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Abstract 

Programmed cell death (PCD) plays an important role in many aspects of individual development, maintenance 
of body homeostasis and pathological processes. Ferroptosis is a novel form of PCD characterized by the accumula-
tion of iron-dependent lipid peroxides resulting in lethal cell damage. It contributes to tumor progression in an apop-
tosis-independent manner. In recent years, an increasing number of non-coding RNAs (ncRNAs) have been demon-
strated to mediate the biological process of ferroptosis, hence impacting carcinogenesis, progression, drug resistance, 
and prognosis. However, the clear regulatory mechanism for this phenomenon remains poorly understood. Moreover, 
ferroptosis does not usually exist independently. Its interaction with PCD, like apoptosis, necroptosis, autophagy, 
pyroptosis, and cuproptosis, to destroy cells appears to exist. Furthermore, ncRNA seems to be involved. Here, we 
review the mechanisms by which ferroptosis occurs, dissect its relationship with other forms of death, summarize 
the key regulatory roles played by ncRNAs, raise relevant questions and predict possible barriers to its application 
in the clinic, offering new ideas for targeted tumour therapy.
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Introduction
Ferroptosis is a novel model of cell death, as defined in 
2012 [1]. It is distinguished from other types of deaths 
by apoptosis, necroptosis, autophagy, pyroptosis, and 
cuproptosis [1, 2]. Its main morphological manifestations 

are shrinking mitochondria, increased membrane den-
sity, and fewer cristae. In recent years, research into 
ferroptosis has expanded tremendously. Numerous sci-
entific breakthroughs have been gained in oncology, 
and targeting ferroptosis has become a potential cancer 
therapy.

Although each programmed cell death (PCD) has a 
unique mechanism of occurrence and cellular and bio-
chemical properties, mixed types of cell death seem more 
prevalent than single types of death in most cells. Some 
of their components and factors are synergistic. Explor-
ing how ferroptosis interacts with other PCDs at the 
molecular level and identifying and integrating shared 
pathways will open new areas for systematic research [3].

Ninety-eight percent of the human genome is tran-
scribed into RNAs that do not encode proteins, known as 
non-coding RNAs (ncRNAs) [4]. Evidence suggests they 
are vital in basic biological processes like growth and 
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development and almost every human disease, particu-
larly cancer [5, 6]. At the same time, ncRNAs have been 
shown to be involved in the biology of ferroptosis and, 
in turn, influence tumour progression. This implies that 
ncRNA-based targeted iron death therapy is a promising 
novel anti-cancer therapy. However, the mechanisms by 
which ncRNAs regulate ferroptosis are still poorly under-
stood. Furthermore, the role of ncRNAs in ferroptosis 
has not been fully defined.

In this review, we provide new ideas for targeting ncR-
NAs in ferroptosis-related therapeutic strategies by sys-
tematically summarizing ferroptosis mechanisms and 
the progress of ncRNA targeting of ferroptosis signaling 
pathways in tumors, paying particular attention to the 
interactions between ferroptosis and other PCDs.

Mechanism of ferroptosis
Ferroptosis is a novel form of cell death regulation that 
relies on iron ion-mediated oxidative damage. Fer-
roptosis may be triggered when intracellular iron ion-
dependent reactive oxygen species (ROS) accumulate in 
excess and glutathione peroxidase 4 (GPX4) scavenging 
is diminished, resulting in an imbalance in the homeo-
stasis of ROS production and degradation, i.e. a redox 
imbalance between intracellular oxidants and antioxi-
dants [7]. Current molecular mechanisms of ferroptosis 
include glutathione (GSH) depletion, lipid peroxida-
tion, and impaired iron metabolism (Fig.  1). The vari-
ous molecules and signals involved in iron metabolism 
and lipid peroxidation will be discussed below.

Fig. 1 The core molecular mechanisms of ferroptosis. The regulatory pathways of ferroptosis are divided into iron metabolism, lipid metabolism 
and the system xc-/GSH/GPX4 axis. Iron metabolism: Transferrin (TF); Transferrin receptor 1 (TFRC); ferroportin (FPN); Ferritin heavy chain 1 (FTH1); 
Ferritin light chain (FTL); solute carrier family 39 member 14 (SLC39A14); Six transmembrane epithelial antigen of protein 3 (STEAP3); Poly (RC) 
binding protein 1/2 (PCBP1/2); Reactive oxygen species (ROS); Lipid metabolism: Polyunsaturated fatty acid (PUFA); Long chain acyl CoA synthetase 
4 (ACSL4); Lysophosphatidylcholine acyltransferase 3 (LPCAT3); Phosphatidylethanolamine (PE); arachidonic acid (AA); adrenic acid (AdA), coenzyme 
A (CoA); system xc-/GSH/GPX4 axis: Solute carrier family member 7A11 (SLC7A11); Solute carrier family member 3A2 (SLC3A2); Glutathione (GSH); 
glutathione-disulfide reductase (GSR); glucose 6-phosphate dehydrogenase (G6PD); Glutathione peroxidase 4 (GPX4); oxidized glutathione (GSSG); 
nicotinamide adenosine dinucleotide hydrogen phosphate (NADPH); Nuclear factor E2 related factor 2 (NRF2)
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The canonical system XC‑/GSH/GPX4 pathway
Amino acid metabolism is an important part of the 
metabolic cycle of organisms, and abnormal amino acid 
metabolism is closely related to ferroptosis. Cystine/
glutamic acid reverse transporter (system Xc-) plays an 
important role in maintaining the balance and distribu-
tion of amino acids and is a very important antioxidant 
system in cells. Its inactivation of the cellular antioxidant 
system by downregulation or inhibition of the Cystine/
glutamic acid reverse transporter (system Xc-) is a major 
determinant of the suceptibility to ferroptosis. System 
XC- consists of the light chain xCT/solute carrier family 
7 member 11 (SLC7A11) and the heavy chain 4F2hc/sol-
ute carrier family 3 member 2 (SLC3A2), and SLC3A2 is 
a chaperone that facilitates momemnt of SLS7A11 to the 
plasma surface and SLC7A11 forms the transport chan-
nel in its oxidated form [8]. Cystine is transported intra-
cellularly by system XC- then transformed into cysteine. 
Cysteine is the rate-limiting amino acid for GSH (a vital 
intracellular antioxidant) production. Moreover, GPX4, 
a member of the selenium family containing GPXs, is 
a recognized negative regulator of ferroptosis. It is an 
enzyme for the reduction of toxic peroxides (L-OOH) to 
non-toxic lipid alcohols (L-OH) [9, 10]. It was shown that 
GSH is an essential cofactor of GPX4 and can influence 
the GPX4 function [11]. Therefore, system XC-mediated 
cysteine can also indirectly affect GPX4 activity. Further-
more, GSH synthesis requires the nicotinamide adeno-
sine dinucleotide hydrogen phosphate (NADPH) cycle to 
supply ATP.

Lipid metabolism pathway
Lipids are important regulators of cell death, and the 
accumulation of lipid peroxides is thought to be an 
important driver of ferroptosis [12]. Although the exact 
source of lipid peroxides is unknown, polyunsaturated 
fatty acids (PUFAs) have been identified as an impor-
tant source. PUFAs are an important component of cell 
membranes and they can perform many cellular func-
tions by enhancing cell mobility. However, they contain 
unstable carbon–carbon double bonds that can generate 
lipid reactive oxygen species, which can cause ferrop-
tosis when accumulated in excess [13]. Among PUFAs, 
arachidonic acid (AA) and adrenoic acid (ADA) are the 
203 main substrates causing lipid peroxidation during 
ferroptosis [14]. In contrast, acyl-coenzyme A synthase 
long-chain family member 4 (ACSL4) and lysophos-
phatidylcholine acyltransferase 3 (LPCAT3) are required 
for the biosynthesis and remodeling of AA/AdA deriva-
tives. Both can catalyze the formation of AA/AdA-CoA 
derivatives and AA/AdA-phosphatidylethanolamine 
(AA/AdA-PE) from free AA/AdA. AA/AdA-PE then 

synthesizes lipid peroxides AA/AdA-hydroperoxide-PE 
(AA/AdA-OOH-PE) through enzymatic and non-enzy-
matic reactions [15]. Lipid peroxides themselves and 
their degradation products (malondialdehyde (MDA) and 
4-hydroxynonenal (4-HNEs)) produce cytotoxicity and 
cause cell death [16]. Moreover, the degradation process 
involves cyclooxygenase-2 (COX2) and nicotinamide 
adenine dinucleotide phosphate oxidases 2 (NOX2), 
among others [17].

Iron metabolism pathway
Iron has a dual role in cell growth. Although iron is a 
trace element essential for cell proliferation, its exces-
sive accumulation can cause cell damage and increase the 
risk of diseases such as tumors [7]. Iron ions are also an 
important component in the accumulation of lipid per-
oxides and the initiation of iron death. The key to iron 
metabolism is the regulation of iron pool capacity, which 
mainly includes iron uptake, storage and export.

(1) Iron ions are transferred into the cytosol through 
multiple pathways. In one respect, transferrin 
(Tf ) and lactotransferrin (LTF) store extracellular 
iron as  Fe3+, which is then bound to the transfer-
rin receptor (TfR) and another unknown receptor 
on the cell membrane, and  Fe3+ is endocytosed 
to form endo nucleosomes [18, 19]. In the endo-
some, the metal reductase six transmembrane 
epithelial antigen of protein 3 (STEAP3) reduces 
 Fe3+ to  Fe2+. On the contrary, solute carrier family 
39-member 14 (SLC39A14/ZIP14) and solute car-
rier family 39-member 8 (SLC39A8/ZIP8) transfer 
 Fe2+ directly into the intracellular compartment by 
transporting non-transferrin-bound iron (NTBI) to 
the cell membrane [20].

(2) Multiple mechanisms maintain the equilibrium of 
 Fe2+ in the cytoplasm. Poly C-binding protein 1/2 
(PCBP1/2) oxidizes most  Fe2+ to  Fe3+, which is 
stored in ferritin (composed of light chain (FTL) 
and heavy chain 1 (FTH1)), which itself can be 
degraded to increase free iron levels; iron regula-
tory protein (IRP1/2) promotes the free iron utili-
zation in cells in multiple pathways; and heme oxy-
genase 1 (HO-1), regulated by the nuclear factor 
E2-related factor 2 (Nrf2 / NFE2L2) gene, catalyzes 
the degradation of heme to produce  Fe2+ [21].

(3) Iron efflux protein solute carrier family 40 member 
1 (SLC40A1/ferroportin1/FPN) and ferritin transfer 
out protein Prominin2 can facilitate the export of 
intracellular ferric ions and ferritin [22]. When the 
intracellular iron metabolic pathway is abnormal, 
and an unstable iron pool is formed,  Fe2+ then gen-
erates ROS through the Fenton reaction [1] or par-
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ticipates in the iron-containing lipoxygenase activa-
tion [23], triggering lipid peroxidation, leading to 
cell damage. This process is known as ferroptosis.

In conclusion, iron is crucial to the physiological func-
tioning of cells. A lack of iron can cause cells to malfunc-
tion, whereas an abundance of iron can cause oxidative 
stress on cells and ferroptosis.

Other metabolic pathways
P53, the “star molecule” of oncology, is a double-edged 
sword in ferroptosis. P53 is a SLC7A11 transcriptional 
repressor, which increases cellular sensitivity to ferrop-
tosis through SLC7A11 in a GPX4-dependent or non-
dependent pathway [24]. Additionally, P53 negatively 
regulates ferroptosis by acting on dipeptidyl peptidase 
4 (DPP4) or by inducing cell cycle protein-dependent 
kinase inhibitor 1A (CDKN1A/p21) [25].

The transcription factor Nrf2 is involved in antioxidant 
responses, and various iron and lipid metabolism factors 
are among its target genes [26]. Thus, Nrf2 can counter-
act ferroptosis by regulating intracellular iron ion content 
[27], GPX4 levels [28], and the NAPDH cycle [29].

The flavin protein apoptosis-inducing factor mito-
chondrial-associated 2 (AIFM2), subsequently renamed 
ferroptosis inhibitory protein 1 (FSP1) [30], regulates 
ferroptosis negatively. Interestingly, its function is inde-
pendent of cellular GSH levels and GPX4 activity. FSP1 
catalyzes CoQ10 regeneration with NAD(P)H and influ-
ences ferroptosis progression by an independent pathway 
FSP1-CoQ10-NAD(P)H [31].

Effect of ncRNA‑mediated ferroptosis on tumor 
progression
ncRNAs are a unique class of RNAs transcribed from 
genes that do not encode proteins [32]. In addition to 
playing significant functions at the transcriptional and 
post-transcriptional levels, they can also govern the 
course of human disease through epigenetic alterations. 
The involvement of ncRNAs in regulating the progres-
sion of various cancer types has been well documented, 
and targeting ncRNAs has shown promising clinical 
therapeutic effects, which we will not repeat here. Recent 
studies have revealed that ncRNAs play an important 
role in regulating the progression of various cancer types 
through the iron death pathway, which can regulate iron 
death-related gene expression through epigenetic, tran-
scriptional and translational modalities. They play a role 
in tumorigenesis, progression, treatment and prognosis. 
Although the role of ncRNAs in iron death is not yet fully 
defined, it has an invaluable role in the targeting of cancer 
therapy [33, 34]. The main relevant ncRNAs identified so 

far are microRNA (miRNA), long ncRNA (lncRNA) and 
circular RNA (circRNA).

miRNAs and ferroptosis
miRNAs exhibit function primarily by binding to and 
regulating the expression of the 3′-untranslated region 
of the target mRNA [35]. Since more than 60% of cod-
ing genes are potential targets of miRNAs [5], miRNAs 
among ncRNAs are the most widely studied. miRNAs 
can regulate ferroptosis key molecules in various cancer 
cells and participate in tumor progression in numerous 
ways, which we have sorted it out in detail (Table 1).

Previous studies have shown that a single miRNA 
can be involved in ferroptosis by regulating iron death-
related genes in multiple cancers simultaneously, such as 
miR-324-3p, miR-200a and miR-7-5p. miR-324-3p was 
reported to be significantly downregulated in cis-diam-
minedichloroplatinum II (DDP, aka cisplatin)-resistant 
lung adenocarcinoma cells and increased the resist-
ant cells’ sensitivity to cisplatin by targeting GPX4 [36]. 
Meanwhile, metformin could promote ferroptosis by the 
miR-324-3p/GPX4 axis in breast cancer [37]. Addition-
ally, the miR-200 family is known for its down-regulation 
in human tumor cells. By targeting important mRNAs 
involved in epithelial mesenchymal transition (EMT) 
(ZEB1 and ZEB2), -catenin/Wnt signaling (-catenin), 
EGFR inhibitor resistance (ERRFI-1), and chemoresist-
ance to therapeutic drugs, it plays a critical role in reduc-
ing EMT, tumor cell adhesion, migration, invasion, and 
metastasis. As a ferroptosis regulator, NRF2 has antioxi-
dant properties, and its levels are regulated by Keap1. It 
has been reported that miR-200a regulates the Keap1/
Nrf2 pathway in the mammary epithelium [38], and 
methylseleninic acid (MSA) can act as a chemopreven-
tive agent for oesophageal squamous cell carcinoma 
(ESCC) cells by the KLF4/miR-200a/Keap1/Nrf2 axis 
[39]. Although miR-200a can regulate essential ferrop-
tosis components, its involvement in ferroptosis has not 
been experimentally confirmed. Moreover, miR-7-5p 
was highly expressed in radiation-resistant ovarian, oral 
squamous cell carcinoma, and hepatocellular carcinoma 
cell lines and affected ferroptosis by downregulating the 
mitochondrial iron transporter protein Mitoferrin and 
decreasing  Fe2+ [40]; and later, Kazuo et al. demonstrated 
that miR-7-5p was upregulated in radiation-resistant 
cells of cervical cancer and was involved in the cellular 
regulation of ROS, mitochondrial membrane potential, 
and  Fe2+ level regulation and affects the ALOX12 and 
HIF1α expression [41].

miRNA is an important exosome component, and 
it has been detected in exosomes of several cell types 
[42]. 15-lipoxygenase (ALOX15) is closely associ-
ated with the accumulation of lipid ROS in cancer cells 
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Table 1 miRNAs regulate ferroptosis in cancer progression

miRNA Role in ferroptosis Mechanism Cancer References

miR-670-3p Inhibit Downregulates ACSL4 GBM [107]

miR-23a-3p Inhibit Downregulates ACSL4 HCC [108]

miR-424-5p Inhibit Downregulates ACSL4 OC [40]

miR-7-5p Inhibit Downregulates mitoferrin OC, OSCC and HCC [41]

miR-7-5p Inhibit Upregulates ferritin, downregulates ALOX12 Cervical cancer, OSCC [41]

exo-miR-522 Inhibit Downregulates ALOX15 GC [44]

miR-18a Inhibit Downregulates ALOXE3 GBM [109]

miR-214-3p Promote Downregulates ATF4 HCC [110]

miR-3200-5p Promote Downregulates ATF4 HCC [111]

miR-155 Promote Downregulates Foxo3a Pancreatic cancer [112]

miR-4735-3p Promote Downregulates FPN CCRCC [113]

exo-miR-4443 Inhibit Downregulates m6A, Upregulates FSP1 NSCLC [45]

miR-1228 Inhibit Upregulates FSP1 Breast cancer [114]

miR-4715-3p Promote Downregulates AURKA and GPX4 UGC [115]

miR-9 Inhibit Downregulates GOT1 Melanoma [116]

miR-15a-3p Promote Downregulates GPX4 CRC [117]

miR-539 Promote Downregulates GPX4 CRC [118]

miR-324-3p Promote Downregulates GPX4 Breast cancer [37]

miR-324-3p Promote Downregulates GPX4 NSCLC [119]

miR-15a Promote Downregulates GPX4 PCa [120]

miR-1287-5p Promote Downregulates GPX4 Osteosarcoma [121]

miR-29b Promote Downregulates GPX7 glioma [122]

miR-19a Inhibit Downregulates IREB2 CRC [123]

miR-130b-3p Inhibit Downregulates DKK1, upregulates NRF2 and HO-1 Melanoma [124]

miR-7 Inhibit Downregulates Keap1, upregulates NRF2 Human neuroblastoma [125]

miR-200a Inhibit Upregulates NRF2 Breast cancer [38]

miR-200a Inhibit Upregulates Keap1 and NRF2 ESCC [39]

miR-6077 Promote Downregulates NRF2 LUAD [126]

miR-450b-5p Promote Downregulates NRF2 NPC [127]

miR-365a-3p Promote Downregulates NRF2 NSCLC [128]

miR-137 Inhibit Downregulates SLC1A5 Melanoma [129]

miR-382-5p Promote Downregulates SLC7A11 Ovarian, breast cancer [130]

miR-489-5p Promote Downregulates SLC7A11 GC [131]

miR-125b-5p Promote Downregulates SLC7A11 OSCC [132]

miR-34c-3p Promote Downregulates SLC7A11 OSCC [133]

miR-1261 Promote Downregulates SLC7A11 HCC [134]

miR-25-3p Promote Downregulates SLC7A11 PCa [134]

miR-27a Promote Downregulates SLC7A11 Bladder cancer [135]

miR-375 Promote Downregulates SLC7A11 GC [136]

miR-5096 Promote Downregulates SLC7A11 Breast cancer [137]

miR-489-3p Promote Downregulates SLC7A11 GC [131]

miR-139-5p Promote Downregulates SLC7A12 Pancreatic carcinoma [138]

miR-27a-3p Inhibit Downregulates SLC7A11 NSCLC [139]

miR-125b-5p Promote Downregulates STAT3 GC [140]

miR-101-3p Promote Downregulates TBLR1 LC [141]

miR-545 Inhibit Downregulates TF CRC [142]

miR-21-3p Promote Downregulates TXNRD1 Melanoma [143]
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[43]. Cisplatin and paclitaxel promote miR-522 secre-
tion by cancer-associated fibroblasts (CAFs) through 
the USP522/hnRNPA7 axis, thereby downregulating 
ALOX15 and reducing ROS production in cancer cells, 
ultimately leading to chemoresistance [44]. This study 
confirms the occurrence of ferroptosis in tumor micro-
environment-associated exosomes for the first time. 
Moreover, exosomal miR-4443 was highly expressed in 
cisplatin-resistant non-small cell lung cancer (NSCLC) 
cells. Further studies revealed that miR-4443 could target 
methyltransferase-like 3 (METTL3), thereby reducing the 
N6 methyladenosine (m6A) level in cells, while the FSP1 
expression is regulated by m6A modifications. Overall, 
miR-4443 regulates the FSP1 expression by METTL3 in 
an m6A-like manner, which in turn is involved in ferrop-
tosis and confers cisplatin resistance to NSCLC cells [45].

To summarize Table 1 we found that different miRNAs 
can regulate iron ion levels through different pathways, 
and an imbalance of iron ions can lead to uncontrolled 
miRNA expression. Also, miRNAs and NRF2 exist to 

regulate each other. In conclusion, miRNAs are involved 
in potential regulatory mechanisms of ferroptosis, 
including various pathways such as mitochondria-associ-
ated proteins, iron metabolism, glutathione metabolism 
and lipid peroxidation, and in turn, miRNAs and ROS 
can regulate each other in various pathways.

lncRNA and ferroptosis
lncRNA has a longer sequence than miRNA. It mainly 
acts as a regulator of transcription factors in the nucleus 
or as a sponge for miRNAs in the cytoplasm [46].

Unlike miRNAs, lincRNAs can operate as miRNA 
sponges to indirectly regulate the cell death process and 
act directly on ferroptosis key genes and proteins. The 
most recent research on the role of lincRNAs in ferropto-
sis is described in Table 2.

Stearoyl coenzyme A desaturase 1 (SCD1) is a mech-
ano reactive enzyme that reprograms lipid metabolism in 
gastric cancer stem cells (GCSC) and participates in fer-
roptosis. In contrast, exosomal lncFERO (exo-lncFERO) 

Table 2 lncRNAs regulate ferroptosis in cancer progression

IncRNA Role in ferroptosis Mechanism Cancer References

NEAT1 Inhibit Upregulates ACSL4 NSCLC [144]

lncRNA ASMTL-AS1 Promote Upregulates SAT1 LUAD [145]

NEAT1 Promote Sponges miR-362-3p to upregulate MIOX HCC [146]

NEAT1 Inhibit Downregulate SLC7A11 Melanoma [103]

LINC00551 Promote Sponges miR-4328 to upregulate DDIT4 LUAD [102]

H19 Inhibit Inhibits production of lipid ROS and induces produc-
tion of GSH

Breast cancer [147]

H19 Inhibit Sponges miR 19b-3p to upregulate FTH1 LC [148]

TUG1 Promote Downregulates FTH1 Glioma [149]

Lnc GABPB1-AS1 Promote Downregulates GABPB1 and PRDX5 HCC [150]

lncRNA BBOX1-AS1 Inhibit Sponges miR-513a-3p to downregulate SLC7A11 Esophageal squamous cell cancer [151]

LINC00618 Promote Interacts with LSH to downregulate SLC7A11 Leukemia [152]

P53RRA (LINC00472) Promote Interacts with G3BP1 to downregulate SLC7A11 LC [99]

OIP5-AS1 Inhibit Sponges miR-128-3p to upregulate SLC7A11 Prostate cancer [153]

lncRNA slc16a1-AS1 Inhibit Sponges miR-143-3p to upregulate SLC7A11 Renal cell carcinoma [154]

HEPVAL Promote Downregulate SLC7A11 HCC [155]

lncFERO Inhibit Interacts with hnRNPA1 to upregulate SCD1 GC [47]

lncBDNF-AS Inhibit Interacts with WDR5 and FBXW7 to upregulate VDAC3 GC [156]

RP11-89 Inhibit Sponges miR-129-5p to upregulate PROM2 Bladder cancer [157]

lncLASTR Inhibit Upregulates GPX4 Stomach adenocarcinoma [158]

lncPVT1 Inhibit Sponges miR-214-3p to upregulate GPX4 HCC [52]

HCG18 Inhibit Sponges miR-450b-5p to upregulate GPX4 HCC [159]

MEG8 Inhibit Sponges miR-497-5p to upregulate NOTCH2 Benign hemangioma [160]

lncRNA TMEM161B-AS1 Inhibit Sponges mir-27a-3p to upregulate FANCD2 and CD44 Glioma [161]

lncRNA MT1DP Promote Sponges miR-365a-3p to downregulate NRF2 NSCLC [128]

LINC01606 Inhibit Sponges miR-423-5p to upregulate SCD1 Colon cancer [162]

LINC00336 Inhibit Sponges miR6852 to upregulate CBS LC [163]

LINC01564 Inhibit Upregulate NFE2L2 Glioma [164]
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regulates SCD1 mRNA levels, causing PUFA dysregula-
tion and subsequent ferroptosis inhibition. This enhances 
dryness and regulates chemosensitivity in the body [47].

lncPVT1 is upregulated in various cancers [48–50]. 
It is involved in tumor cell proliferation, migration, 
autophagy, apoptosis, and EMT. It promotes the malig-
nant progression of tumors through physiological or 
pathological mechanisms like hypoxia and exosomes [50, 
51], which are potential therapeutic targets for human 
cancers. According to studies, the therapeutic anesthetic 
ketamine can limit hepatocarcinoma viability and induce 
ferroptosis. Moreover, lncPVT1 can interact with miR-
214-3p and hinder it from acting as a sponge for GPX4, 
effectively responding to ketamine-induced ferroptosis 
[52].

Cancer genomic databases and bioinformatics analysis 
have identified many differentially expressed IncRNAs 
with prognostic value associated with ferroptosis [53–
55]. However, these IncRNAs still lack experimental con-
firmation of their potential as ferroptosis markers.

Overall, lncRNAs can affect ROS metabolism directly 
or indirectly through a variety of mechanisms including 
GPX4, ferric ions, SLC7A11 and, conversely, lncRNAs 
are regulated by them.

circRNA and ferroptosis
CircRNA is a single-stranded RNA molecule in a cova-
lently closed loop. Therefore, it is nucleic acid exonucle-
ase resistant and exhibits high stability in the body [56]. 
Simultaneously, its high abundance is tissue- and stage-
specific [57]. This provides an advantage for circRNAs to 
act as biomarkers and targets for cancer therapy.

Several studies have revealed a relationship between 
circRNA and ferroptosis. circRNAs can mediate ferrop-
tosis through multiple mechanisms in many tumor types 
(Table 3). Compared to the nucleus, circRNAs are more 
often found in the cytoplasm and act as sponges for miR-
NAs that regulate the target genes’ expression [58].

Tumor resistance can significantly compromise clinical 
efficacy. circ-BGN was first found to be highly expressed 
in trastuzumab-resistant HER2-positive breast can-
cer. Further studies revealed that circ-BGN could act 
directly on SLC7A11, a core molecule of ferroptosis, 
and enhanced OTUB1-mediated deubiquitination of 
SLC7A11, thereby inhibiting ferroptosis. The conclu-
sion was also confirmed by in  vivo experiments [59]. 
hsa_circ_0000745 has the potential to act as a diagnostic 
marker for cervical cancer, gastric cancer, and other can-
cers [60, 61]. Yanbi et al. recently found that circ_0000745 

Table 3 circRNAs regulate ferroptosis in cancer progression

circRNA Role in ferroptosis Mechanism Cancer References

Hsa_circ_0021087 
(circLMO1)

Promote Sponges miR-4291 to upregulate ACSL4 Cervical cancer [165]

circGFRA1 Inhibit Sponges miR‐1228 to upregulate AIFM2 Breast cancer [114]

Circ clARS Promote Interacts with ALKBH5 HCC [101]

CircABCB10 Inhibit Sponges miR-326 to upregulate CCL5 Rectal cancer [166]

Circ_0008035 Inhibit Sponges miR-599 to upregulate EIF4A1 GC [167]

circPVT1 Inhibit Sponges miR-30a-5p to upregulate FZD3 Esophageal cancer [168]

circ_0007142 Inhibit Sponges miR-874-3p, upregulates GDPD5 CRC [169]

circKIF4A Inhibit Sponges miR-1231 to upregulate GPX4 TPC [66]

circDTL Inhibit Sponges miR-1287-5p to upregulate GPX4 NSCLC [100]

CircIL4R Inhibit Sponges miR-541-3p to upregulate GPX4 HCC [119]

Circ-TTBK2 Inhibit Sponges miR-761 to upregulate ITGB8 Glioma [170]

Circ_0000745 Inhibit Sponges miR-494-3p to upregulate NET1 ALL [62]

circCDK14 Inhibit Sponges miR-3938 to upregulate PDGFRA Glioma [171]

circKDM4C Promote Sponges miRNA let-7b-5p to upregulate p53 AML [172]

circ0097009 Inhibit Sponges miR-1261 to upregulate SLC7A11 HCC [134]

circEPSTI1 Inhibit Sponges miR-375, miR-409-3p and miR-515-5p 
to upregulate SLC7A11

Cervical cancer [173]

circFNDC3B Inhibit Sponges miR-520d-5p to upregulate SLC7A11 OSCC [174]

circ_0067934 Inhibit Sponges miR-545-3p to upregulate SLC7A11 Papillary and follicular 
thyroid cancers

[175]

circ-BGN Inhibit Upregulates OTUB1 and SLC7A11 Breast cancer [59]

circFOXP3 Inhibit Sponges miR-7a-11p to upregulate SLC520A5 LC [176]

circRHOT1 Inhibit Sponges miR-106a-5p to upregulate STAT3 Breast cancer [177]

circ_0000190 Promote Sponges miR-382-5p to upregulate ZNRF3 GC [178]
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involves cell cycle progression, glycolytic metabolism, 
apoptosis, and ferroptosis in acute lymphoblastic leu-
kemia. Furthermore, this role is accomplished through 
the circ_0000745/miR-494-3p/NET1 axis [62]. It has 
been reported that circKIF4A can promote numerous 
tumor progressions and mediate glycolytic metabolism 
and drug resistance through competitive endogenous 
RNA mechanism mechanism [63–65]. In papillary thy-
roid cancer, circKIF4A negatively regulates ferroptosis 
and promotes tumor proliferation in  vitro and in  vivo. 
In essence, circKIF4A can absorb miR-1231 to increase 
GPX4 levels [66].

In general, circRNAs could be potential therapeutic 
targets for the treatment of cancer through the ferropto-
sis pathway.

In this section, we systematically summarize the ncR-
NAs associated with ferroptosis in cancer to date and 
explore the regulatory role of ncRNAs in cancer progres-
sion and iron death, which implies that ncRNAs have 
great potential as anti-cancer therapeutic targets through 
regulation of ferroptosis. Moreover, ferroptosis-related 
ncRNAs are individually heterogeneous across tumors, 
which has significant implications for personalised tumor 
therapy.

Despite the full potential of ferroptosis-related ncR-
NAs, there are still many unanswered questions. 
Although a clear regulatory role for ncRNAs in the devel-
opment of ferroptosis in tumors has been identified, little 
is still known about the in-depth mechanisms underly-
ing this component. This makes the clinical application 
of ncRNA-dependent approaches to ferroptosis a major 
obstacle. Furthermore, to translate basic research into 
clinical trials, the construction of additional animal mod-
els to validate the role of ncRNAs in ferroptosis is a must. 
In addition, given the shortcomings of conventional 
treatment options for tumors, research on the applica-
tion of biomaterials such as molecular nanomaterials for 
targeted tumor ferroptosis therapy is urgently needed. 
Besides, due to the diversity of ncRNA biological func-
tions, targeting ncRNA therapy is likely to cause some 
complications and cause damage to non-tumor organs. 
For example, miR-375-3p and miR-214-3p, which have 
the potential to both promote ferroptosis in tumor cells 
of cervical cancer and HCC, may also cause fibrosis of 
cardiomyocytes and acute renal impairment[67, 68]. It is 
therefore important to achieve tumor-targeted metasta-
sis of ncRNAs, and multidisciplinary cross-fertilisation 
will facilitate this process.

Relationship between ferroptosis and other PCDs
Abnormal cell death regulation is an important feature of 
cancer. PCDs are highly involved in tumor development, 
including apoptosis, necroptosis, autophagy, pyroptosis, 

ferroptosis, and cuproptosis. Therefore, exploring the 
mechanisms of different types of cell death is of great 
importance in cancer. Researchers have discovered 
that ferroptosis is independent and connected to other 
types of cell death and that its essential regulators are 
also involved in regulating other types of cell death [69]. 
These death types usually share a common pathway [70]. 
Consequently, further investigation of the inter regula-
tion of ferroptosis with other types of programmed cell 
death and developing strategies that can trigger numer-
ous planned cell deaths are extremely promising cancer 
treatment strategies.

Apoptosis and ferroptosis
Apoptosis is a form of cellular suicide induced by the 
activation of intracellular death programs and was ini-
tially thought to be the only way of PCD. It is an intrinsic 
tumor suppressor mechanism that physically displays cel-
lular crumpling, chromatin aggregation, and the produc-
tion of apoptotic vesicles followed by phagocytosis [2]. 
Mechanistically, apoptosis consists of three main aspects: 
oxidative damage, imbalance of calcium homeostasis and 
mitochondrial damage. Apoptosis can be initiated by 
ncRNAs through regulation of the relevant receptors or 
as cerRNAs.

Death structural domain-associated protein (Daxx) 
mediates apoptosis through the Fas-Daxx-ASK1-JNK1 
axis, while the ferritin FTH1 inhibits the action of Daxx 
[71]. Ferroptosis inducer erastin activates the C/EBP 
homogenic protein (CHOP) signal pathway, affecting the 
expression of p53 non-dependent PUMA and increasing 
sensitivity to tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) induced cell death [72]. Fur-
thermore, apoptosis may be directly transformed into 
ferroptosis [73].

Necroptosis and ferroptosis
Necroptosis is an alternate cell death mechanism trig-
gered when apoptosis is blocked and is a degenerative 
pathology caused by damaging factors. Morphological 
features include cell swelling, membrane rupture, release 
of cytoplasmic contents and chromosome condensation. 
The basic molecular mechanism consists of receptor-
interacting kinases (RIPK1 and RIPK3) and mixed-spec-
trum kinase structural domain-like pseudokinases 
(MLKL). The RIPK1/RIPK3 complex recruits and phos-
phorylates MLKL translocates to the plasma membrane, 
and forms channels, releasing damage-associated molec-
ular patterns (DAMPs), permeabilization of the plasma 
membrane, and release of contents [74].

By activating the mitochondrial permeability tran-
sition pore (MPTP) and phosphorylating RIPK1, iron 
excess induces necrotic apoptosis in ischemic stroke. 
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Heat shock protein 90 (HSP90) is an evolutionarily 
conserved and commonly expressed molecular chap-
erone. It intensifies RIPK1 phosphorylation, inhibits 
GPX4 activity, and can induce necroptosis and fer-
roptosis [75]. Thus, HSP90 acts as a co-regulatory 
node for necroptosis and iron sagging. ferroptosis and 
necroptosis are known to be positively regulated by 
ACSL4 and MLKL, respectively. In a mouse model of 
renal ischemia–reperfusion injury, ACSL4 and MLKL 
knockdown modulate the sensitivity of necroptosis 
and ferroptosis, respectively [76]. This led us to won-
der if ferroptosis and necroptosis have complementing 
processes reasonably. Therefore, it is essential to con-
tinue to explore the relationship between ferroptosis 
and necroptosis.

Autophagy and ferroptosis
Autophagy is a process by which cells ‘self-feed’. Under 
physiological conditions, basal autophagy is a cellular 
self-protection mechanism, while induced autophagy 
under stressful conditions may cause cell death. Mor-
phologically, it is characterised by the accumulation of 
autophagic vesicles and cytoplasmic vesiculation with-
out chromatin condensation [77]. There are three main 
forms of autophagy: microautophagy, macroautophagy, 
and chaperone-mediated autophagy (CMA). Autophagy 
begins mechanistically with pre-autophagic structures 
in the cytoplasm, which create autophagosomes after 
phagocytosis of damaged organelles and denatured mac-
romolecules. Subsequently, autophagosomes combine 
with lysosomes to generate autolysosomes, which destroy 
the contents of autophagosomes [77].

In exploring the relationship between autophagy and 
ferroptosis, we once again identified HSP90. HSP90 
increases the protein stability of CMA receptor lyso-
some-associated membrane protein 2A (LAMP2A) to 
accelerate GPX4 degradation and enhance ferroptosis 
[78]. Zili et  al. found that increased BECN1 mRNA 
stability with the involvement of ELAVL1 caused fer-
ritin phagocytosis and subsequent ferroptosis [79]. 
While in Parkinson’s disease (PD), FTH1 overexpres-
sion inhibits ferritin phagocytosis and, ultimately, fer-
roptosis [80]. We, therefore, hypothesize that ferritin 
phagocytosis (a sort of selective autophagy) may have 
a good connection with ferroptosis. Nuclear recep-
tor coactivator 4 (NCOA4) has been reported to be 
involved in autophagy-dependent ferritin degradation 
[81], and NCOA4 overexpression can contribute to 
ferritin degradation and promote increased free iron 
and subsequent ferroptosis [82]. Interestingly, intracel-
lular free iron regulates NCOA4 levels [81]. Moreover, 
RAB7A and SQSTM1 are regulators of lipophagy and 
clockophagy, respectively, and their downregulation 

prevents lipid peroxidation-dependent ferroptosis [83, 
84]. High mobility group box-1 protein (HMGB1) is 
a DAMP, and its relationship with autophagy and fer-
roptosis is more complex. On one side, autophagy-
dependent ferroptosis can increase the HMGB1 
release [85], whereas HMGB1 can be engaged in the 
advancement of autophagy and ferroptosis [86, 87]. 
Recent studies have revealed that hippocampal calm-
odulin-like 1 (HPCAL1) is an autophagy receptor 
that affects membrane tension by regulating CDH2, 
which further affects lipid peroxidation and ultimately 
inhibits ferroptosis in  vitro and in  vivo [88]. Another 
autophagy receptor, Tax1 (human T cell leukemia virus 
type I) binding protein 1 (TAX1BP1), promotes GPX4 
degradation and subsequent ferroptosis in response to 
copper stress [89]. The above studies suggest a close 
association between autophagy and ferroptosis.

Pyroptosis and ferroptosis
Programmed cell death induced by inflammatory vesicles 
mediated by gasdermins is known as cell scorch death 
and can amplify local or systemic inflammatory effects 
[90]. Unique to cell death by scorch is the formation of 
many bubble-like protrusions, known as scorch vesicles, 
within the cell. Mechanistically, inflammatory vesicles 
sense danger and recruit and activate caspase 1, which 
stimulates inflammatory proteins that cleave gastrin D 
(GSDMD), causing it to attach to the cell membrane and 
generate pores, which is the conventional mechanism of 
scorch death. The non-classical pathway of scorch death 
is mainly mediated by cystatase-4, caspase-5, and cas-
pase-11 [91].

We found that there are multiple co-stimulatory factors 
for scorch death and ferroptosis. Transcription factor P53 
is an important regulatory molecule of ferroptosis. More-
over, in NSCLC, P53 can directly increase scorch death 
and inhibit tumor growth [92]. In a myocardial fibro-
sis model, MLK3 regulates ferroptosis and scorch death 
through the JNK/p53 pathway and the NF-κB/NLRP3 
pathway, while miR-351 can inhibit MLK3 expression 
[93]. Additionally, elevated ferric ions and ROS levels can 
induce scorch death and ferroptosis. Rui et al. found syn-
ergistic effects of scorch death and ferroptosis using dual-
induced nano drugs [94]. Furthermore, iron-activated 
ROS can induce scorch death in melanoma through the 
Tom20-Bax-caspase-GSDME axis [95]. Another study 
found that in macrophages, GPX4, a core regulatory pro-
tein of ferroptosis, can block GSDMD activity and trigger 
scorch death by reducing lipid peroxidation. Interest-
ingly, HMGB1 levels were thus altered, eventually leading 
to sepsis [96]. In conclusion, the regulatory relationship 
between scorch death and ferroptosis should be explored 
in depth.
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Cuproptosis and ferroptosis
Copper is a key factor in cell signaling, and cell death 
induced by copper overload was found to be a new form 
of cell death called cuproptosis. The main targets of 
copper death are the mitochondria, which are morpho-
logically characterised by mitochondrial wrinkling and 
mitochondrial membrane rupture. Both copper ion car-
rier induction and dysregulation of copper homeostasis 
lead to copper death. Copper binds to lipases in the tri-
carboxylic acid (TCA) cycle, leading to protein aggrega-
tion, proteotoxic stress, and cell death [97].

Elesclomol (ES) is a copper ion carrier. In CRC cells, ES 
allows copper ions to be retained in mitochondria, lead-
ing to ROS accumulation, promoting SLC7A11 degra-
dation, and increasing susceptibility to ferroptosis [98]. 
Given the novelty of cuproptosis, its relationship with 
ferroptosis has not been extensively studied.

Based on the initial investigation, we have generated 
Fig. 2, in which molecules such as HSP90, HMGB1, and 
P53 show multiple times. Thus, are there shared regula-
tory proteins and signaling pathways between ferropto-
sis and other PCDs? Is this sharing related to the positive 
correlation between ferroptosis and other forms of death? 
Can we suppress multiple death pathways through this 

sharing? Hopefully, these questions can be addressed in 
subsequent studies. Although many of the study subjects 
are non-tumor disorders, this suggests the complexity of 
the relationships between ferroptosis and other PCDs, 
hence pointing the way for future tumor-related research.

Role of ncRNA in crosstalk between ferroptosis 
and other PCDs in tumors
ncRNAs are important regulators of eukaryotic gene 
expression, and many ncRNAs have been found to medi-
ate PCD to influence tumor malignant progression. The 
data above demonstrate the relationship and similarities 
between ferroptosis and numerous forms of cell death. 
Without a doubt, ncRNAs participate in regulating cross-
talk between these PCDs. This section provides a sum-
mary of relevant studies (Table 4).

Zuli et  al. found that LINC00618 promotes apoptosis 
by increasing BCL2-related X (BAX) levels and cleaved 
caspase-3 and by repressing SLC7A11 transcription 
through lymphatic-specific decapping enzymes (LSH) 
to promote ferroptosis. However, ferroptosis initiated 
by LINC00618 depends on vincristine (VCR)-triggered 
apoptosis. Thus, LINC00618 promotes ferroptosis in an 
apoptosis-dependent manner [99]. Additionally, many 

Fig. 2 The mutual regulatory mechanisms between ferroptosis and other forms of death. The various initiators and effector molecules involved 
in ferroptosis, apoptosis, necroptosis, autophagy, pyroptosis and cuproptosis can interact to promote cell death
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ncRNAs are involved in cancer progression by simultane-
ously regulating apoptosis and ferroptosis. For example, 
the methylation-modified lncRNA P53RRA is down-
regulated in lung cancer and promotes nucleoplasmic 
translocation of p53 by interacting with G3BP1, ulti-
mately leading to cell cycle arrest, apoptosis, and ferrop-
tosis [99]. Another study found that the oncogenic factor 
circDTL upregulates GPX4 by acting as a ceRNA com-
peting for binding with miR-1287-5p, ultimately inhibit-
ing ferroptosis and apoptosis [100].

The link between ferroptosis and autophagy appears to 
be closer. ALKBH5 is a negative regulator of autophagic 
flux, and cIARS decreases ferroptosis via inhibiting 
ALKBH5-mediated autophagy, which increases sorafenib 
(SF) resistance in HCC cells [101]. Oncology studies 
have shown that LINC00551 inhibits cell viability in lung 
adenocarcinoma (LUAD). Mechanistically, LINC00551 
inhibits mTOR activity through the miR-4/DDIT4 sign-
aling pathway, upregulates autophagy levels, and then 
promotes ferroptosis in an autophagy-dependent manner 
[102]. Recent studies have found that lincRNA NEAT1 is 
involved in ferroptosis and autophagy induced by gam-
bogenic acid (GNA), a natural anticancer compound, 
through SLC7A11 / GPX4 and AMPK / mTOR axis in 
melanoma [103].

With the preceding data, we hypothesize that ferrop-
tosis, apoptosis, and autophagy have synergistic effects. 
However, there are few reports on the ncRNAs regula-
tion in tumors in the crosstalk between ferroptosis and 
other PCDs, and the corresponding regulatory relation-
ships still need further study.

Conclusion
Recently, there has been considerable interest in devel-
oping cancer drugs targeting the PCD pathway. Besides, 
ferroptosis has attracted much attention as a newly dis-
covered form of cell death. Although ferroptosis research 
has surged in recent years, many questions remain unre-
solved. To address the direction of this review, the follow-
ing questions and perspectives are presented.

First and foremost, the ultimate triggering cause for 
ferroptosis is unknown. Although iron and lipid peroxide 
accumulation are critical stages, not all lipid peroxida-
tion damage leads to cellular ferroptosis. Then, it remains 
to be investigated whether lipid peroxidation reaches a 
certain threshold to cause plasma membrane rupture 
directly; or needs to be activated by some unknown mol-
ecule to cause the final effect phase.

Although a growing number of ncRNAs have been 
linked to the regulation of ferroptosis, the regulatory 

Table 4 Role of ncRNAs in crosstalk between ferroptosis and other models of cell death in tumors

ncRNA Role in PCDs Mechanism Cancer References

lncRNA NEAT1 Promote ferroptosis and apoptosis Sponges miR-362-3p to upregulate MIOX HCC [146]

lncRNA P53RRA (LINC00472) Promote ferroptosis and apoptosis Interacts with G3BP1 to downregulate 
SLC7A11

LC [99]

lncRNA OIP5-AS1 Inhibit ferroptosis and apoptosis Sponges miR-128-3p to upregulate 
SLC7A11

PCa [153]

lncRNA HCG18 Inhibit ferroptosis and apoptosis Sponges miR-450b-5p to upregulate GPX4 HCC [159]

lncRNA TMEM161B-AS1 Inhibit ferroptosis and apoptosis Sponges mir-27a-3p to upregulate 
FANCD2 and CD44

Glioma [161]

LINC01564 Inhibit ferroptosis and apoptosis Upregulate NFE2L2 Glioma [164]

CircABCB10 Inhibit ferroptosis and apoptosis Sponges miR-326 to upregulate CCL5 Rectal cancer [166]

circDTL Inhibit ferroptosis and apoptosis Sponges miR-1287-5p to upregulate GPX4 NSCLC [100]

Circ_0000745 Inhibit ferroptosis and apoptosis Sponges miR-494-3p to upregulate NET1 ALL [62]

circRHOT1 Inhibit ferroptosis and apoptosis Sponges miR-106a-5p to upregulate STAT3 Breast cancer [177]

circ_0007142 Inhibit ferroptosis and apoptosis Sponges miR-874-3p, upregulates GDPD5 CRC [169]

Hsa_circ_0021087 (circLMO1) Promote ferroptosis and apoptosis Sponges miR-4291 to upregulate ACSL4 Cervical Cancer [165]

LINC00618 Promote ferroptosis in a manner depend-
ent upon apoptosis

Interacts with LSH to downregulate 
SLC7A11

leukemia [152]

NEAT1 Inhibit ferroptosis and autophagy upregulate SLC7A11 melanoma [103]

LINC00551 Promote ferroptosis in a manner depend-
ent upon autophagy

Sponges miR-4328 to upregulate DDIT4 LUAD [102]

lncRNA H19 Inhibit autophagy-mediated ferroptosis Inhibits production of lipid ROS 
and induces production of GSH

Breast cancer [147]

Circ clARS Promote autophagy-mediated ferroptosis Interacts with ALKBH5 HCC [101]
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mechanisms remain poorly understood. Furthermore, 
there is still a lack of ferroptosis-specific markers for 
clinical diagnosis. Notably, novel small ncRNAs such as 
PIWI-interacting RNA (piRNA) and tRNA-derived small 
RNA (tsRNA) have been shown to have biological func-
tions in cancer. What role do they play in ferroptosis?

Endoplasmic reticulum (ER) stress, redox stress, and 
mitochondrial dysfunction appear to be common path-
ways for multiple death types [104]. Investigating the bio-
logical relevance of ferroptosis to other PCDs is of great 
interest. Nevertheless, the findings discussed in Part V 
indicate the complexity of this relationship. Furthermore, 
there are limited investigations on the role of ncRNAs 
in the crosstalk between ferroptosis and other forms of 
crosstalk. Future research may reveal if we may adversely 
regulate many death pathways through a single target.

The advantages of ncRNA as tumour prevention, 
monitoring treatment response and prognosis have 
been illustrated in the literature and have yielded some 
promising results in the clinic [105]. However, the clini-
cal application of ferroptosis and thus tumour suppres-
sion through an ncRNA-dependent approach faces 
significant obstacles. On the one hand, the lack of under-
standing of specific mechanisms has led to limited appli-
cation of ncRNA modifying agents in ferroptosis. On 
the other hand, although promoting cellular ferroptosis 
can inhibit tumour progression, will it be accompanied 
by damage to other non-tumour organs or fibrosis? In 
addition, ncRNA-based therapies inherently have many 
limitations, such as instability and tolerability [106]. Due 
to the instability of ncRNAs, the mode of transport has 
a significant impact on the efficiency of transport. Cur-
rently, nanoparticle-based, phage-based and other deliv-
ery methods are being optimized. Also, ncRNAs, being 
RNAs, are likely to be recognized and cleared by the 
immune system. It is hoped that the next generation of 
ncRNA therapies will overcome these drawbacks and 
allow for real clinical applications.
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