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Abstract 

Background Opting for or against the administration of adjuvant chemotherapy in therapeutic management 
of stage II colon cancer remains challenging. Several studies report few survival benefits for patients treated with adju‑
vant therapy and additionally revealing potential side effects of overtreatment, including unnecessary exposure 
to chemotherapy‑induced toxicities and reduced quality of life. Predictive biomarkers are urgently needed. We, 
therefore, hypothesise that the spatial tissue composition of relapsed and non‑relapsed colon cancer stage II patients 
reveals relevant biomarkers.

Methods The spatial tissue composition of stage II colon cancer patients was examined by a novel spatial tran‑
scriptomics technology with sub‑cellular resolution, namely in situ sequencing. A panel of 176 genes investigating 
specific cancer‑associated processes such as apoptosis, proliferation, angiogenesis, stemness, oxidative stress, hypoxia, 
invasion and components of the tumour microenvironment was designed to examine differentially expressed 
genes in tissue of relapsed versus non‑relapsed patients. Therefore, FFPE slides of 10 colon cancer stage II patients 
either classified as relapsed (5 patients) or non‑relapsed (5 patients) were in situ sequenced and computationally 
analysed.

Results We identified a tumour gene signature that enables the subclassification of tissue into neoplastic and non‑
neoplastic compartments based on spatial expression patterns obtained through in situ sequencing. We developed 
a computational tool called Genes‑To‑Count (GTC), which automates the quantification of in situ signals, accurately 
mapping their position onto the spatial tissue map and automatically identifies neoplastic and non‑neoplastic 
tissue compartments. The GTC tool was used to quantify gene expression of biological processes upregulated 
within the neoplastic tissue in comparison to non‑neoplastic tissue and within relapsed versus non‑relapsed stage II 
colon patients. Three differentially expressed genes (FGFR2, MMP11 and OTOP2) in the neoplastic tissue compartments 
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of relapsed patients in comparison to non‑relapsed patients were identified predicting recurrence in stage II colon 
cancer.

Conclusions In depth spatial in situ sequencing showed potential to provide a deeper understanding of the under‑
lying mechanisms involved in the recurrence of disease and revealed novel potential predictive biomarkers for dis‑
ease relapse in colon cancer stage II patients. Our open‑access GTC‑tool allowed us to accurately capture the tumour 
compartment and quantify spatial gene expression in colon cancer tissue.

Keywords In situ sequencing, Spatial transcriptomics, colon cancer, Predictive biomarker, Tumour compartment, 
Tumour gene signature

Introduction
Colorectal cancer is the third most commonly diagnosed 
cancer, and the second leading cause of cancer associated 
mortality worldwide [1]. In the EU alone, the incidence of 
colorectal cancer has been steadily increasing by a factor 
of 0.4% each year which is associated to life style effects 
[2]. The 5-year overall survival is strongly associated with 
stage at diagnosis, estimated at 93%, 88%, 81% and 32% 
for stages I, II, III and IV, respectively [3]. Therapeutic 
management has improved significantly over the last 
decade, including advances in screening, (neo) adjuvant 
treatment, targeted- and immune checkpoint therapies 
[4]. Surgery remains the primary treatment approach 
for nonmetastatic colon cancer, with histopathologi-
cal staging guiding the decision to administer adjuvant 
chemotherapy for a duration of up to 6 month. While the 
efficacy of adjuvant chemotherapy has been firmly estab-
lished for patients diagnoses with stage III colon cancer, 
its utility in the context of stage II disease remains a topic 
of ongoing debate and discussion [5]. The European soci-
ety for medical oncology (ESMO) released clinical prac-
tice guidelines for treating stage II colon cancer patients 
[6]. In general, adjuvant therapy options need to be dis-
cussed with the patient, addressing the expected benefit 
from chemotherapy versus the risk of complications. The 
risk of relapse after colon cancer resection can be esti-
mated by assessing the tumour, node, metastasis (TNM) 
stage, mismatch repair (MMR)/microsatellite instabil-
ity (MSI) status, and number of lymph nodes sampled 
[6]. In a low-risk scenario, the colon cancer is resected 
and the patient does not receive adjuvant chemotherapy. 
In patients with high-risk features who are “fit” accord-
ing to the Carlson Comorbidity Index shall be treated 
with adjuvant chemotherapy [6]. These high-risk fea-
tures include clinic-pathological parameters such as T4 
tumours, perineural or lymphovascular invasion, poorly 
or undifferentiated tumour grade, intestinal obstruction 
or tumour perforation [6, 7]. However, these high-risk 
features are unreliable in predicting beneficial effects 
of adjuvant treatment [7]. Vice versa, low-risk patients 
may develop tumour recurrence quite early after sur-
gery [7]. The overall survival benefit in stage II colorectal 

cancer (CRC) trials for patients treated with chemother-
apy indicates no or just a little improvement (below 5%) 
[8]. Additionally, chemotherapy treatment is associated 
with side effects such as pain, insomnia, vomiting, diar-
rhoea, increased amounts of white blood cells and poten-
tial toxicities, thus adjuvant therapy for all patients with 
diagnosed stage II colon cancer would be an overtreat-
ment with no or little benefit in outcome but a potential 
risk of reduced quality of life [9]. Therefore, more pre-
cise biomarkers indicative for early recurrence in stage II 
colon cancer are needed [10]. Various biomarker panels 
have been examined in  vivo for the purpose of recur-
rence prediction. Yamanaka et  al. conducted a study in 
which they utilized a 12-gene recurrence assay to identify 
patients at high risk of tumor recurrence. These individu-
als were recommended to receive additional chemo-
therapy treatment [11]. Similarly, Kopetz et al. developed 
an 18-gene expression-based classifier called ColoPrint. 
This classifier serves the purpose of identifying patients 
with a high risk of disease recurrence, thus enabling the 
selection of individuals who would benefit from adju-
vant chemotherapy [12]. Furthermore, other studies 
conducted on CRC tissue and colon cancer cell lines 
have provided additional evidence supporting the poten-
tial of small nucleolar RNAs as predictive biomarkers 
for high-risk recurrence and poor prognosis in patients 
with CRC stage II [13]. In a separate development, Pages 
et  al. developed a tool called the Immunoscore, which 
relies on immunohistochemistry staining of CD3+ and 
CD8+ cells. Through this innovative approach, the study 
encompassed 2681 patients who were classified into 
low-, intermediate-, and high-risk groups. Importantly, 
patients with a high Immunoscore demonstrated the 
lowest risk of disease recurrence [14].

Although aforementioned approaches are promising, 
no method was able to reach the clinical routine. Each 
approach is either based on small antibody combina-
tions (CD3+CD8 immunohistochemistry), bulk tissue 
analysis using reverse transcription-polymerase chain 
reaction (RT-PCR) or array based approaches [10, 15]. 
Bulk analyses, however, only inform on the average 
sub-clonal composition with strong bias towards the 
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largest clones present [16]. Similarly, the spatial histo-
logical architecture is lost in bulk RNA or DNA analysis 
due to tissue lysis [17]. As such, important biological 
processes, i.e.: proliferation or metabolic dysregula-
tions in cancer are only indirectly measurable without 
providing insights into their spatial interactions [18]. 
Understanding the spatial expression patterns of neo-
plastic tumour tissue and their surrounding microenvi-
ronment on a subcellular level, however, can improve 
the knowledge of disease recurrence [19].

Driven by the advent of single cell RNA sequenc-
ing (scRNAseq), our knowledge of the basic molecular 
mechanisms in colon cancer has increased substan-
tially within the last years [20]. Using scRNAseq the 
transcriptomic diversity of different cell types has been 
revealed in high detail whereby the major drawback 
persists to be the loss of spatial information due to the 
dissociation of tissue structure. To overcome this issue 
spatial transcriptomics approaches have been devel-
oped such as hybridisation-based in  situ sequencing 
(HybISS) and direct RNA hybridisation-based in  situ 
sequencing (dRNA-HybISS) allowing for highly mul-
tiplexed spatial mapping of transcripts within tissues 
[21].

Here, we hypothesise that the spatial histological 
expression patterns of relapsed and non-relapsed colon 
cancer stage II patients differ. Therefore, we aimed to 
investigate the spatial tissue composition in yet unprec-
edented resolution by dRNA-HybISS down to single-cells 
and -molecules beyond current spatial transcriptomics 
approaches in colon cancer stage II patients. First, we 
designed a panel of 176 genes to examine the expres-
sion of various important biological processes in colon 
cancer including angiogenesis, apoptosis, prolifera-
tion, stemness, hypoxia, oxidative stress, invasion, and 
energy metabolism as well as markers for components 
of the microenvironment including cancer associated 
fibroblasts. Based on the expression pattern of the tar-
geted ISS genes, in particular a tumour gene signature, 
tissue compartments can be automatically generated 
to subclassify the investigated tissue into neoplastic 
and non-neoplastic compartments. By using these gene 
expression-based tissue compartments we are able to 
quantify gene expression related to biological processes 
shown to be upregulated within the neoplastic tissue in 
comparison to non-neoplastic tissue. Second, we statis-
tically evaluated which spatially differential expressed 
genes are predictive for tumour recurrence.

Summarized, we identified a spatial tumour gene sig-
nature and developed a computational tool to classify tis-
sue into neoplastic and non-neoplastic tissue by in  situ 
sequencing informed expression. We thereby identi-
fied FGFR2, MMP11 and OTOP2 as three differentially 

expressed genes in the neoplastic tissue predicting 
tumour recurrence in stage II colon cancer.

Materials and methods
Study design–patient cohort
For this retrospective study, 10 patients were selected 
with diagnosed stage II colon cancer from the Biobank 
Graz. Each patient was observed for at least 3 years after 
tumour resection and their final tumour recurrence sta-
tus labelled as either relapsed (5 patients, 50%) or non-
relapsed (5 patients, 50%). To ensure a homogeneous 
patient population, we selected patients who shared the 
same diagnosis of stage II colon cancer and had under-
gone surgical resection as the primary treatment modal-
ity. Importantly, none of the patients in the study received 
any additional adjuvant chemotherapy following the sur-
gery. This standardized approach allowed us to focus spe-
cifically on the role of the spatial tumor composition for 
relapse prediction, without confounding factors related 
to postoperative treatments. Tumour tissue was forma-
lin fixed and paraffin embedded (FFPE). Neoplastic and 
non-neoplastic colonic tissue was present in each tissue 
section (Additional file 1: Table S1).

Ethic approval
The study protocol was approved by the Ethics Commit-
tee of the Medical University of Graz (29-187 ex 16/17) 
following the declaration of Helsinki and good clinical 
practice, and written informed consent was obtained by 
all patients.

Panel design
A panel of padlocks was designed to target 176 tran-
scripts with the intent of investigating different biological 
processes within the tumour and its microenvironment. 
The panel includes genes involved in angiogenesis, apop-
tosis, autophagy, necrosis, proliferation, oxidative stress, 
hypoxia, stemness, invasion, epithelial–mesenchymal 
transition (EMT), energy metabolism as well as differ-
ent epithelial cells, tumour associated stromal cells and 
immune cells (Additional file 1: Table S2). The exact tar-
get sequences and padlock probes design is propriety 
information by Cartana (Stockholm, Sweden, now part 
of 10x Genomics, California, USA) and are not known by 
the authors.

Tissue preparation and ISS library preparation
For application of the in  situ sequencing method, 5  μm 
FFPE tissue sections were processed according to the 
manufacturer’s protocols and kits (High Sensitivity 
library preparation kit, Cartana). In short, sections were 
baked at 60 °C for 1 h, deparaffinised in xylene or Histo-
lab Clear (Sanova Pharma, Vienna, Austria), rehydrated 
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and permeabilised in a steamer using citrate buffer of 
pH6 for 45 min. The sections were then dehydrated in an 
ethanol series and air-dried followed by the attachment 
of hybridization chambers (Secure Seal, Grace Biolabs, 
Oregon, USA). All hybridisation steps were performed 
in RNAse free humidity chambers. Padlock probes were 
then directly hybridised to the RNA at 37  °C overnight, 
followed by ligation at 37  °C for 2  h. After the liga-
tion process, a circular oligonucleotide was formed and 
amplified overnight at 30 °C in a rolling circle amplifica-
tion (RCA) reaction, resulting in RCA products (RCP).

Sequencing and stripping
Adapter probes (Sequencing kit, Cartana) were hybrid-
ised at 37  °C for 1  h, followed by a washing step with 
washing buffer 2 (WB2). Afterwards the sequencing 
probes were hybridised at 37  °C for 30  min. The sec-
tions were washed with WB2, mounted with SlowFade 
Gold Antifade Mountant (Thermo Fisher Scientific, Mas-
sachusetts, USA) and imaged. The procedure for every 
sequencing cycle was as follows: after each sequencing 
cycle, adapter- and sequencing-probes were stripped off 
by adding three times 100% formamide to each slide for 
1  min at room temperature. This step was followed by 
a washing step with WB2. The ISS cycles were repeated 
for a total of 5 times, with 5 different adapter probe pools 
and imaged in 5 channels (DAPI, FITC, Cy3, Cy5, Cy7). 
After imaging of the last sequencing cycle, the probes 
were stripped off one more time and samples were 
imaged to obtain the autofluorescent background of the 
tissue in each channel for background correction.

Imaging
Imaging was performed using a digital slide scanner 
(Slideview VS200, Olympus, Tokio, Japan) using a LED 
source (Excelitas Technologies, X-Cite Xylis, Missis-
sauga, Canada). Fluorescence filter cubes and wheels 
were equipped with a pentafilter (AHF, excitations: 
352–404  nm, 460–488  nm, 542–566  nm, 626–644  nm, 
721–749 nm; emissions 416–452 nm, 500–530 nm, 579–
611  nm, 665–705  nm, 767–849  nm). The images were 
obtained with a sCMOS camera (2304 × 2304, ORCA-
Fusion C14440-20UP, 16 bit, Hamamatsu, Japan), and 
Olympus universal-plan super apochromat 40× (0.95 
NA/air, Olympus). For each slide and cycle imaging in 
DAPI, FITC, Cy3, Cy5 and Cy7 was performed. Extended 
focus imaging (EFI) was used to automatically discard 
unfocused z-stack images, resulting in bright and focused 
in situ signals.

Image analysis
Imaging data was analysed with a custom pipeline pro-
vided by Cartana (part of 10x Genomics) and published 

pipelines found in the repository (https:// github. com/ 
Moldia/ HybrI SS) handling image processing and gene 
calling [22]. All code was written in MATLAB. Addi-
tionally, a CellProfiler (v.2.1.1) pipeline with the ImageJ 
plugins MultiStackReg, StackReg and TurboReg was 
used to perform a second, more exact alignment 
between the cycles [23]. Used pipelines can be found in 
the repository (https:// github. com/ spati alhis to/ GTC). 
Images from all sequencing cycles were exported into 
.tiff- format and aligned through the DAPI channel of 
the first sequencing cycle with the channels of each 
sequencing cycle. Then, images were split into multiple 
smaller images to allow analysis in CellProfiler.

As each fluorescent colour had different intensity val-
ues for RCP signals in their respective colours, we nor-
malized the intensity values to 10,000 and computed the 
corresponding multiplication factor. E.g. the median 
intensity of RCP signal in Cy5 was 5000 and, therefore, 
was multiplied by two to reach 10,000. This multiplica-
tion factor was calculated for each fluorescent colour 
and then used to normalise the median intensity of all 
RCP signals. The received multiplication factor for each 
channel was integrated in the CellProfiler pipeline and 
the background of each channel was subtracted from 
each sequencing cycle to reduce the autofluorescence 
of the tissue. A pseudo-general stain was created by 
combining the 4 readout detection probe channels of 
the first sequencing cycle into one merged image. Addi-
tionally, a pseudo-anchor for each sequencing cycle 
was generated to perform a second alignment to the 
pseudo-general stain. The RCPs of the pseudo-general 
stain were detected to obtain the x- and y-coordinates 
of the ISS genes. Based on these positions, the fluores-
cence intensities in each of the 4 channels (FITC, Cy3, 
Cy5 and Cy7) were measured. This procedure was per-
formed for all sequencing cycles to derive the measured 
intensities. The highest intensity value in each sequenc-
ing cycle was then assigned as real signal and further 
used for decoding with MATLAB [22]. For the verifica-
tion of the signals, the selected transcripts were plotted 
on a DAPI-stained image [22].

Quality assessment of FFPE tissue samples
All tissue samples were processed according to estab-
lished SOPs for routine lab procedures of the Diag-
nostic and Research Institute of Pathology, Medical 
University of Graz (Austria). Quality of RNA was 
assessed by quantifying the expected decoded tran-
script of the in  situ sequencing raw data which is 
included in the described MATLAB pipeline and is 
depicted in Additional file 1: Table S3.

https://github.com/Moldia/HybrISS
https://github.com/Moldia/HybrISS
https://github.com/spatialhisto/GTC
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Tissue compartment building by morphology and virtual 
H&E
To combine the advantage of ISS and H&E morphology 
on the exact same tissue section, we created computa-
tionally (virtually) stained H&E images of the ISS hybrid-
ised tissue sections based on DAPI and FITC images, 
as described by Giacomelli et  al. [24] (Fig.  1 and Addi-
tional file 1: Method S1). In short, by virtually colouring 
the DAPI image with a colour representing the haema-
toxylin staining (blue) and the FITC image with a col-
our representing the eosin staining (red), an H&E image 
was obtained similar to a stained H&E image. This was 
possible as the DAPI channel stained the cell nuclei, 
while the FITC autofluorescence provided the cell out-
lines and fibers of the tissue. The virtually stained H&E 
images of the patient tissue samples were subsequently 
evaluated by a colon cancer specialised pathologist who 
assigned tissue areas into neoplastic and non-neoplas-
tic areas (“morphology-based” approach). After mor-
phology-based classification by the pathologist, the two 
different tissue compartments, i.e.: neoplastic and non-
neoplastic area per tissue sample, were outlines and one 

compartment was converted into black, the other into 
white images (= binary image) as described in Additional 
file 1: Method S2. By this approach, each detected gene 
transcript could be assigned to either the neoplastic area, 
or non-neoplastic area.

Tissue compartment building by gene expression
Most of the via ISS analysis detected transcripts were 
expressed in neoplastic- and non-neoplastic tissue 
compartment. However, specific genes showed clear 
overexpression in neoplastic vs. non-neoplastic tissue 
compartments in all analysed tissue samples. Based on 
this observation, we evaluated if a set of genes as such 
could be used to automatically classify tissue into neo-
plastic and non-neoplastic tissue compartments without 
future need for histopathological information. In doing 
so, in  situ signals of the respective genes were compu-
tationally represented as dots of a certain size and com-
putationally superimposed to form connected areas, as 
shown in Fig. 2. The detailed description of this approach 
can be found in Additional file 1: Method S3 and S4. In 
short, the dot like signals were expanded by 50–180 

Fig. 1 Generation of the virtually stained H&E image and compartment building. a DAPI‑stained image, b FITC‑stained image used for calculating 
of c the virtually stained H&E image of the tissue sample. d The tissue areas in the tissue sections as classified by a pathologist: red–neoplastic 
tissue, green–non‑neoplastic tissue. The blue area marks a region that was excluded from the analysis due to high autofluorescence or lost tissue 
during hybridisation. The derived representative binary tissue compartment (TC) e for the neoplastic and f for the non‑neoplastic tissue
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pixels, thereby merging and forming larger, connected 
areas (see Additional file 1: Table S4). In order to remove 
small gaps in connected tissue compartments, the python 
library openCV [25] was used. A threshold technique 
was subsequently applied to convert this superimposition 
into a binary neoplastic tissue compartment. Next, the 
overlap between the “morphological-based” and “gene 
expression-based” binary neoplastic tissue compartment 
was calculated for each sample. The sample overlaps 
were, further, combined via geometric mean to a mean 
overlap-value that was used to rate the set. The mean 
overlap-values were calculated for alternating composi-
tions of genes. Finally, the set of ISS genes that achieved 

the highest mean overlap-value was selected and used for 
statistical testing (see Additional file 1: Method S4). The 
binary non-neoplastic tissue compartment of a patient 
sample was obtained by excluding the neoplastic one 
from the entire tissue compartment where latter was 
derived by superimposition of the dot representations of 
all detected ISS genes and all cell nuclei.

Gene counting and statistical testing
We developed a script to create the tissue compartments 
and quantify the gene counts, namely genes-to-count 
(GTC-Tool) available at the repository (https:// github. 
com/ spati alhis to/ GTC). To identify significances in the 

Fig. 2 Generation of expression‑based tissue compartments and overlap with morphological tissue compartments. a The virtually stained H&E 
images of the samples from non‑relapsed (patient 1–5) and relapsed patients (patient 6–10). b Tissue classified into neoplastic and non‑neoplastic 
tissue compartment by a pathology expert based on morphological characteristics. c Gene expression‑based neoplastic and non‑neoplastic 
tissue compartment by using the in situ sequencing tumour gene signature (EREG, MET, BIK, CD44, ITGAV, MYBL2, CCND1 and S100A4). d Overlap 
of the morphological‑ and the gene expression‑based tissue compartment for neoplastic tissue. The mean overlap‑value for the tumour gene 
signature is 0.77. e Ratios of the counted gene per cell value between the gene expression‑based and the morphological‑ based neoplastic tissue 
compartment depicted as polar chart. Thereby, each data point shows the ratio for a certain in situ sequencing gene. f Projection of morphological 
obtained tissue compartment on the DAPI images. g Projection of gene expression‑based tissue compartment on the DAPI images. Size bar is the 
same for all images

https://github.com/spatialhisto/GTC
https://github.com/spatialhisto/GTC
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distribution of genes in the binary neoplastic and non-
neoplastic tissue compartments, the number of genes 
was counted within both compartments. To take differ-
ences in sizes and cell numbers of the tissue compart-
ments into account, counts were normalised to detected 
cell nuclei (see Additional file 1: Method S5).

Some areas had to be excluded from analysis due to tis-
sue damage acquired during the sequencing procedure, 
high autofluorescence or bad alignment (see Additional 
file  1: Method S6). A two-tailed paired t-test was used 
for the statistical testing of differences of the gene per 
cell values in the neoplastic and the non-neoplastic tis-
sue compartment. A two-tailed independent t-test was 
applied for statistical testing of the gene per cell value in 
the neoplastic tissue compartment in both the relapsed 
and the non-relapsed patient distributions. The statistical 
testing was done with a significance level α = 0.05 for the 
morphological-based and gene expression-based tissue 
compartment (see Additional file 1: Method S7).

Results
Colon tissue can automatically be classified 
by dRNA‑HybISS based gene expression data 
into neoplastic and non‑neoplastic compartments
The in situ sequencing analysis was performed on tissue 
samples containing neoplastic and non-neoplastic tis-
sue including stroma and/or healthy colonic epithelium. 
Based on histopathological expertise we developed a gene 
expression-based tool called genes-to-count (GTC-tool) 
to identify neoplastic or non-neoplastic compartments. 
Thereby, a set of, in neoplastic tissue highly expressed, 
signature genes served as a template for defining a neo-
plastic tumour compartment. To do so, virtually stained 
H&E images of each tumour (Fig. 2a) were annotated by 
a board-certified, colon cancer specialized pathologist to 
classify neoplastic and non-neoplastic tissue compart-
ments based on the morphology of the tissues (Fig. 2b). 
The gene expression-based tissue compartments were 
then generated based on specific expression patterns 
of an 8-gene set, which we refer to as tumour gene sig-
nature, containing the genes EREG, MET, BIK, CD44, 
ITGAV, MYBL2, CCND1 and S100A4. This tumour gene 
signature achieved the highest mean overlap of 77% for 
neoplastic tissue compartments between morphological- 
and expression-based tissue compartments (Fig. 2c). The 
remaining tissue was defined as non-neoplastic tissue. 
Thus, the GTC-tool integrated the spatial coordinates of 
each decoded transcript and nucleus into its tissue com-
partment and automatically quantified RNA transcripts 
in the respective compartment. However, small areas of 
some patient samples, i.e. of patients 2, 6, 7 and 9 could 
not be used for analysis due to tissue loss/damage during 

the sequencing procedure or high autofluorescence and 
were, therefore, excluded from analysis, as shown in 
Fig. 2a.

The overlap of the morphological-based and gene 
expression-based neoplastic tissue compartments 
is shown in Fig.  2d for each patient sample (patient 
1 = 85.7%, patient 2 = 78.1%, patient 3 = 69.4%, patient 
4 = 81.9%, patient 5 = 74.2%, patient 6 = 84.7%, patient 
7 = 78.8%, patient 8 = 78.3%, patient 9 = 71.4% and patient 
10 = 71.0%).

The ratio of the morphological-based and gene expres-
sion-based neoplastic tissue compartment gene per cell 
counts are shown as polar chart in Fig.  2e. As can be 
seen therein, only a minor variation occurred between 
both neoplastic tissue compartments. For a better visu-
alization regarding the localization of the compartments 
within the tissue architecture, DAPI-images were super-
imposed with the morphological-based (Fig. 2f ) and the 
expression-based tissue compartment (Fig. 2g).

Spatially differential gene expression in neoplastic vs. 
non‑neoplastic tissues
The expression level of each transcript was examined by 
comparing its counts per cell in the neoplastic vs. the 
non-neoplastic tissue compartments for 10 colon cancer 
patient samples (Fig. 3 and Additional file 1: Fig. S13).

Therefore, volcano plots with a significance level 
α = 0.05 were generated to define significantly upregu-
lated genes associated with different biological processes 
(Fig. 4). 98 significantly upregulated genes were identified 
in the expression-based tissue compartment (Fig. 4c, d), 
whereas 81 genes were significantly upregulated in the 
morphological-based tissue compartment (Fig. 4d, e). All 
81 upregulated genes identified by the morphological-
based approach were also identified in the expression-
based approach.

The morphological neoplastic tissue compartment 
(Fig.  4a) included: apoptosis related (CASP3, BIK), pro-
liferation related (CCND1, PCNA, MYBL2), tumour asso-
ciated stromal genes (TIMP1, CXCL1, COL1A2, S100A4, 
CD44), energy metabolism markers (LDHA, PKM), oxi-
dative stress (SOD1, GPX1, PRDX2), stemness- (CD44), 
angiogenesis- (MET) associated genes, and Oncotype DX 
genes (INHBA, MYBL2).

In the expression-based neoplastic tissue compartment 
(Fig. 4b) the following genes displayed a highly-significant 
increase in expression and/or a high fold change: apopto-
sis related (BCL2L11, ENG, CASP3, BAK, BIK), prolifera-
tion related (AURKA, CCND1, PCNA, MYBL2) tumour 
associated stromal genes (IL1B, FSTL1, TIMP1, CXCL1, 
COL1A2, S100A4, CD44), energy metabolism markers 
(HK1, GLS, LDHA, PKM) oxidative stress (SOD1, GPX1, 
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PRDX2), stemness- (CD44), invasion- (ITGAV) angio-
genesis- (ENG, MET) associated genes and Oncotype DX 
genes (INHBA, MYBL2).

Upregulated genes in the neoplastic tissue compartment 
of relapsed patients vs. non‑relapsed patients
A two-sided independent t-test with a significance level 
α = 0.05 was performed to investigate the differences in 
gene expression in the neoplastic tissue compartment 
of 5 relapsed and 5 non-relapsed colon cancer patients. 
The volcano plot depicted in Fig. 5a shows the outcome. 
Three genes showing a significant increase of expres-
sion in relapsed patients compared to non-relapsed. 
The expression level of OTOP2 (Fig. 5b) indicated a sig-
nificant upregulation with 2.6 counts per 1000 cells in 
relapsed compared to 1.9 counts per 1000 cells for non-
relapsed patients (p-value = 0.0042). The expression for 
the transcript FGFR2 (Fig.  5c) showed 4.9 counts per 
1000 cells for relapsed and 3.1 for non-relapsed patients 
(p-value = 0.0137). For MMP11 significantly elevated 
expression levels for relapsed patients, with 49.2 counts 
per 1000 cells for relapsed and to 16.4 counts per 1000 

cells for non-relapsed patients (p-value = 0.0415), were 
observed. A list with the p-values of all transcripts can be 
found in Additional file 1: Table S5.

Furthermore, we quantified differences of gene expres-
sion between relapsed and non-relapsed patients but 
omitted the spatial tissue compartments thereby simulat-
ing bulk RNA expression profiling. In the simulated bulk 
RNA expression data, OTOP2 (p-value = 0.0167) and 
MMP11 (p-value = 0.0177) remained significantly differ-
entially upregulated in the relapse group, but FGFR2 did 
not show significant changes (p-value = 0.1304) (Addi-
tional file 1: Fig. S12).

Discussion
With the here presented study we were the first to apply 
a direct RNA ISS approach in colon cancer with sub-
cellular resolution investigating the spatial expression 
of 176 genes. We were able to identify FGFR2, MMP11 
and OTOP2 as upregulated genes in tumour compart-
ments of relapsed patients diagnosed with stage II colon 
cancer. Importantly, FGFR2 and MMP11 are druggable 
targets in other cancer entities and could become novel 
predictive biomarkers in stage II colon cancer. Moreover, 

Fig. 3 Examples of spatial distributions of 5 out of 176 genes in neoplastic and non‑neoplastic tissue. a The virtually stained H&E images 
of the samples from non‑relapsed (patient 1–5) and relapsed patients (patient 6–10). b Expression and the spatial distribution of MET, a gene 
of the tumour gene signature that was used for the creation of the neoplastic tissue compartment. c Exemplified expression and the spatial 
distribution of MUC2, a gene expressed in non‑neoplastic epithelial‑ and cancer cells. d Exemplified expression and the spatial distribution FABP1, 
a high expressed gene in colonic tissue. e Expression of OLFM4, a gene associated to inflamed colonic epithelium and antiapoptotic features. 
f Expression of COL1A, a gene relevant in forming collagen and found in most connective tissues. Total counts of each transcript are depicted 
in each image and size bar is the same for all images
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we developed a genes-to-count (GTC) tool to accurately 
classify colon tissue into neoplastic and non-neoplastic 
compartments using an 8-gene tumour gene signature 
and to quantify spatial gene expression. The spatial ISS 
approach, therefore, allowed us to yield novel insights 
into predictive CRC biomarkers beyond bulk tissue 
sequencing (Fig. 6).

We observed a significantly elevated expression of 
the Fibroblast Growth Factor Receptor 2 (FGFR2) in 
tumour compartments of relapsed colon cancer stage 
II patients. Previous studied have identified this tran-
script as a potential therapeutic target for CRC as upon 

activation by ligand binding a series of downstream sig-
nalling pathways are activated involved in differentia-
tion, survival and proliferation playing major roles in the 
progression of CRC [26, 27]. Interestingly, FGFR2 has 
been shown to be druggable in other tumour entities. 
Pemigatinib and erdafitinib, two anti-FGFR agents, are 
already approved by the Food and Drug Administration 
(FDA) for treatment of cholangiocarcinoma and urothe-
lial carcinoma, and various FGFR inhibitors are currently 
being evaluated in preclinical and clinical trials [28]. Due 
to overexpression of FGFR2 in numerous tumours and 
its significant role in progression and tumorigenesis, 

Fig. 4 Significantly upregulated genes in neoplastic vs. non‑neoplastic tissues compartments (N = 10). a, b Volcano plot of upregulated genes 
in the expression‑based tissue compartment, and morphological‑based tissue compartment. Genes which show a high significance and/or high 
fold change between the neoplastic and non‑neoplastic tissue compartments are labelled by name. Genes belonging to different biological 
processes are marked with different symbols in different colours to achieve an overview of relevant processes upregulated in neoplastic 
tissue compartments. Each dot represents an individual gene, a two‑sided paired t‑test is used for statistical testing with a significance 
level α = 0.05 (horizontal line). c List of all significantly upregulated genes in the expression‑based tissue compartment. Red labelled genes 
were only found significantly differential expressed in the expression‑based tissue compartment. Black labelled genes are concordant 
between expression‑ and morphological‑based tissue compartments. d Diagram of the amount of genes upregulated in the expression‑based 
and the morphological tissue compartment. e List of all significantly upregulated genes in the morphological tissue compartment. TA stromal 
cells = tumour associated stromal cells, EMT = epithelial–mesenchymal transition. The 8 identified genes for the tumor gene signature are 
highlighted in yellow



Page 10 of 14Sallinger et al. Journal of Translational Medicine          (2023) 21:528 

Fig. 5 Upregulated genes in neoplastic tissue compartments in relapsed patients in comparison to non‑relapsed patients (N = 10). a Volcano plot 
with a significance level α = 0.05 of significantly upregulated genes in the neoplastic tissues compartment of relapsed patients in comparison 
to non‑relapsed patients. b–d The expression level of OTOP2, FGFR and MMP11 in relapsed patients (orange) indicated a significant increase 
in comparison to non‑relapsed patients (green). Significant differences (*p < 0.05 and **p < 0.005) were highlighted with bars and asterisks

Fig. 6 Spatial distribution and heatmaps of OTOP2, FGFR2 and MMP11. a The virtually stained H&E images of the samples from non‑relapsed 
(patient 1–5) and relapsed patients (patient 6–10). Expression and the spatial distribution of b OTOP2, c FGFR2 and d MMP11 and heatmaps 
of e OTOP2, f FGFR2 and g MMP11. Total counts of each transcript are depicted in each image and size bar is the same for all images. The heatmaps 
visualize tumour heterogeneity, whereby each plot is normalised to its own maximum density value. The heat scale colour bar in e, patient 10 
is the same for all heatmaps
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FGFR2 could be a promising target for treatment of stage 
II colon cancer patients in future [29]. Moreover, we 
observed significant upregulation for FGFR2 only for 
our spatial neoplastic compartment approach, whereas 
we did not identify significant changes in the simulated 
bulk RNA expression, i.e. expression/cell in the whole tis-
sue section. Another interesting finding is that, although 
FGFR2 is not differentially higher expressed in the neo-
plastic- versus non-neoplastic tissue compartment, its 
relative mRNA amount per cell is higher in the relapse 
group versus the non-relapse group (Fig.  5). This high-
lights the importance of quantification of spatial data sets 
yielding novel findings which would otherwise be easily 
overlooked by semiquantitative evaluation. Matrix met-
alloproteinase 11 (MMP11) belongs to the family of zinc 
dependent endopeptidases and displays some unique 
characteristics [30]. MMP11 is secreted in an enzymati-
cally active form while most other MMPs are released 
as inactive enzymes. It promotes the signal transduc-
tion of protein kinase B (AKT)/Forkhead box protein O1 
(FoxO1)/insulin-like growth Factor-1 (IGF1) which is 
associated with the lysis of collagen type VI and prolif-
eration of connective tissue around the stroma in cancer-
ous tissues [30, 31]. Epithelial–mesenchymal-transition 
is a critical step in early stages of metastasis by granting 
tumor cells invasive potential and migratory behaviour, 
whereby metalloproteases play a crucial role in the degra-
dation of ECM components. Upon the binding of NF-κB/
p65 to the promoter regions of EMT transcription fac-
tors, MMP11 is activated resulting in the induction of 
the EMT process in human breast cancer cells [32]. 
These features indicate that MMP11 plays a unique role 
in the development of malignant tumours, their progres-
sion and metastasis [30]. A previous study showed that 
MMP11 is associated with various signalling pathways 
involved in tumour development in breast cancer and 
that high expression of MMP11 is associated with poor 
prognosis for patients [33]. Additionally, MMP11 overex-
pression is associated with an alteration in mitochondrial 
function due to increased oxidative stress and promotes a 
metabolic switch to aerobic glycolysis to provide metabo-
lites for cancer cells [34]. Yang et  al. identified MMP11 
as a key cancer driver in lung adenocarcinoma and, fur-
thermore, as a potential target for antibody therapy as 
application of anti-MMP11 antibodies suppressed the 
growth of tumours in xenograft models [35]. In con-
trast to FGFR2 and MMP11, fewer published articles 
on Otopetrin 2 (OTOP2) in CRC are available. OTOP2 
encodes a proton-selective channel, transferring pro-
tons into the cell cytosol in response to low pH in vari-
ous epithelia [36]. Recently, scRNAseq analysis identified 
a new subtype of cells positive for OTOP2 and BEST4 
(calcium-sensitive chloride channel) within the intestinal 

crypts namely BEST4/OTOP2 cells, that are responsible 
for electrolyte transportation [37]. In colorectal cancer 
and inflammation loss of BEST4/OTOP2 cells has been 
described [37]. In our study we observed that OTOP2 is 
overexpressed in relapsed stage II colon cancer patients. 
In contrast, Qu et al. and Guo et al. showed that elevated 
levels of OTOP2 in cell line experiments lowers tumour 
proliferation and that high expression of OTOP2 in bulk 
CRC tissues was significantly correlated with better over-
all survival. It is important to note, however, that the 
CRC cohort of Guo et al. did not focus on stage II colon 
cancer [38]. Therefore, the value of comparison between 
our cohort of stage II colon cancer and a broader cohort 
of CRC tissue and different stages is limited. Evalua-
tion of tumour tissues and their histological compart-
ments, such as tumour, stroma and immune cells need 
histological know-how and experience. Several power-
ful AI based tools have been evolved but these usually 
need large training sets to identify the respective tissue 
compartments [4]. Instead of AI based tissue classifica-
tion, we made use of spatial ISS data to define tumour 
compartments, i.e. genes which are highly expressed in 
neoplastic colon tissues allowed us to generate tissue 
compartments of neoplastic tissue. A major advantage 
of the resulting compartments is that they are independ-
ent from tissue histology as they rely on gene expression 
only and can, therefore, be applied to other colon cancer 
samples without the need of large training image data 
sets. A similar approach was developed by Meylan et al. 
who identified tertiary lymphoid structures in renal cell 
carcinomas based on a 29-gene signature dominated by 
immune globulin genes, however with lower resolution 
of a bin size of 55 μm using Visium spatial transcriptom-
ics (10× Genomics) [39]. When comparing our data of 
both approaches, i.e. morphology-based vs. expression-
based, we are able to observe that the expression-based 
approach shows a more granular and precise representa-
tion of neoplastic tissue in three patient samples (patient 
2, 3 and 10) especially at tumour border regions. Both 
approaches, morphological- and expression-based tis-
sue compartments, show high concordance also in the 
context of differential gene expression of neoplastic vs. 
non-neoplastic tissue. All 81 upregulated genes identified 
using the morphological-based approach (neoplastic vs. 
non-neoplastic tissue compartments) were also identified 
in the expression-based approach confirming the equality 
in performance and precision of the created expression-
based tissue compartments. Furthermore, by the use of 
the expression-based approach, 17 additional differen-
tially expressed genes were found (total of 98).

Recognizing the extraordinary potential of spatial tran-
scriptomic datasets in revealing detailed cellular- and 
tissue organization, data analysis remains challenging. 
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A multitude of analysis and visualization tools for pre-
processing, clustering, cell phenotyping, and cell–cell 
interaction are being developed continuously but a gold 
standard has yet to be set [40]. For example, segmen-
tation of cells and assigning expressed transcripts to 
identify the underlying cell type can be performed by 
sophisticated methods such as Baysor [41], JSTA [42] or 
modified pipelines from pciSeq [43] and Scanpy [44, 45] 
among many others [46]. In our data the quality of ISS 
results strongly depended on tissue characteristics such 
as autofluorescence or fixation of tissue as optimal sen-
sitivity and specificity of the ISS methodology requires 
bright, clear signals and low background [47]. Highly 
autofluorescent tissue structures such as elastin and col-
lagen [48] can obscure or mimic in situ signals and would 
result in wrong base calling during decoding. Therefore, 
we developed and included a background subtraction 
step to reduce high autofluorescence especially for chan-
nels detected in shorter wavelengths such as FITC and 
Cy3. We observe an estimated ~ 25% higher number of 
correctly assigned transcripts with vs. without back-
ground subtraction. However, spatial analysis comes 
to its limitations if autofluorescent structures indicate 
higher pixel intensity values than true signals, as sub-
tracting the background of these structures would results 
in a deletion of true signals (seen in a specific region in 
patient sample 6, described in Additional file 1: Fig. S10). 
In two additional patient samples, specific areas had to be 
excluded from further analysis, as tissue was lost during 
lab work. Nevertheless, these samples passed our quality 
control (threshold of expected/unexpected reads ratio) 
and enough representative tissue regions of neoplastic 
and non-neoplastic areas were available for these three 
patients (Additional file 1: Fig. S9).

Another obstacle in spatial transcriptomic data sets 
is the normalization of gene expression between sam-
ples. Available tools such as scran [49] or SCnorm [50] 
are inspired by scRNAseq studies but there is no “one-
size-fits-all” solution [51] as they were not developed for 
sub-cellular ISS data sets. As dRNA-HybISS yields sub-
cellular resolution, we normalised our expression data for 
each individual tumour sample. To do so, we segmented 
cells using available scripts and normalised the number 
of transcripts to cell counts. The segmentation of nucleus 
stained images and optimisation of parameters is cru-
cial and highly dependent on the tissue type. Similar to 
previously described studies our approach is feasible 
and in accordance with our aim to investigate the spa-
tial tissue composition of colon cancer stage II [52]. We 
demonstrated feasibility of in situ sequencing on clinical 
samples with a very focused sample cohort. The small 
sample size in this pilot study is comparable to other 
dRNA-HybISS studies performed by Janesick et  al. and 

Svedlund et al. with < 10 samples. For further validation, 
larger cohort and complementary methods are needed, 
such as immunostaining, in vitro and in vivo studies [16, 
53]. This is especially true for the three identified genes, 
MMP11, FGFR2 and OTOP2, which need validation in an 
equivalent stage II colon cancer cohort with conventional 
immunostaining procedures.

This proof of principle study shows the potential of 
in  situ sequencing revealing novel potential predictive 
biomarkers in colon cancer stage II, namely MMP11, 
FGFR2 and OTOP2, relevant for relapse of disease. Fur-
thermore, our newly developed, open-access available 
GTC-tool allows accurate capturing of the tumour com-
partment and quantification of gene expression in colon 
cancer tissue.
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of neoplastic tissue. Fig. S5: a) With the gene set S = {BIK, CCND1, CD44, 
EREG, ITGAV, MET, MYBL2, S100A4}, referred to as tumour gene signature, 
calculated tissue compartment   for the neoplastic tissue. b) Hybridisation 
area compartment   defined through a disk of radius   centered in the 
middle of image. Fig. S6: Binary tissue compartments (TC) a) for all cells   
and b) for all ISS genes  . c) The composite TC   and d) the calculated repre‑
sentative non‑neoplastic TC. Fig. S7: The calculated tissue compartments 
(TC) combined in one image: red–neoplastic TC and green–non‑neo‑
plastic TC. Fig. S8: The overlap (dark red) between the neoplastic tissue 
compartment (TC): dark red–overlap, light red–morphological‑based TC 
with no overlap and pink–gene expression‑based TC with no overlap. Fig. 
S9: Tissue damage (red) of patient sample 7 during the sequencing pro‑
cedure. a) Virtually converted H&E staining of the sample. Image of tissue 
after b) the third c) the fourth and d) the fifth sequencing cycle. e) Shows 
the neoplastic and non‑neoplastic compartments that were generated 
based on gene expression with the excluded area in blue. Tissue damage 
was observed after sequencing cycle 3‑5. The red marked area had to be 
excluded from further analysis.  Fig. S10: Highly autofluorescent areas 
observed in patient sample 6 (red) that showed higher pixel intensity 
values than truly positive signals were excluded from further analysis. a) 
Virtually converted H&E staining of the sample. b) Highly autofluorescent 
region was marked in red. c) Shows the neoplastic and non‑neoplastic 
compartments that were generated based on gene expression with the 
excluded area in blue. Fig. S11: Alignment of spots: Alignment performed 
in CellProfiler by using ImageJ plugins MultiStackReg, StackReg and Tur‑
boReg. The figure shows a) correctly aligned spots and b) wrongly aligned 
spots. Fig. S12: Comparison of spatial analysis vs. bulk analysis: Volcano 
plots with a significance level α=0.05 of significantly upregulated genes 
in a) the neoplastic tissues compartment and b) the total tissue area of 
relapsed patients in comparison to non‑relapsed patients. Fig. S13: Spatial 
distribution of 176 ISS detected transcripts.
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