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Abstract 

Background Accurately predicting the outcome of isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) 
remains hitherto challenging. This study aims to Construct and Validate a Robust Prognostic Model for IDH wild-type 
GBM (COVPRIG) for the prediction of overall survival using a novel metric, gene–gene (G × G) interaction, and explore 
molecular and cellular underpinnings.

Methods Univariate and multivariate Cox regression of four independent trans-ethnic cohorts containing a total 
of 800 samples. Prediction efficacy was comprehensively evaluated and compared with previous models by a system-
atic literature review. The molecular underpinnings of COVPRIG were elucidated by integrated analysis of bulk-tumor 
and single-cell based datasets.

Results Using a Cox-ph model-based method, six of the 93,961 G × G interactions were screened to form an opti-
mal combination which, together with age, comprised the COVPRIG model. COVPRIG was designed for RNA-seq 
and microarray, respectively, and effectively identified patients at high risk of mortality. The predictive performance 
of COVPRIG was satisfactory, with area under the curve (AUC) ranging from 0.56 (CGGA693, RNA-seq, 6-month 
survival) to 0.79 (TCGA RNAseq, 18-month survival), which can be further validated by decision curves. Nomograms 
were constructed for individual risk prediction for RNA-seq and microarray-based cohorts, respectively. Besides, 
the prognostic significance of COVPRIG was also validated in GBM including the IDH mutant samples. Notably, 
COVPRIG was comprehensively evaluated and externally validated, and a systemic review disclosed that COVPRIG 
outperformed current validated models with an integrated discrimination improvement (IDI) of 6–16%. Moreover, 
integrative bioinformatics analysis predicted an essential role of  METTL1+ neural-progenitor-like (NPC-like) malignant 
cell in driving unfavorable outcome.

Conclusion This study provided a powerful tool for the outcome prediction for IDH wild-type GBM, and preliminary 
molecular underpinnings for future research.
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Introduction
Glioblastoma (GBM) represents the most frequent and 
devastating brain malignancy. Despite standard thera-
peutic modalities, the outcome of patients remains dis-
mal [1–3]. Isocitrate dehydrogenase (IDH) gene mutation 
plays a fundamental role in the carbohydrate metabolism, 
the tumor microenvironment (TME), and was involved 
in compromising the anti-tumor immune response [4, 5]. 
Approximately 90% of GBM is IDH wild-type, which rep-
resents the most lethal subtype of glioma [5, 6]. As there 
lacks effective treatment modalities, it is in urgent need 
to accurately predict the prognosis of IDH wild-type 
GBM for individual tailored therapeutic regimens and 
improvement of clinical management.

The outcome of IDH wild-type GBM can be hetero-
geneous. IDH wild-type GBM is classified as proneural, 
classical, and mesenchymal subtypes based on the tran-
scriptome, with the latter having the worst prognosis [4, 
7]. Recently, four tumor cell states have been identified 
using the advanced single-cell RNA sequencing, which 
was implicated in treatment resistance and prognosis [8]. 
In addition, O-6-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation, telomerase reverse 
transcriptase (TERT) promoter mutations, and N6-meth-
yladenosine-mediated RNA modification were found 
to be associated with patients’ outcome [9–13]. Never-
theless, the clinical application of these novel biomark-
ers for prognostic prediction remains limited. Recently, 
several studies have endeavored to develop prognostic 
models for IDH wild-type GBM based on multi-omics 
data [14–20]. Notably, gene–gene (G × G) interactions 
have profound biological implications. For instance, the 
prognostic value of HIF1A in non-small cell lung cancer 
is altered with EGLN2 expression [21], and gene signa-
ture associated with T cell dysfunction can be screened 
by assessing G × G interactions [22]. In addition, G × G 
interactions can serve as the basis for constructing prog-
nostic models [23, 24].

Compelling evidence illuminates that stem-like tumor 
cell, which is at the interface of neural and glioma biol-
ogy, is essential in tumor progression and treatment resist-
ance [25–27]. One step further, neural progenitor cell-like 
(NPC-like) tumor cells characterized by CDK4 has been 
defined in GBM [8]. These cells retain the potential to dif-
ferentiate into other cells and have an enhanced invasive 
capacity upon neuronal activity induced calcium signals 
[28, 29]. Despite being an ideal therapeutic target, the 
inherent cytotoxic reagents resistance of NPC-like tumor 

cells prompts a deeper understanding of the cancer biology 
of these cells.

In this study, we developed a robust prognostic model 
for IDH wild-type GBM through incorporating a novel 
parameter, G × G interaction [23, 24], to effectively identify 
patients at high mortality risk. In addition, comprehensive 
bioinformatics analysis pinpointed a subset of NPC-like 
cells as an essential player in driving unfavorable outcome.

Materials and methods
Data collection and sample pre‑procession
The expression profile and corresponding demographic 
of 800 IDH wild-type GBM from 3 programs were first 
enrolled for the construction of COVPRIG, includ-
ing TCGA RNA-seq (RNAseq, n = 143) [30], CGGA693 
(RNAseq, n = 190) [31], TCGA microarray (microar-
ray, n = 372) and GSE16011 (microarray, n = 95) [32]. Any 
sample missing survival information or simultaneously 
missing age, IDH gene mutation, and MGMT promoter 
(MGMTp) methylation status was excluded. The RNA-seq 
profiles were fragments per kilobase of exon model per 
million mapped fragments (FPKM) normalized, and both 
RNA-seq and microarray data sets were log-transformed. 
Three 10 × Genomics-based (GSE131928, GSE138794, 
GSE139448) and a Smartseq2-based (GSE131928) GBM 
single-cell expression profiles were employed for explor-
ing cellular dynamics and interactions [8]. To expand the 
application of COVPRIG, all GBM samples (IDH wild-
type and IDH mutant) included in the TCGA RNA-seq, 
TCGA microarray, CGGA693, GSE16011, GSE4271 [33], 
and GSE7696 [34] with complete survival information were 
included (nsample = 956) for assessing the prognostic sig-
nificance of the model. All-cause death was defined as the 
outcome, which was curated by each program. Patients 
were followed for a period of at least 2 years’ post-surgery 
or until death. Demographics of samples were curated in 
Additional file 7: Tables S1 and S2. Gene signatures, includ-
ing NABA core matrisome, NABA extracellular matrix 
(ECM) affiliated, NABA matrisome associated, Reactome 
ECM organization, and HALLMARK interferon alpha 
response was collected from the MSigDB [35] (https:// 
www. gsea- msigdb. org/ gsea/ msigdb).

Gene main effects, G × G interactions selection 
and COVPRIG construction
Gene main effects selection
A total of 9594 common mRNAs from TCGA RNA-seq, 
TCGA microarray, CGGA693, and GSE16011 cohorts 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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were included. Individual genes were enrolled into the 
Cox-ph model (Model 1) to determine their independ-
ent prognostic significance. Given the potential differ-
ences between RNA-seq and microarray data [36], gene 
main effects of significant coefficients in the TCGA 
RNA-seq and TCGA microarray were intersected. Then, 
candidates were further screened using multivariate Cox 
regression, with age being the covariate.

G × G interactions selection
The prognostic significance of G × G interactions was 
determined based on Model 2. To ensure the potential 
significance while incorporating an appropriate number 
of variables, we calculated the median absolute deviation 
(MAD) was calculated for each gene. The top 1200 highly 
variable genes in TCGA RNA-seq, TCGA microarray, 
CGGA693, and GSE16011 were intersected, resulting in 
434 common genes, which were randomly paired into 
93,961 G × G interactions. Likewise, G × G interactions of 
prognostic significance in both the TCGA RNA-seq and 
microarray were intersected.

To determine the optimal number of G × G interac-
tions to be included, we traversed the model constructed 
from 1 to 14 random G × G interactions and calculated 
the p-value. When satisfactory p-values can be obtained 
on average, the optimal model was more likely to be con-
structed by including the corresponding number of G × G 
interactions.

Model construction
The GG score was calculated using the optimal G × G 
interaction combination and incorporated in the Cox-
ph model with prevalent clinicopathological features 
(age, gender, MRMTp methylation status) to deter-
mine independent prognostic significance. COVPRIG 
was constructed using age and GG score, with coeffi-
cients determined based on TCGA RNA-seq cohort for 
RNA-seq datasets and TCGA microarray for microarray 
datasets. The prognostic model was constructed and vali-
dated following the TRIPOD principle.

Model evaluation and systemic literature review
The Cox regression analysis was performed to assess 
the discriminative ability of COVPRIG. IDH wild-type 
GBM samples were divided into three groups in ascend-
ing order of COVPRIG score, and all GBM samples 
were divided into four groups, with group 1 being the 

Model 1: h(t) = h0(t)exp(betagenei × genei + betaage × age)

Model 2: h(t) = h0(t)exp(betagenei×genei+betagenej×genej+betaij×genei×genej+betaage×age)

reference. The predictive ability of the model was evalu-
ated using the receiver operating characteristic curve 
(ROC) and the corresponding AUC. Decision curves 
were employed to assess the net clinical benefit to 
patients.

To compare with other prognostic models, we searched 
two major databases (PubMed and Web of Science) 
using the following search strings: “((IDH wildtype) OR 
(IDHwt) OR (IDH wild-type)) AND ((glioblastoma) OR 
(gbm)) AND ((progn*) OR (survival)) AND ((predict*) 
OR (auc) OR (area under the curve) OR (receiver opera-
tor characteristic curve) OR (c-index) OR (c statistic) OR 
(roc) OR (calibration))”. All studies of the development 
and validation of IDH wild-type GBM prognostic models 
were included. Publications were restricted to being writ-
ten in English and published before Aug 30, 2022. The 
exclusion criteria were set as 1) not histological GBM, 2) 
without a declaration of IDH wild-type, or with a mixture 
of IDH wild-type and mutation samples, 3) models also 
included WHO grade II and III gliomas, 4) models with-
out overall survival as the outcome, 5) without evaluation 
of predictive efficacy, 6) conference abstracts, commen-
taries, editorials, or letters. Systematic review was con-

ducted following the PRISMA principle.

Bioinformatics
R packages ‘edgeR’ and ‘limma’ were employed to calcu-
late the differentially expressed genes (DEGs) [37, 38]. 
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis was per-
formed using the online tool Metascape (https:// metas 
cape. org) [39]. The abundance of immune infiltration 
was deconvoluted using CIBERSORT algorithm [40]. 
Tumor Immune Dysfunction and Exclusion (TIDE) was 
employed to [35] estimate T cell function and potential 
sample responsiveness to immune checkpoint inhibitors 
(ICI) [22].

Single-cell transcriptome profiles of primary GBM 
were processed using the R package ’Seurat’ (v4.3.0) [41, 
42]. In short, genes that were expressed in less than three 
cells and cells that did not express over 300 genes were 
excluded. Expression matrices underwent independent 
quality control prior to integration. Batch effects were 
corrected by canonical correlation analysis (CCA) and 
mutual nearest neighbors (MNN) for the three 10 × sin-
gle-cell transcriptome expression profiles [43]. Potential 
doublets were identified using the R package ‘Doublet-
Finder’ at a criteria of credible 4% [44]. Previously identi-
fied conserved tumor cell marker genes were employed 

https://metascape.org
https://metascape.org
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to define cell identity [8]. Gene set activity was assessed 
using ‘AUCell’ [45]. The correlation of cell identity and 
COVPRIG risk-group was analyzed using ‘Scissor’ [46]. 
Cell–cell communication analysis was performed based 
on the R package ‘CellChat’ [47]. R package ‘SCENIC’ 
and Cytoscape software were employed for inferring and 
constructing the transcriptional network [45, 48].

Statistics
All statistics were based on R software (v4.2.1). Continu-
ous variables were summarized using mean and standard 
deviation, and categorized variables were described by 
frequency and proportion. Gene main effects and G × G 
interactions of prognostic significance were screened 
using the Cox-ph model. Kaplan–Meier (K–M) analysis 
and log-rank test were performed to exhibit survival dif-
ferences. ROC curves and corresponding AUC, C-index, 
and decision curves were used to assess the predictive 

validity of the model. Integrated discriminative improve-
ment was calculated for comparation of models. Wil-
coxon test was employed to compare non-normally 
distributed continuous variables. Fisher’s exact test was 
performed to compare the composition ratio. A two-
sided p-value <  = 0.05 was considered statistically signifi-
cant when no additional declaration was made.

Results
Screening of G × G interactions and construction 
of COVPRIG
The workflow of this study was exhibited (Fig. 1). The only 
gene main effect of independent prognostic significance 
was KIAA1671 (multi-Cox p = 0.007), which was elimi-
nated by p-value correction (adjust p = 0.08) (Additional 
file 7: Tables S3 and S4). In distilling for G × G interactions, 
434 highly variable genes yielded 93,961 G × G interac-
tions. Univariate cox regression analysis yielded 13 G × G 

Fig. 1 Overview of the workflow
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interactions of independent prognostic significance by 
taking the intersection of TCGA RNAseq and microar-
ray (Additional file  7: Table  S5). Given that the prognos-
tic performance of individual G × G interaction was not 
superior to that of single gene main effect, the number 
of G × G interactions to be included was determined. We 
tried combinations from a single G × G interaction to a 
maximum of 14 G × G interaction and assessed the perfor-
mance of the model. As a result, the log-rank test p-value 
of the model approached 0 when over 5 G × G interactions 
were included simultaneously (Additional file  1: Fig. S1). 
Therefore, a combination of 6 G × G interactions seemed 
to be sufficient. 1716 combinations consisting of any 6 of 
the 13 G × G interactions were traversed to find the opti-
mal one. By ranking the uniCox p-values ascendingly and 
taking intersections in the TCGA RNA-seq and microar-
ray, combination No. 599 was the most statistically sig-
nificant, which included RIT2 × OAS1, HOXA5 × MLLT11, 
SLC1A2 × FAM189A2, LOXL1 × NCAPG, C21orf62 × GOL-
GA8A, and UBE2S × NRXN1. Based on the coefficients 
derived from TCGA RNA-seq and microarray respectively, 
these G × G interactions were assembled into the GG score 
using Eq.  1 (for RNA-seq) and 2 (for microarray). K–M 
and univariate Cox analysis disclosed that an increased GG 
score was suggestive of an unfavorable outcome, and ROC 
analysis depicted a good predictive performance (Addi-
tional file 2: Fig. S2A, B). Given the universal association 
between age and the prognosis of GBM (Additional file 2: 
Fig. S2C), the COVPRIG was constructed based on Eqs. 3 
and 4 using coefficients derived from the TCGA RNA-seq 
and microarray, respectively.

(1)

GGScore = 0.518× RIT2+ 0.170× OAS1− 0.135× RIT2× OAS1− 0.935

×HOXA5− 0.322×MLLT11+ 0.178×HOXA5×MLLT11

− 0.318× SLC1A2− 0.623× FAM189A2+ 0.163× SLC1A2

× FAM189A2+ 0.846× LOXL1+ 0.593× NCAPG − 0.253

× LOXL1× NCAPG − 0.479× C21orf 62− 0.570× GOLGA8A

+ 0.166× C21orf 62× GOLGA8A− 0.399×UBE2S − 1.032

× NRXN1+ 0.254 ×UBE2S × NRXN1

(2)

GGScore = 0.435× RIT2+ 0.394 × OAS1− 0.056× RIT2× OAS1− 0.734

×HOXA5− 0.472×MLLT11+ 0.074 ×HOXA5×MLLT11

− 0.483× SLC1A2− 0.558× FAM189A2+ 0.076× SLC1A2

× FAM189A2+ 0.480× LOXL1+ 0.313× NCAPG − 0.066

× LOXL1× NCAPG − 0.479× C21orf 62− 0.541× GOLGA8A

+ 0.064 × C21orf 62× GOLGA8A− 0.682×UBE2S − 0.717

× NRXN1+ 0.104 ×UBE2S × NRXN1

The prognostic significance of COVPRIG
To demonstrate the prognostic significance of COVPRIG, 
samples were split into high- and low-risk groups by the 
median value. K–M analysis found that an increased 
COVPRIG score was suggestive of a significantly 
decreased overall survival (maximum C-index = 0.642 in 
the TCGA RNAseq cohort) (Fig. 2A, B). The ROC curves 
depicted that the prediction performance of COV-
PRIG was satisfactory in the TCGA RNA-seq cohort, 
with a minimum AUC of 6-month survival over 0.7 and 
a maximum of 18-month being 0.79, while humbly in 
CGGA693 (Fig. 2C, D). For GSE16011 and TCGA micro-
array, the highest AUC value exceeded 0.75 (GSE16011, 
15-month survival). As for discriminative ability, samples 
were split into three equal groups with group 1 being 
the reference. The hazard ratio (HR) showed a dose–
response association with groups (Fig. 2E). For example, 
the  HRgroup3vs.1 was 3.14 in the TCGA RNA-seq cohort, 
higher than  HRgroup2vs.1 (1.63). Decision curves depicted 
that COVPRIG offered more net benefit than the base 
model containing age, gender, IDH gene mutation, and 
MGMTp methylation status at 9- and 15-month survival, 
especially for the RNA-seq datasets (Fig. 2F, G). In sum, 
nomograms were constructed based on RNA-seq and 

(3)
COVPRIGRNA−seq = 1.101× GGscore + 0.042× Age

(4)
COVPRIGMicroarray = 0.535× GGscore + 0.025× Age



Page 6 of 15Ji et al. Journal of Translational Medicine          (2023) 21:533 

microarray datasets for individualized prognostic predic-
tion (Fig. 2H).

As IDH wild-type GBM accounts for the majority of 
GBM samples, the performance of COVPRIG in the 
entire GBM (including IDH mutant) was also tested. A 
total of 956 samples were collected from six cohorts. Uni-
variate Cox analysis found that an increased COVPRIG 
score predicted unfavorable outcome (Additional file  2: 
Fig. S2D). In accordance with findings in IDH wild-type 

samples, the overall survival decreased significantly with 
increased quantile groups (Additional file 2: Fig. S2E, H). 
Further, ROC analysis showed satisfactory predictive 
performance of COVPRIG. The AUC values at 12-month 
or later were above 0.7 in GSE16011, TCGA microarray, 
and GSE7696 (Additional file  2: Fig. S2F, G). Therefore, 
COVPRIG was also applicable to GBM with unknown 
IDH mutation status.

Fig. 2 Construction and evaluation of COVPRIG. K–M analysis of the A TCGA RNAseq (train) and CGGA693 (external validation) and B TCGA 
microarray (train) and GSE16011 (external validation). C ROC curves based on the TCGA RNAseq cohort. D AUCs of the 4 cohorts. E The 
discriminative ability of COVPRIG. Group 1 was set as the reference. Decision curves based on the F TCGA RNAseq and G TCGA microarray cohorts. H 
The Nomogram for RNAseq and microarray-based cohorts
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Fig. 3 A systemic review of prognostic models of IDH wild-type GBM. A Screening of previous prognostic models. B Improvement of COVPRIG 
in contrast to another mRNA-based externally validated model, CTSI. C Decision curves of COVPRIG and CTSI
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Comparison of COVPRIG with existing models
To compare with previous studies, a systemic litera-
ture review was conducted. A total of 258 records were 
collected from the Pubmed and Web of Science. 69 
duplicate and 54 irrelevant records were excluded by 
evaluating titles and abstracts. Through full-text assess-
ment, editorial and conference abstracts (n = 3), a mix-
ture with LGG or other central nervous system (CNS) 
tumors (n = 53), a mixture with IDH mutant GBM 
(n = 22), no prognostic model constructed (n = 17), 
without evaluation of the predictive ability (n = 26), 
and not overall survival as the outcome variable (n = 6) 
were excluded, resulting in 7 eligible studies [14–20] 
(Fig.  3A). Three studies developed prognostic models 
using transcriptome profiles, other models were devel-
oped based on either multi-omics data, MGMTp status, 
laboratory, or imaging parameters. All models were 
constructed primarily using the Cox-ph model, with 
two additionally employed LASSO, and one SVM. Five 
models employed datasets retrieved from the TCGA 
or CGGA databases, including COVPRIG. The larg-
est train set included 404 samples, but was only inter-
nally validated. 2 of the models were not validated by 
either internal or external datasets. None of the models 
included more than 1000 samples overall.

The basic information, AUC and C-index of these 
models were extracted and curated in Table 1. Generally, 
models performed better in the train set. The multi-Cox 
HR (high-risk vs. low-risk) for the seven models ranged 
from 2.11 to approximately 50. Model 5 reported an 
extremely high HR of around 50 in the train set. Models 
3, 6, and 8 did not report independent prognostic signifi-
cance. The predictive accuracy varied, with AUCs rang-
ing from 0.58 to 0.87. Models 4 and 6 reported higher 
AUCs, with 12-month AUCs being 0.78 and 0.74. The 
12-month AUCs of COVPRIG ranged from 0.67 to 0.74, 
on par with model 6. C-indexes were calculated for mod-
els 3 and 8 only, both were higher than the COVPRIG. 
Model 4 (CTSI) performed well and robust among the 
externally validated models, and, when calibration to the 
same condition, a 6–16% improvement in COVPRIG in 
predicting 9–15-month survival was found (Fig.  3B, C), 
indicating that COVPRIG outperformed CTSI.

Molecular underpinnings of COVPRIG
We further interrogated the molecular underpinnings 
associated with the COVPRIG-based risk groups. Func-
tional enrichment analysis based on DEGs disclosed 
that genes up-regulated in the high-risk group were 
enriched in signaling pathways associated with ECM, 
and genes up-regulated in the low-risk group were pri-
marily enriched in the interferon alpha response pathway 
(Additional file 3: Fig. S3A, B). IDH wild-type GBM has 

been divided into four transcriptome-based subtypes 
[49]. The low-risk group tended to have more classical 
and less proneural samples (Additional file  3: Fig. S3C). 
Instead, COVPRIG identified samples exhibiting a more 
unfavorable prognosis in ME, CL, and NE subtypes 
(Additional file  3: Fig. S3D). Deconvolutional algorithm 
identified higher proportion of regulatory T cells and 
M0 macrophages in the high-risk group, indicating an 
immunosuppressive TME (Additional file 3: Fig. S3). Sev-
eral immune-related gene signatures have been curated 
(Additional file  7: Table  S6), and ROC curves disclosed 
that the COVPRIG score gave the best performance in 
predicting the regulatory T cell (Additional file  3: Fig. 
S3F), in line with the findings of CIBERSORT. Moreo-
ver, the TIDE algorithm identified significantly more 
samples with potential responsiveness to the ICI ther-
apy in the low-risk group (p-value = 0.046) (Additional 
file 3: Fig. S3G). Collectively, these results indicated that 
the TME of the COVPRIG high-risk group was more 
immunosuppressive.

To gain further insight, three scRNA-seq datasets of 
primary GBM were integrated for downstream analysis 
(Additional file  4: Fig. S4A, B). Potential doublets were 
excluded, resulting in a total of 50,232 quantified cells 
(Additional file  4: Fig. S4C). After cell circle normali-
zation, 24 clusters were initially identified (Fig.  4A, B, 
Additional file  4: Fig. S4D) and were defined as 4 types 
of malignant cells (neural-progenitor-like/NPC, oligo-
dendrocyte-progenitor-like/OPC, astrocyte-like/AC, and 
mesenchymal-like/MES), endothelial, microglial, mono/
macro, T cell and oligodendrocyte, according to previ-
ously well-defined marker genes [8]. As enrichment anal-
ysis suggested an alteration of ECM-associated pathways 
in the COVPRIG high-risk group, the activity of ECM-
related pathways of each type of cell was estimated using 
AUCell. As a result, ECM-related pathways were associ-
ated with mono/macro (NABA matrisome-associated, 
NABA ECM affiliated), and to a less extent, with MES-
like cells (NABA core matrisome, Reactome extracellular 
matrix organization) (Additional file 5: Fig. S5), indicat-
ing a role of these cells in shaping the ECM. Besides, the 
top up- and down-regulated genes were also curated 
as the signatures of the COVPRIG high- and low-risk 
groups, which were mainly enriched in NPC-like.1/OPC-
like.3/MES-like.1 and MES-like.2/AC-like.1/2/5 cells, 
respectively (Fig.  4H, I). These findings can be further 
validated by an independent Smartseq2-based single-cell 
RNAseq dataset (Additional file  6: Fig. S6A–C). Inter-
estingly, Scissor algorithm found that NPC-like.1 and 
to a lesser extent, OPC-like.3 were most correlated with 
the COVPRIG high-risk group, while the opposite was 
true for a subset of MES-like.2 and AC-like.1/2/5 cells 
(Fig. 4D), in accordance with the AUCell. Together, these 
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results highlighting the role of NPC-like.1 tumor cells in 
IDH-wild type GBM.

Two subsets of NPC-like tumor cells were identified. 
NPC-like.1 uniquely expressed METTL1, ATP23, and 
CYP27B1, and had different transcriptional regulation 
network from NPC-like.2 (Fig.  5A, B, Additional file  6: 
Fig. S6D, E). High-confidence target genes of the NPC-
like.1 transcriptional factors were primarily enriched in 
the E2F targets (Fig. 5C), which is associated the cell cycle 
controlling. NPC-like cells are implicated in tumor inva-
sion [26], and in this scenario, it was mainly monocytes/
macrophages and some MES-like cells that involved in 
the modification of ECM. Therefore, NPC-like.1 may be 
involved in ECM modification by regulating the function 
of these cells. Cellchat found that NPC-like.1 interact 
with MES-like cells and monocytes/macrophages mainly 
in a PTN, MIF, APP and CD99-dependent manner 

(Fig. 5D, Additional file 6: Fig. S6F), with MIF and APP 
playing a role in ECM remodelling [50, 51]. On the other 
hand, PTPRZ1 played an essential role in receiving sign-
aling from outside and therefore may be a potential target 
for regulating the function of NPC-like.1.

Discussion
Multiple mechanisms dominate the heterogeneous prog-
nosis of IDH wild-type GBM patients. Due to the lack of 
extremely effective therapy for GBM, it is worthwhile for 
clinicians to estimate the mortality risk and decide on 
available therapies to maximize the clinical benefit for 
individuals. Obstacles include the limited data available 
for study, and potential geographic and demographic dis-
parities [52]. Herein, we constructed a prognostic model 
using G × G interactions that greatly increased the num-
ber of common candidates of prognostic significance 

Fig. 4 Association between NPC-like tumor cell with poor outcome. A Cell types and B marker genes of each type of cell. C The activity COVPRIG_
up (DEGs with log2FC > 0.35 and p.val < 0.05, ngene = 73) and COVPRIG_down (log2FC > 0.35, p.val < 0.05, ngene = 94) in each type of cell. D Scissor 
algorithm assessed the correlation between COVPRIG-based risk groups and specific cell types. pos: positively correlated, neg: negatively correlated
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Fig. 5 Features of NPC-like.1. A Genes uniquely expressed by NPC-like.1 cells and their expression density. B Transcriptional regulatory network 
and their high confidence target genes of NPC-like.1. The size of the node is proportional to the percentage of cells expressing the gene 
and the color is proportional to the average expression. C Enrichment analysis of high confidence target genes. D Signal export from NPC-like.1 cell 
to MES-like cells and monocytes/macrophages and important molecules. E Signal input to NPC-like.1 cell from other cells and important molecules
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between small sample datasets. The model was made 
robust through a multi-step screening process and sep-
arate determination of coefficients from RNA-seq and 
microarray data, as confirmed by systematic performance 
comparison. Collectively, this study provided a reference 
for accurately determining the prognosis of IDH wild-
type GBM.

In total, six gene pairs were used to construct COV-
PRIG, including RIT2 and OAS1, HOXA5 and MLLT11, 
SLC1A2 and FAM189A2, LOXL1 and NCAPG, C21orf62 
and GOLGA8A, and UBE2S and NRXN1. The biological 
implications of some of these genes in GBM have been 
explored. OAS1 is an interferon-inducible gene that 
encodes a protein involved in the synthesis of 2’,5’-oli-
goadenylates and the innate immune response. OAS1 
may affect the prognosis of GBM in a TRIM5-dependent 
manner [53]. Increased expression of HOXA5, encoding a 
transcription factor named homeobox genes, was associ-
ated with the tumorigenic potential of glioma stem cell 
[54, 55]. In addition, ubiquitin-conjugating enzyme E2S 
encoded by UBE2S is associated with the activity of PI3K-
Akt pathway in GBM and may serve as a therapeutic tar-
get [56]. This suggests that the candidate genes derived 
from our screening for G × G interactions may have bio-
logical significance in IDH wild-type GBM.

The essential role of G × G interactions in progno-
sis was inspired by Zhang et  al. [21]. They found that 
the expression of EGLN2 was negatively correlated 
with HIF1A in non-small cell lung cancer. Interestingly, 
HIF1A shifted from an independent risk factor to a pro-
tective factor as EGLN2 expression increased. Likewise, 
we found that the prognostic significance of LOXL1 and 
C21orf62 was associated with the expression of NCAPG 
and GOLGA8A (data not shown). The mathematical rep-
resentation of G × G interactions include the z-score in 
the Cox-ph model, and the product of normalized gene 
expressions [22, 23]. Zhang et  al. and Chen et  al. con-
structed effective prognostic models using the product of 
gene expressions as a metric for G × G interactions [23, 
24]. However, these studies included 613 and 505 patients 
as train sets, and the total sample size was around 1000, 
which provided a guarantee for developing robust mod-
els. Currently, individual GBM cohorts rarely reach such 
a magnitude, in which poses challenges in identifying 
genes with shared prognostic value. Notably, G × G inter-
action greatly increased the number of candidates for 
model construction, thus, to some extent compensating 
for screening candidates available for more cohorts.

The performance of COVPRIG versus previously con-
structed models was evaluated. Some models seemed to 
outperform COVPRIG in terms of AUC and the C-index. 
However, it is difficult to avoid statistical overfitting with-
out external validation, therefore limiting the application 

of some these models. In the models externally validated, 
COVPRIG had a 12-month AUC of 0.74, which was com-
parable with models 5 and 6. The highest AUC of COV-
PRIG occurred at 18-month (0.79), second to models 4 
and 6, but still satisfactory. Notably, COVPRIG showed 
a 6–16% improvement relative to the externally validated 
and best performing model 4 after calibration to the 
same conditions, indicating that it should be the optimal 
prognostic model available.

The molecular underpinnings of COVPRIG were 
addressed. The dysregulated genes were mainly enriched 
in ECM-related signaling pathways, suggesting that 
COVPRIG high-risk group was characterized by ECM 
remodeling. Further, AUCell identified an association 
between ECM-associated pathways with monocytes/
macrophages and some MES-like cells, in line with a pre-
vious study [57]. Interestingly, both AUCell and Scissor 
identified that genes up-regulated in the COVPRIG high-
risk group were primarily enriched in NPC-like.1, indi-
cating that the unfavorable outcome of the COVPRIG 
high-risk group was driven by NPC-like.1, and the tumor 
invasion associated with NPC-like cells was dependent 
on its interaction with cells including macrophages and 
MES-like cells. Further, we addressed the gene expres-
sion, transcriptional regulation, and essential cell com-
munication molecules of NPC-like.1, which may provide 
a preliminary basis for subsequent studies and therapies 
targeting these cells.

There were several limitations. We should acknowledge 
that COVPRIG were not internally validated, which may 
lead to an under-fitting of the model. In the initial stages 
of exploration, tenfold cross-validation was performed 
instead of dividing samples into train and validation sets. 
Despite being able to achieve an AUC approaching 0.9 
and having a satisfactory C-index in one training cohort, 
the excellent performance never passing on to others. 
This may be related to the intrinsic differences in differ-
ent GBM cohorts and exploring such differences is one 
of the directions for future update of COVPRIG. In addi-
tion, as COVPRIG was constructed primarily with Cau-
casians and Asians, it should be cautiously applicated to 
other ethnic populations.

Conclusions
This study provided a current robust prognostic tool for 
GBM which was applicable to both microarray and RNA 
sequencing data. In addition, this study highlighted the 
role of a class of neuronal progenitor cells in driving poor 
prognosis in GBM. These results may provide basis for 
future research.



Page 13 of 15Ji et al. Journal of Translational Medicine          (2023) 21:533  

Abbreviations
AC  Astrocyte-like cell
AUC   Area under the curve
CCA   Canonical correlation analysis
CNS  Central nervous system
DEG  Differentially expressed gene
ECM  Extracellular matrix
FPKM  Fragments per kilobase of exon model per million mapped 

fragments
GBM  Glioblastoma
HR  Hazard ratio
ICI  Immune checkpoint inhibitor
IDI  Integrated discrimination improvement
IDH  Isocitrate dehydrogenase
LGG  Lower-grade glioma
MAD  Median absolute deviation
MES  Mesenchymal-like cell
MGMT  O-6-methylguanine-DNA methyltransferase
MNN  Mutual nearest neighbors
NPC  Neural-progenitor-like cell
OPC  Oligodendrocyte-progenitor-like cell
ROC  Receiver operating characteristic curve
TERT  Telomerase reverse transcriptase
TIDE  Tumor Immune Dysfunction and Exclusion
TME  Tumor microenvironment
WHO  World health organization

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12967- 023- 04382-2.

Additional file 1: Figure S1. The log-rank p value of the model when 
incorporating increasing numbers of G × G interactions. The bar plots 
showed an explicit trend that the prognostic efficacy of the model 
became more statistical significant as the number of G × G interactions 
incorporated into the model increased. P-values were calculated based on 
TCGA RNAseq. Red dashed line indicated p = 0.05.

Additional file 2: Figure S2. The prognostic significance of the GG score. 
(A) The K–M analysis. (B) AUCs of each cohort at specific time points. (C) 
Multivariate Cox regression analysis of GG score with clinicopathological 
features. (D) Univariate Cox regression of COVPRIG score in multiple GBM 
datasets. (E) Discriminative ability of COVPRIG based on TCGA microarray 
COVPRIG score increased from group.1 to group.4. (F) ROC curves based 
on TCGA microarray. (G) Predictive ability of COVPRIG. (H) Increased COV-
PRIG scores impair overall survival in a dose–response manner.

Additional file 3: Figure S3. Transcriptome features of COVPRIG-based 
group. (A) Volcano plot of DEGs and (B) functional enrichment analysis. 
(C) Distribution of transcriptome-based GBM subtypes. (D) K–M analysis of 
COVPRIG-high and -low group in different GBM subtypes. (E) Differentially 
infiltrated immune cells estimated by CIBERSORT. The TME of COVPRIG 
high-risk group contained more regulatory T cell and M0 macrophages 
and CD4 T cell, monocyte, and eosinophil instead. (F) Performance of 
COVPRIG score in predicting previously well studied immune-related gene 
signatures. (G) Distribution of samples that had potential to respond to ICI.

Additional file 4: Figure S4. Preprocess of single-cell datasets. (A, B) 
Before and after batch effects correction. (C) Identifying potential doublets 
using DoubletFinder. (D, E) Before and after cell circle normalization. 
GSE131 represents GSE131928, GSE138 represents GSE138794, GSE139 
represents GSE139448.

Additional file 5: Figure S5. Cells associated with interested pathways. 
Gene signatures that were enriched in the COVPRIG high- and low-risk 
groups were retrieved from MSigDB. Activation status of these pathways 
were estimated by AUCell and automatically binarized.

Additional file 6: Figure S6. (A) Cell type of SmartSeq2-based primary 
GBM. AUCell identified cells that had enriched (B) COVPRIG_up and (C) 
COVPRIG_down gene signatures. (D) Transcriptional factors and regulons 
activated in NPC-like.1 and NPC-like.2 cells based on SCENIC. Algorithm. 

(E) Transcriptional factors activated in NPC-like.2 with their high confi-
dence target genes. (F) Cellular communication-dependent molecules.

Additional file 7: Table S1. Demographics of IDH wild-type GBM 
samples included in the study. Table S2. Demographics of all GBM 
samples included. Table S3. The first screen for gene main effects were of 
prognostic significance. Genes were included in the Cox-ph model on a 
case-by-case basis, with age as the covariate. Table S4. The second screen 
for gene main effects based on the TCGA cohort. Genes with p values less 
than 0.05 in the first screen were included in the cox-ph model simultane-
ously, with age as a covariate. Table S5. 13 G × G interactions in the first 
screen. Table S6. Gene signature associated with T cell function.
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