast cancer.

There is substantial evidence showing a notewor-
thy association between breast cancer progression and 
prognosis with metabolic alterations [7]. One example is 
that tumor cells require higher glucose uptake efficiency 
to generate energy and meet the demands of rapid pro-
liferation [7]. Additionally, the presence of ample adi-
pose tissue in breast tissue contributes to abnormalities 
in lipid metabolism, which increases the risk of breast 
cancer recurrence and metastasis [8, 9]. Thus, exploring 
metabolism-related genes can offer novel insights and 
approaches for the clinical diagnosis and treatment of 
breast cancer.

The heterogeneity of tumors plays a significant role in 
disease progression. Identification of the molecular driv-
ers of heterogeneity, particularly in the TME will guide 
future diagnostic and therapeutic strategies. In this study, 
we employed GeoMx Digital Spatial Profiling (DSP) tech-
nology to conduct spatial transcriptomic sequencing on 
different regions of clinical breast cancer tissue. Our goal 
was to investigate the spatial expression patterns of genes 
and explore the interactions between tumor cells and 
immune cells in the TME. The objective was to reveal 
the spatial heterogeneity of gene expression patterns and 
their clinical significance in the TME, and to provide new 

strategies for prognostic evaluation and immune therapy 
of breast cancer.

Methods
Patient sample collection
Paraffin-embedded tumor tissue samples were obtained 
from 125 breast cancer patients who underwent initial 
surgical operation without prior treatment at the Hou-
jie Hospital of Dongguan,  Affiliated Houjie Hospital of 
Guangdong Medical University. The Ethics and Scientific 
Committee of the Houjie Hospital of Dongguan,  Affili-
ated Houjie Hospital of Guangdong Medical Univer-
sity approved this study (2021002). A tissue microarray 
(TMA) was constructed using a TMArrayer (Pathol-
ogy Devices) to obtain 1.5  mm2 tissue cores from 125 
patients. We acknowledged that the GeoMx Digital Spa-
tial Profiler has spatial limitations in selecting regions of 
interest (ROI) within a certain range and may not cover 
the entire tissue chip. Additionally, we experienced some 
technical challenges during the experimental process, 
resulting in the loss of a few cores. As a result, we were 
able to obtain 65 relatively intact cores for further anal-
ysis. Subsequently, 65 cores comprising 107 regions of 
interest (65 regions enriched with tumor cells, 36 regions 
enriched with immune cells, and 6 regions enriched 
with normal epithelial cells) were subjected to DSP RNA 
assays.

For the immunohistochemistry analysis, 125 instances 
of breast cancer tissue were included in the study. How-
ever, 26 cores were excluded from EMILIN2 analysis, 23 
cores were excluded from LYPLA1 analysis, and 28 cores 
were excluded from SURF4 analysis due to loss of tissue 
integrity during staining.

Digital spatial profiling and analysis
The NanoString GeoMx DSP RNA assays were conducted 
at CapitalBio Technology (Beijing, China) according to 
the recommended procedure as previously described 
[10]. To distinguish between different morphologies, 
we used the GeoMx Solid Tumor TME Morphology Kit 
(Nanostring, Cat#GMX-RNA-MORPH-HST-12) to stain 
the tissue. PanCK was used to positively stain epithelial 
cells, CD45 for immune cells, and SYTO13 for nuclear 
staining. The pathologist could distinguish healthy epi-
thelial cells from malignant ones based on histological 
morphology. Regions of interest (ROIs) were selected and 
assessed by pathologist, and then illuminated using UV 
light. The indexing oligonucleotides released from each 
ROI were collected and deposited into designated wells 
on a microtiter plate. The DSP assay sequencing data 
were processed using the GeoMx NGS Pipeline (DND). 
After sequencing, the reads were trimmed, merged, and 
aligned to a list of indexing oligos to identify the source 
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probe. The unique molecular identifier (UMI) region of 
each read was used to remove PCR duplicates and dupli-
cate reads, thus converting reads into digital counts. 
The limit of quantitation (LOQ) was estimated as the 
geometric mean of the negative control probes plus two 
geometric standard deviations of the negative control 
probes. Targets that consistently fell below the LOQ were 
removed, and the datasets were normalized using upper 
quartile (Q3) normalization. We conducted principal 
component analysis using the prcomp function from the 
gene expression matrix and plotted it with the scatter-
plot3d package.

Differential expression and enrichment analysis
The Mann-Whitney U test was employed to compare two 
groups. Genes were considered significant if they had a 
fold change of at least 1.5 and a p-value less than 0.05. 
To conduct gene ontology (GO) enrichment and KEGG 
enrichment analysis of differentially expressed genes 
(DEGs), EnrichProfiler R-packages were used, with Ben-
jamini-Hochberg multiple testing correction.

Weighted correlation network analysis (WGCNA) 
and protein‑protein interaction (PPI) networks 
of differentially expressed genes
The WGCNA and limma software were employed to con-
duct a weighted correlation network analysis (WGCNA) 
on differentially expressed genes (DEGs) from 65 PanCK-
expressing and 36 CD45-expressing areas. A Pearson 
correlation coefficient matrix was constructed from the 
gene expression matrix, and an adjacency matrix was 
generated using the optimal power value of the Pear-
son correlation coefficient matrix. To perform hierar-
chical clustering by module, a topology overlap matrix 
(TOM) was constructed, and the clustered modules were 
automatically separated and merged using the cutree 
Dynamic function. Both turquoise and blue module 
genes were subjected to functional enrichment analysis, 
including gene ontology (GO) and KEGG, using R pack-
ages such as clusterProfiler, enrichplot, org.Hs.eg.db, 
and ggplot2. Genes from the turquoise module and the 
blue module were separately uploaded to the STRING 
database (http:// www. string- db. org/), with network type 
(complete STRING network), meaning of network edges 
(confidence), and minimum interaction score parameters 
being set. The protein interaction data was input into the 
Cytoscape software using the STRING database, and the 
core genes in the protein-protein interaction (PPI) net-
work were selected using the cytoHubba plugin.

Prognostic gene screening
Utilizing a univariate Cox analysis, 55 genes linked to 
prognosis were sought in the turquoise module extracted 

from PanCK-expressing regions, while 15 genes associ-
ated with prognosis were investigated in the blue module 
derived from CD45-expressing regions. The surv cut-
point and surv categorize algorithms were employed to 
determine the optimal cutoff value for each gene, which 
was then utilized to categorize gene expression. A log-
rank test was conducted to analyze survival rates after 
categorization. The entire procedure was carried out 
using R packages survival and survminer.

Immune infiltration analysis
Using the CIBERSORT algorithm, the proportion of 
22 immune cell types was quantified in each of the 107 
ROIs (65 PanCK-expressing, 36 CD45-expressing, and 6 
NC). Differences in immune cell levels among the three 
regions were assessed using the Kruskal-Wallis test and 
the reshape2 and ggpubr packages. A gene set related to 
immunological function was identified based on previ-
ous studies [11]. Single-sample Gene Set Enrichment 
Analysis (GSEA) was performed using the GSVA, limma, 
and GSEABase packages to determine the immune func-
tion scores for each ROI based on the immune func-
tion-related gene set. The Wilcoxon test was used with 
the limma, ggplot2, and ggpubr tools to compare the 
scores between the three regions. Correlation analysis 
of immune cell contents between PanCK-expressing and 
CD45-expressing areas was conducted independently 
using the corrplot program and the Spearman technique. 
The surv cutpoint and surv categorize functions were 
used to determine the cutoff values for the 22 immune 
cell contents in PanCK-expressing regions, which were 
then used to classify the immune cell contents. The 
limma, survival, and survminer packages were employed 
along with the log-rank test (P < 0.05) to conduct a sur-
vival analysis of immune cells in PanCK-expressing 
regions. Similarly, the immune function scores were cat-
egorized based on cutoff values, and the survival analyses 
of immune cells in both PanCK- and CD45-expressing 
regions were carried out using the limma, survival, and 
survminer packages with the log-rank test.

HLA expression and immune checkpoint analysis
The levels of HLA gene expression in the three areas 
were assessed using the Kruskal-Wallis test with the aid 
of the limma, reshape2, ggplot2, and ggpubr packages. 
The divergent expression of immune checkpoint-related 
genes across the three areas was investigated through 
the Wilcoxon test using the limma, ggplot2, and ggpubr 
packages. A correlation analysis was conducted between 
immune checkpoint gene expression and immune 
cell levels in PanCK and CD45-expressing areas using 
the Spearman correlation coefficient and the limma, 

http://www.string-db.org/
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reshape2, tidyverse, and ggplot2 packages. The findings 
were presented in a visual format.

Analysis of metabolism‑related genes
Based on previous literature, we identified 944 genes 
involved in metabolic processes [12]. The Gene Set 
Enrichment Analysis (GSEA) website (http:// www. 
gsea- msigdb. org/ gsea/ downl oads. jsp) provided the “c2.
cp.kegg.v7.5.1.symbols.gmt” file, which was used to per-
form GSVA on the ROIs using the GSEABase, GSVA, 
limma, and pheatmap packages. Only 20 pathways were 
selected, and the parameters were set to P < 0.05. A 
Venn diagram was created by intersecting the 944 meta-
bolic genes with 3515 differential genes (PanCK- versus 
CD45-expressing areas) obtained from the Bioinformat-
ics website (http:// bioin forma tics. psb. ugent. be/ webto 
ols/ Venn/), resulting in 182 genes. Univariate Cox analy-
sis was conducted on the 182 metabolic genes in the 65 
PanCK-expressing ROIs to identify genes associated with 
prognosis, followed by survival analysis and ROC curve 
plotting using the Survivor, Survminer, and timeROC 
packages in R.

Immunohistochemistry
The TMA sections were incubated overnight with anti-
human EMILIN2 (Proteintech, 24779-1-AP), SURF4 
(Proteintech, 11599-1-AP), or LYPLA1 (Proteintech, 
16055-1-AP) antibodies, followed by incubation with a 
secondary antibody and then subjected to the liquid DAB 
substrate-chromogen system. The experiments were con-
ducted in accordance with the clinical pathological pro-
tocols of the Affiliated Houjie Hospital of Guangdong 
Medical University.

Results
Differential expression and enrichment analysis
Fluorescent anti-PanCK and anti-CD45 antibodies were 
employed to identify the 107 regions of interest (ROIs) 
in 65 patients with breast cancer. The pathologic mor-
phology of PanCK-expressing ROIs allowed us to differ-
entiate between normal epithelial cells and tumor cells. 
Consequently, 65 ROIs represented tumor cells (PanCK-
expressing), 36 ROIs represented immune cells (CD45-
expressing), and 6 ROIs represented normal epithelial 
cells (NC), as shown in Fig. 1A. The number of regions 
exhibiting differential gene expression was 3515 (PanCK- 
vs. CD45-expressing regions), as demonstrated in Fig. 1B. 
GO and KEGG enrichment analyses were used to inves-
tigate these differentially expressed genes (DEGs). The 
3515 DEGs were mostly associated with cell-substrate 
junction, external side of the plasma membrane, and 
focal adhesion. They exhibited various functions, includ-
ing cadherin-binding and immune receptor activity, and 

were involved in biological processes such as activation 
of immune response and T cell activation. Furthermore, 
they regulated pathways like oxidative phosphorylation, 
B cell receptor signaling pathway, and chemokine signal-
ing pathway (Fig. 1D, E, and F).

Analysis of regional core prognostic genes using WGCNA 
and PPI networks
We conducted WGCNA analysis on 3515 DEGs iden-
tified between 65 PanCK-expressing and 36 CD45-
expressing regions, resulting in the generation of 8 
modules following hierarchical clustering. The turquoise 
module genes exhibited a strong positive correlation with 
PanCK expression (r = 0.4 and P = 4e-05), while the blue 
module was significantly positively associated with CD45 
expression (r = 0.34 and P = 7e − 04) (Fig.  2A). Based on 
univariate Cox analysis, we identified 55 genes in the tur-
quoise module linked to PanCK-expressing regions and 
15 genes in the blue module linked to CD45-expressing 
regions that were significantly associated with patient 
prognosis (P < 0.05) (Fig. 2B, C). Among the genes behav-
ing as protective factors in PanCK-expressing areas were 
ALCAM, ARL6IP1, CCNG2, CCT2, CFB, COBL, COX7C, 
CTNND1, DCTN1, DEPTOR, GUCD1, MRPL19, 
MRPL49, NDUFB1, NFIC, NUMA1, OAT, PKP3, 
PPT1, PRKACA, RPS13, SIPA1L3, SREBF1, TNFRSF25, 
TNRC18, UGDH, and YIPF3, while APOBR, C12orf40, 
CD226, CD248, CD93, CDH5, COL6A1, COL6A2, EMI-
LIN2, FCHO1, FOXP3, HIC1, ISM2, ITPRIPL1, LAMA4, 
MFAP4, MMP1, MMP2, MSR1, PDE4D, PIK3CG, 
PRKCQ, PRRX1, PTPN7, RNASE6, SLC8A1, TGFBI, and 
TPSAB1 acted as risk factors. Higher expression of the 
protective factors was associated with better prognosis 
for breast cancer patients, whereas higher expression of 
risk factors was associated with poorer prognosis (Fig. 3A 
and Additional file 1: Fig. S1). For the 15 genes in the blue 
module associated with CD45-expressing regions, higher 
expression of ATP5PO, AZIN1, CALU, CRYBA4, CYC1, 
DST, FAT1, KRTAP10-6, MYL12B, MYOF, OR9Q2, PKM, 
SURF4, TACC2, and UBR5 was linked to a worse progno-
sis, whereas higher expression of OR9Q2 was linked to a 
better prognosis in breast cancer patients (Fig. 3B).

Immune infiltration of tumor tissue
The relative levels of 22 immune cells in 107 ROIs are 
shown in Fig. 4A. Differences in B memory cells, plasma 
cells, T cells CD4 memory resting, follicular helper T 
cells, Tregs, and dendritic cells resting were observed 
among the three groups. As shown in Fig.  4B, the cor-
relation of each type of immune cell differed between 
regions. In regions where PanCK was expressed, follicu-
lar helper T cells had negative correlations with resting 
CD4 naïve T cells and CD4 memory activated T cells, but 

http://www.gsea-msigdb.org/gsea/downloads.jsp
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positive correlations with activated NK cells, monocytes, 
and resting mast cells. Conversely, in regions where 
CD45 was expressed, follicular helper T cells had nega-
tive correlations with resting CD4 naïve T cells and acti-
vated mast cells, but positive correlations with activated 
NK cells. In PanCK-expressing areas, Tregs were posi-
tively associated with CD48 and CD80, T cells CD8 with 
CD28, and B cells memory with KIR3DL1. In contrast, 
negative associations were found between plasma cells 
and LAG3, NK cells resting and TNFRSF9, mast cells 
resting and CD244, and eosinophils and CD40 (Fig. 4C, 
top). In CD45-expressing regions, positive connections 
were observed between CD8 + T cells and LAG3, NK 
cells resting and CD160 and TNFSF15, macrophages M1 
and CD40, and macrophages M0 and CD274. Plasma 
cells and TNFRSF25, neutrophils and CD48 and CD80, 
resting dendritic cells and ICOSLG, and B memory cells 

and CD276 all showed negative correlations (Fig.  4C, 
bottom).

The expression of immune cells and their functions 
varied among different regions (Fig.  5A and Additional 
file  1: Fig.  2). CD45-expressing areas showed the high-
est expression of molecules associated with inflamma-
tion promotion, CCR, aDCs, APC co-stimulating, B cells, 
Check-point, Cytolytic activity, HLA, Macrophages, 
MHC class I, Neutrophils, pDCs, T helper cells, Tfh, TIL, 
and Treg (Fig.  5A). High levels of resting Mast cells or 
M2 Macrophages were associated with a poorer progno-
sis, while an increased presence of M2 Macrophages, T 
cells CD4 memory resting or Plasma cells were related to 
a better prognosis (Fig. 5B). The immune function’s sur-
vival analysis is depicted in Fig. 5 C.

Fig. 1 Differential expression and enrichment analysis. A regions of interest (ROIs) were selected, including tumor cell (PanCK-expressing), immune 
cell (CD45-expressing), and normal epithelial cells regions (normal tissue morphology). B differential analysis was performed between the tumor 
cell-enriched regions and immune cell-enriched regions. The upregulated genes are shown in red, while the downregulated genes are shown 
in green. C GO enrichment analysis of differentially expressed genes. (D–F) KEGG enrichment analysis of differentially expressed genes. PanCK 
indicates tumor cell-enriched regions, while CD45 indicates immune cell-enriched regions
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HLA and immune checkpoints
There were variations in the expression of immune 
checkpoint-related genes across different regions. 
CD45-expressing areas exhibited higher levels of 
expression of TNFRSF8, CD27, CD28, CD40, CD44, 
CD48, CD86, HAVCR2, ICOS, IDO1, IDO2, KIR3DL1, 
LAG3, LAIR1, TIGIT, TNFRSF25, BTLA, BTNL2, 
CD160, CD200, CD200R1, CD244, CD274, CD40LG, 
CD70, CD80, CTLA4, ICOSLG, PDCD1, PDCD1LG2, 
TMIGD2, TNFRSF14, TNFRSF4, TNFRSF9, TNFSF14, 
TNFSF15, TNFSF18, TNFSF4, and TNFSF9, compared 
to PanCK-expressing areas (Fig.  6A and Additional 
file 1: Fig. S2). Additionally, HLA gene expression var-
ied amongst the three regions, with CD45-expressing 
areas exhibiting the highest levels of HLA gene expres-
sion. Specifically, HLA-A, HLA-B, HLA-C, HLA-DMA, 
HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQA1, 
HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, 

HLA-E, and HLA-F expression were higher in CD45-
expressing areas than in PanCK-expressing regions 
(Fig. 6B).

Metabolism‑related genes
The expression of metabolic genes varied between 
PanCK-expressing and CD45-expressing regions. In 
PanCK-expressing regions, metabolic genes were primar-
ily involved in citrate cycle TCA cycle, glycosphingolipid 
biosynthesis LATCO and NEOLATCO series, N glycan 
biosynthesis, glycosaminoglycan biosynthesis keratan 
sulfate, RNA polymerase, and pyrimidine metabolism. In 
contrast, in CD45-expressing regions, metabolic genes 
were predominantly involved in the calcium signaling 
pathway, VEGF signaling pathway, FC epsilon RI signal-
ing pathway, vascular smooth muscle contraction, GNRH 
signaling pathway, retinol metabolism, arachidonic acid 
metabolism, and linoleic acid metabolism (Fig. 7A). The 
intersection of 944 metabolic genes and 3515 differential 

Fig. 2 Screening of prognostic genes. A Weighted Gene Co-expression Network Analysis (WGCNA). B Genes in the turquoise module were 
subjected to univariate Cox analysis in tumor cell-enriched (PanCK-expressing) regions. C Genes in the blue module were subjected to univariate 
Cox analysis in immune cell-enriched (CD45-expressing) regions. PanCK: regions enriched with tumor cells. CD45: regions enriched with immune 
cells
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genes from PanCK-expressing and CD45-expressing 
areas resulted in 182 genes (Fig.  7B). Using univari-
ate Cox regression analysis, five metabolic genes were 
found to be associated with breast cancer prognosis in 
PanCK-expressing areas. The expression of DGAT1, 
DUT, LYPLA1, and POLR2K was linked to an increased 
risk of breast cancer, whereas SMPD4 was associated 
with a protective effect (Fig.  7C). Higher expression of 
DGAT1, DUT, LYPLA1, and POLR2K in PanCK-express-
ing regions was linked to a poorer prognosis, whereas 

a greater expression of SMPD4 was associated with 
better survival (Fig.  7D). Figure  7E showed the ROC 
curves for patients’ survival at 2, 4, and 5 years, indicat-
ing that LYPLA1 expression accurately predicted 2-, 4-, 
and 5-year survival rates in patients with breast cancer 
(AUC = 0.753, 0.850, and 0.869).

Estrogens signaling pathways play a critical role in the 
development, progression, and survival of breast can-
cer. In our study, we categorized the estrogen receptor 
(ER) expression levels in breast cancer patient tissues 

Fig. 3 Survival analysis of prognostic genes. A Survival analysis of genes in the turquoise module in tumor cell enriched regions (PanCK-expressing). 
B Survival analysis of genes in the blue module in immune cell enriched regions (CD45-expressing). The p values were calculated using the log-rank 
test
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and identified differentially expressed genes between the 
negative and positive groups. In ER-positive tissues, the 
differentially expressed genes were primarily associated 
with porphyrin and chlorophyll metabolism, fructose and 
mannose metabolism, lysosome, and glycosphingolipid 
biosynthesis globo series. Conversely, in ER-negative 
tissues, the genes were predominantly associated with 
primary immunodeficiency, alzheimer’s disease, and 
pathways in cancer (Additional file 1: Fig. S3A). Through 
univariate Cox regression analysis, we identified three 
genes that were significantly associated with breast can-
cer prognosis in PanCK-expressing areas. The expression 
of AMOTL1 and IFRD1 was linked to an increased risk 
of breast cancer, whereas ARRB1 was associated with 
a protective effect (Additional file  1: Fig. S3B). Higher 
expression of AMOTL1 and IFRD1 in PanCK-expressing 
regions correlated with poorer prognosis, while greater 
expression of ARRB1 was associated with better survival 

(Additional file 1: Fig. S3C). The ROC curves for patients’ 
survival at 2, 4, and 5 years demonstrated that the expres-
sion of these three genes accurately predicted the 2-, 4-, 
and 5-year survival rates in patients with breast cancer 
(Additional file 1: Fig. S3D).

Validation of protein levels of biomarkers
The characteristics of breast cancer patients from the val-
idation cohort used for immunostaining experiments are 
described in Additional file  1: Table  S1. We conducted 
immunostaining experiments, including EMILIN2, 
which showed the most significant prognostic effect in 
the Pan-CK enriched region, SURF4, which exhibited the 
most apparent prognostic effect in the CD45 enriched 
region, and metabolic gene LYPLA1, to verify our find-
ings (Fig.  8A). Consistent with the conclusion based on 
transcript levels, breast cancer patients with high expres-
sion levels of the above-mentioned three proteins had a 

Fig. 4 Immune infiltration analysis. A Comparison of immune cell levels among the three regions. B Correlation analysis between immune cells 
in PanCK-expressing (tumor cell enriched) and CD45-expressing (immune cell enriched) regions. C Correlation analysis between immune cells 
and immune checkpoints in PanCK- and CD45-expressing regions. PanCK: regions enriched with tumor cells. CD45: regions enriched with immune 
cells. NC: regions enriched with normal epithelial cells
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Fig. 5 Analysis of immune functions and their effect on survival. A Differences in immune functions among three groups: tumor cell enriched 
(PanCK-expressing), immune cell enriched (CD45-expressing), and normal epithelial cells enriched regions. B The effect of immune cell levels 
on survival in breast cancer patients. C The effect of immune functions on survival in breast cancer patients. For the Kaplan Meier curves, the p 
values were calculated using the log-rank test
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poorer prognosis (Fig.  8B). In addition, we downloaded 
the bulk RNA sequencing data and clinical information 
of breast cancer from the TCGA database. Subsequently, 
we conducted analysis to validate the above three bio-
markers and obtained similar results (Fig. 8C).

Discussion
Tumor heterogeneity is a significant obstacle in cancer 
research, as it is a common feature of human tumors. 
This heterogeneity can be categorized into inter-tumoral 
heterogeneity and intra-tumoral heterogeneity. The latter 
can present as temporal heterogeneity, where the molec-
ular composition of cancer cells changes over time, or 
spatial heterogeneity, where cancer cells exhibit non-uni-
form distribution in different regions or compartments of 
the tumor. The identification of tumor heterogeneity has 
significant implications for tumor diagnosis, treatment, 
prognosis, and the analysis of molecular biomarkers [13]. 
However, recognizing tumor heterogeneity is challenging 

because once cancer cells are isolated in suspension, they 
lose their positional information. Therefore, the appli-
cation of spatial transcriptomics is necessary to simul-
taneously identify cell types within the tumor and their 
locations in the tissue.

The results of the study are highly relevant to breast 
cancer research as they provide important insights into 
the molecular and immune landscape of the tumor 
microenvironment. By analyzing differential gene 
expression between PanCK-expressing (tumor cells) 
and CD45-expressing (immune cells) regions, the study 
identified distinct sets of genes associated with breast 
cancer prognosis. These findings shed light on the role 
of specific genes and immune cell populations in tumor 
development and patient outcomes.Using DSP tech-
nology, we examined 15 prognosis markers in immune 
cell-enriched regions and 55 prognostic gene mark-
ers in tumor cell-enriched regions. The sets of genes 
identified through WGCNA analysis and univariate 

Fig. 6 Differential expression of immune checkpoints and HLA genes in three regions. A Expression of immune checkpoint-related genes in tumor 
cell enriched (PanCK-expressing), immune cell enriched (CD45-expressing), and normal epithelial cells enriched regions (NC). B Expression 
of HLA-related genes in the three regions
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Cox regression analysis are particularly noteworthy. 
The turquoise module genes were positively corre-
lated with PanCK expression. These genes, including 
ALCAM, ARL6IP1 and CCNG2 may play a protec-
tive role in breast cancer. On the other hand, the blue 

module genes showed positive correlation with CD45 
expression. Among them, genes like AZIN1, MYOF, 
and TACC2 were identified as potential risk factors. In 
regions with a high concentration of tumor cells, we 
also investigated genes associated with metabolism that 

Fig. 7 Analysis of metabolism-related genes. A GSVA enrichment analysis of PanCK-expressing and CD45-expressing regions. B There were 
944 metabolic genes, 3515 differentially expressed genes (PanCK-expressing regions vs. CD45-expressing regions), and 182 intersecting genes. 
C Univariate Cox analysis was performed on 134 intersecting genes in PanCK-expressing regions. D Survival analysis was conducted on prognostic 
metabolic genes in PanCK-expressing regions. E ROC curves were used to predict the survival rates of breast cancer patients. For the Kaplan Meier 
curves, the p values were calculated using the log-rank test
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could impact the prognosis of breast cancer patients. 
To validate our findings, we utilized immunohisto-
chemistry to confirm the prognostic effects of EMI-
LIN2 in the Pan-CK enriched region, SURF4 in the 
CD45 enriched region, and LYPLA1, a metabolic gene. 
EMILIN2 was identified as an independent prognostic 
biomarker that could be associated with the malignancy 
and development of gliomas, with high expression 
predicting a poor prognosis [14]. High expression of 
SURF4 was also observed in breast cancer tissue and 
cells, with SURF4 promoting the proliferation and 
migration of breast cancer cells and being associated 
with poor prognosis [15]. LYPLA1 was found to play 
a tumor-promoting role in non-small cell lung cancer 
(NSCLC) cells in vitro, with suppression of its expres-
sion leading to significant inhibition of proliferation, 
migration, and invasion of NSCLC cells. Additionally, 
LYPLA1 was found to be highly expressed in malignant 
cervical cancer tissues, where it was associated with the 

upregulation of EMT-inducing TIAM1 and GREM1 
and a decrease in mesenchymal markers [16, 17].

The analysis of various tumors through histopathol-
ogy has confirmed that the composition of infiltrating 
immune cells within the tumor is distinct from that in the 
surrounding non-tumor area. The interaction between 
tumor cells and adjacent stromal cells is an important 
driving force in promoting tumor progression [18]. The 
study explored the immune infiltration patterns in dif-
ferent regions of breast cancer tissues. The presence of 
certain immune cell types, such as M2 Macrophages, was 
associated with a worse prognosis, while other immune 
cells like T cells CD4 memory resting and Plasma cells 
were linked to better patient outcomes. These findings 
emphasize the crucial role of the immune microenviron-
ment in breast cancer progression and suggest potential 
targets for immunotherapy. The differential expression of 
HLA genes and immune checkpoint-related genes in dif-
ferent regions provides additional insights into immune 
response regulation in breast cancer. CD45-expressing 

Fig. 8 Verification of prognostic genes. A Differential protein expression of EMILIN2, SURF4, or LYPLA1 in breast cancer patients, as determined 
by immunohistochemistry. Representative images of low and high expression are shown. B Kaplan-Meier survival curves for breast cancer patients 
stratified by protein expression levels of EMILIN2, SURF4, or LYPLA1. Patients with higher protein levels have worse overall survival. C The bulk 
RNA sequencing data and clinical information of breast cancer were downloaded from the TCGA database. Subsequently, kaplan-Meier survival 
analysis were conducted for breast cancer patients. Patients with higher RNA levels have worse overall survival. The p values were calculated using 
the log-rank test
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areas exhibited higher expression levels of several 
immune checkpoint-related genes, indicating poten-
tial immunosuppressive mechanisms in these regions. 
Understanding the intricate interactions between 
immune cells and tumor cells can inform the develop-
ment of novel immunotherapies for breast cancer. By tar-
geting specific immune cell populations or modulating 
immune checkpoint pathways, researchers may be able to 
enhance the anti-tumor immune response and overcome 
immunosuppressive mechanisms. This has the potential 
to revolutionize breast cancer treatment, as immuno-
therapies have shown remarkable success in various can-
cer types.

The development and progression of tumors are 
closely linked to metabolism, and metabolic genes 
may play a significant role in the prognosis of cancer 
patients [19]. This study identified metabolic gene sets 
with distinct activity patterns in PanCK-expressing and 
CD45-expressing regions. The study’s findings related 
to metabolic gene activity also offer new perspectives 
on breast cancer biology. Dysregulated metabolism is a 
hallmark of cancer, and understanding the specific met-
abolic pathways involved in breast cancer progression 
could lead to the development of targeted therapies that 
disrupt tumor growth and survival [20]. Five genes were 
found to impact patient survival. DGAT1, a gene known 
to promote tumor progression in ovarian and prostate 
cancer [21, 22], was found to promote the proliferation 
and migration of breast cancer cells [23]. DUT, overex-
pressed in 42% of HCC tumors, was found to correlate 
with advanced stage HCC and promote cell cycle arrest 
and DNA damage. Transcriptome analysis revealed that 
NF-κB signaling is the downstream effector pathway of 
DUT, and overexpressing DUT in liver progenitor orga-
noids conferred drug resistance to TKI Sorafenib [24]. 
LYPLA1 was found to be associated with poor prognosis 
in lung adenocarcinoma [25], while POLR2K was identi-
fied as one of the top 10 cancer immunotherapy proteins 
related to breast cancer by machine-learning predictions 
[26]. SMPD4 was also found to be a lipid metabolism-
related gene associated with hepatocellular carcinoma 
prognosis [27]. Overall, this study sheds light on the rela-
tionship between metabolism and breast cancer, and pro-
vides a basis for further molecular biology experiments. 
However, additional analysis using larger samples from 
diverse populations is needed to confirm these findings.

In conclusion, this study enhances our understanding 
of breast cancer biology, focusing on gene expression, 
immune infiltration, and metabolic processes. The iden-
tified gene sets and immune-related factors have poten-
tial as prognostic biomarkers and therapeutic targets 
for breast cancer patients. These insights into immune 
modulation and metabolic dysregulation offer novel 

treatment opportunities that can complement traditional 
approaches. The findings underscore the importance 
of personalized treatment approaches that consider the 
unique molecular and immune characteristics of individ-
ual tumors. Overall, this research opens up new avenues 
for clinical interventions and may improve patient out-
comes in breast cancer management.
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