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Abstract 

Background Memory B cells and microRNAs (miRNAs) play important roles in the progression of gastric adeno-
carcinoma (GAC), also known as stomach adenocarcinoma (STAD). However, few studies have investigated the use 
of memory B-cell-associated miRNAs in predicting the prognosis of STAD.

Methods We identified the marker genes of memory B cells by single-cell RNA sequencing (scRNA-seq) and identi-
fied the miRNAs associated with memory B cells by constructing an mRNA‒miRNA coexpression network. Then, 
univariate Cox, random survival forest (RSF), and stepwise multiple Cox regression (StepCox) algorithms were used 
to identify memory B-cell-associated miRNAs that were significantly related to overall survival (OS). A prognostic 
risk model was constructed and validated using these miRNAs, and patients were divided into a low-risk group 
and a high-risk group. In addition, the differences in clinicopathological features, tumour microenvironment, immune 
blocking therapy, and sensitivity to anticancer drugs in the two groups were analysed.

Results Four memory B-cell-associated miRNAs (hsa-mir-145, hsa-mir-125b-2, hsa-mir-100, hsa-mir-221) with signifi-
cant correlations to OS were identified and used to construct a prognostic model. Time-dependent receiver operating 
characteristic (ROC) curve analysis confirmed the feasibility of the model. Kaplan‒Meier (K‒M) survival curve analysis 
showed that the prognosis was poor in the high-risk group. Comprehensive analysis showed that patients in the high-
risk group had higher immune scores, matrix scores, and immune cell infiltration and a poor immune response. In 
terms of drug screening, we predicted eight drugs with higher sensitivity in the high-risk group, of which CGP-60474 
was associated with the greatest sensitivity.

Conclusions In summary, we identified memory B-cell-associated miRNA prognostic features and constructed 
a novel risk model for STAD based on scRNA-seq data and bulk RNA-seq data. Among patients in the high-risk 
group, STAD showed the highest sensitivity to CGP-60474. This study provides prognostic insights into individualized 
and precise treatment for STAD patients.
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Background
Gastric cancer (GC) is the fifth most common cancer in 
the world and the fourth leading cause of cancer-related 
death [1]. Gastric adenocarcinoma (GAC), also known as 
stomach adenocarcinoma (STAD), is the most common 
histological type of GC [2]. Risk factors for GC include 
Helicobacter pylori infection, Epstein‒Barr virus infec-
tion, dietary factors, tobacco use, obesity, and radiation 
exposure [3]. In addition, gene mutations, chromosomal 
alterations, transcriptional disorders, and epigenetic 
modifications are important common factors of carcino-
genesis [4]. Although some progress has been made in 
the treatment of STAD in recent years, the therapeutic 
effect against advanced disease is poor and unsatisfactory 
[5–7]. In the treatment of advanced disease, only tras-
tuzumab and some immune checkpoint inhibitors, such 
as nivolumab and pembrolizumab, have shown consist-
ent and reliable efficacy in patients with HER2-positive 
and PDL1-positive tumours based on chemotherapy [8]. 
Currently, individualized cancer therapy has become 
a new focus of cancer treatment, and more in-depth 
research on STAD and the development of new effective 
molecular signatures for predicting the immunotherapy 
response and prognosis of STAD patients are necessary.

Most studies of prognostic signatures for STAD have 
focused on protein-coding genes, whereas few studies 
have investigated genes for noncoding RNA. Increasing 
evidence has confirmed that miRNAs directly or indi-
rectly regulate the expression of target genes and play an 
important role in the pathological development of STAD 
[9]. According to previous studies, miRNAs can promote 
the proliferation of tumour cells; for example, miR-21 can 
enhance the proliferation and invasion of gastric cancer 
cells by targeting the expression of PTEN [10]. MiR-148a 
and miR-196a inhibit the expression of p27 and promote 
the proliferation of gastric cancer cells [11, 12]. Hypoxia-
induced miR-224 promotes the growth of gastric cancer 
cells by downregulating RASSF8 [13]. Moreover, miRNAs 
can inhibit the activity and proliferation of tumour cells; 
for example, miR-375 inhibits the activity of gastric can-
cer cells by downregulating PDK1 or 14-3-3 ζ [14]. MiR-
135a may inhibit the activation of p-STAT3 by targeting 
JAK, reduce the expression of Cyclin D1 and BCL-XL, and 
inhibit the proliferation of gastric cancer cells, thus play-
ing the role of tumour inhibitor [15]. MiR-15a and miR-
16-1 downregulate YAP1 and inhibit the proliferation 
and migration of gastric cancer cells [16]. Therefore, min-
ing miRNAs for a new type of STAD prognostic marker 
is a promising research direction.

Previous studies have shown that B cells play an impor-
tant role in tumour progression; for example, compared 
with that in peripheral blood, the number of memory 
B cells and antibody-secreting B cells in the tumour 

microenvironment (TME) is increased, and the expres-
sion of B-cell surface markers is also different, e.g., CD23 
is downregulate and CD86 is upregulated in breast can-
cer [17]. An increase in the frequency of B cells secreting 
IL-35 has been reported in patients with advanced gastric 
cancer [18]. Moreover, many studies have shown that B 
cells play an important role in immune checkpoint inhib-
itor treatment of cancer [19–22]. However, few studies 
have focused on the use of memory B-cell-associated 
miRNAs to predict the prognosis of patients with STAD.

In recent years, the development of scRNA-seq tech-
nology has enabled researchers to explore the heteroge-
neity of tumours at the cellular level [23], which provides 
a new method for studying tumour biomarkers. Previous 
studies have focused on identifying bulk RNA-seq bio-
markers by mining STAD data [24–26]. In this study, we 
integrated scRNA-seq and bulk RNA-seq to establish a 
prognostic signature of miRNAs associated with memory 
B cells, which predicted the prognosis and immunother-
apy effect in STAD patients, revealed the difference in the 
TME based on risk grouping, and predicted potentially 
new effective anticancer drugs. The flow chart of this 
study is shown in Fig. 1.

Methods
Data collection
We downloaded the single-cell transcriptome profile 
(GSE163558) of STAD from the Gene Expression Omni-
bus (GEO) database (www. ncbi. nlm. nih. gov/) [27], and 
three primary gastric cancer samples were selected to 
identify the marker genes of memory B cells. The mRNA 
expression data, miRNA expression data and corre-
sponding clinical STAD data were downloaded from The 
Cancer Genome Atlas (TCGA) database (www. cancer. 
gov/) [28]. A total of 358 tumour samples with mRNA 
and miRNA expression data and complete survival infor-
mation were obtained.

Identification of memory B‑cell‑associated miRNAs in STAD 
patients
We used the "Seurat" R package to analyse the scRNA-
seq data [29], control the quality of the data, remove 
genes with less than 3 cell counts, cells with less than 200 
genes and cells with more than 5% mitochondrial genes, 
and then normalize them. Principal component analysis 
(PCA) was used to extract the first 15 principal compo-
nents, and uniform manifold approximation and projec-
tion (UMAP) was used for cell clustering. Referring to 
the uploader’s cluster notes [27], the "FindAllMarkers" 
function was used to find the marker genes of memory 
B cells, and the critical threshold of P < 0.05 was set. The 
related genes of memory B cells were obtained. The cor-
relation between TCGA-STAD mRNA expression data 

http://www.ncbi.nlm.nih.gov/
http://www.cancer.gov/
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and miRNA expression data was assessed using Pear-
son’s correlation coefficient, and the correlation between 
memory B-cell-associated genes and miRNA was cal-
culated. We determined that miRNAs with an absolute 
correlation coefficient greater than 0.5 and P < 0.01 were 

memory B-cell-associated miRNAs [30]. Cytoscape soft-
ware was used to visualize the memory B-cell-associated 
mRNA‒miRNA coexpression network [31]. We also used 
miEAA 2.0 (https:// ccb- compu te2. cs. uni- saarl and. de/ 

Fig. 1 Flowchart of this study

https://ccb-compute2.cs.uni-saarland.de/mieaa2/


Page 4 of 17Liu et al. Journal of Translational Medicine          (2023) 21:648 

mieaa2/) to analyse the enrichment of transcription fac-
tors in memory B-cell-associated miRNAs [32].

Construction of an STAD prognostic signature using 
memory B‑cell‑associated miRNAs
Univariate Cox proportional hazard regression analysis 
was used to evaluate the prognostic value of memory 
B-cell-associated miRNAs in the assessment of over-
all survival (OS) in 358 TCGA-STAD patients. MiRNA 
was screened from memory B-cell-associated miRNAs 
with significant prognosis. Then, random survival for-
est (RSF) was used to rank the importance of memory 
B-cell-associated miRNAs with significant prognosis 
value, and miRNAs with an importance > 0 were selected 
for subsequent analysis. Memory B-cell-associated miR-
NAs with significant prognosis values were screened by 
StepCox(both) analyses. The miRNAs identified by both 
RSF and StepCox(both) as memory B-cell-associated 
miRNAs significantly associated with OS were included 
in multivariate Cox regression analysis, and the memory 
B-cell-associated miRNA risk score (RS) of each STAD 
patient was calculated based on the following formula:

According to the median RS, all patients were divided 
into a high-risk group and a low-risk group. Kaplan‒
Meier (K‒M) survival curves and log-rank tests were 
used to analyse and compare survival between the low-
risk group and the high-risk group. The 1-, 3- and 5-year 
ROC curves were drawn using the "survivalROC" R pack-
age to evaluate the prognostic value of the RS over time. 
In addition, 358 TCGA-STAD patients were randomly 
assigned to validation cohort 1 and validation cohort 2. 
Prognostic characteristics in the two validation cohorts 
were assessed by K‒M survival analysis and ROC curve 
analysis.

To further understand the clinical significance of the 
miRNA-based RS, univariate Cox proportional hazard 
regression analysis was used to compare the predic-
tive accuracy of age, sex, stage, and RS on the progno-
sis of individuals with STAD. In addition, multivariate 
Cox proportional hazard regression analysis was used 
to determine whether age, sex, stage, and RS of STAD 
patients could be used as independent prognostic factors.

Based on the RS and clinical characteristics of the 
TCGA sample, we used the "survival" and "rms" R pack-
ages to construct a nomogram and evaluated the perfor-
mance of the nomogram using calibration curves and 
ROC curves.

RS =

n∑

i=1

[coefficient(miRNA)× expression(miRNA)]

Analysis of clinicopathological characteristics, TME 
and immunotherapy
We generated summary statistics for different clinical 
characteristics of TCGA-STAD patients based on the RS 
and analysed the survival of high- and low-risk groups 
based on different clinical characteristics. In terms of 
the TME, we used the "ESTIMATE" R package to evalu-
ate the immune scores of different risk groups [33] and 
the "CIBERSORT" R package to calculate the differences 
in immune cell infiltration among different risk groups 
[34]. The efficacy of anti-PD-L1 treatment in patients 
with STAD was predicted based on the Tumour Immune 
Dysfunction and Exclusion (TIDE) scores evaluated as 
described at the website (http:// tide. dfci. harva rd. edu/), 
and the TIDE score for each sample in the high- and low-
risk groups was calculated [35]. In addition, to predict the 
possibility of STAD responding to immune checkpoint 
blockade (ICB) therapy, the immunotherapy response 
score of each patient was calculated using the "EaSIeR" 
R software package [36]. This method integrates quanti-
tative descriptive information about the tumour muta-
tional burden (TMB) and immune microenvironment to 
predict the immune response. EaSIeR provides the pos-
sibility that each patient will benefit from ICB treatment; 
thus, the higher the relative score is, the more likely the 
patient’s cancer will respond to immunotherapy.

Drug sensitivity analysis and screening
We aimed to further identify new and more effective 
drugs for the treatment of STAD by using the CellM-
iner database (https:// disco ver. nci. nih. gov/ cellm iner/) 
to screen anticancer drugs with a significant correlation 
between sensitivity and prognostic miRNA [37]. We also 
used the "pRRophetic" R software package (https:// osf. io/ 
5xvsg/) to predict the semi-maximum inhibitory concen-
tration (IC50) of different drugs in the high- and low-risk 
groups [38]. The lower the IC50 of a drug is, the more 
effective the drug will be in treating cancer.

Statistical analysis
All statistical analyses were carried out using the R soft-
ware version 4.2.1 (http:// www.R- proje ct. org). Cox 
regression and K‒M curves were used for survival analy-
sis. The Wilcoxon test was used to compare the quanti-
tative differences between the two groups (except when 
special instructions stated otherwise). P < 0.05 was con-
sidered to be statistically significant.

https://ccb-compute2.cs.uni-saarland.de/mieaa2/
http://tide.dfci.harvard.edu/
https://discover.nci.nih.gov/cellminer/
https://osf.io/5xvsg/
https://osf.io/5xvsg/
http://www.R-project.org
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Result
Analysis of scRNA‑seq data and identification of memory B 
cells in STAD patients
We obtained the gene expression profiles of three pri-
mary gastric cancer samples from GSE163558. After 
quality control, normalization and dimensional-
ity reduction by the PCA method, according to the 
known marker genes and the literature evidence of data 
uploaders, all cells were annotated as seven cell types: 

epithelial cells, proliferative cells, T cells, B cells, natu-
ral killer cells, and myeloid cells (Fig. 2A). The UMAP 
plot was used to show the expression level of marker 
genes in the seven known types of cells (Fig. 2B). Then, 
B cells were further subclustered into four subgroups: 
memory B cells, plasma cells, germinal center B cells 
and T-cell-like B cells (Fig. 2C). A violin plot was used 
to show the expression levels of marker genes of four 
known B-cell subsets (Fig.  2D). We identified 320 

Fig. 2 Identification of B-cell marker genes by scRNA-seq analysis. A After the first-level classification, seven cell types were identified by marker 
gene annotation. B UMAP plot showing the expression of the marker genes of the seven cell types. C After the second-level classification of B cells, 
four cell types were identified by marker gene annotation. D Violin plot showing the expression of the marker genes of the four cell types
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memory B-cell marker genes for subsequent analysis 
(Additional file 1: Table S1).

Identification and enrichment analysis of memory 
B‑cell‑associated genes and miRNAs
We screened the marker genes of memory B cells as 
memory B-cell-associated genes. Gene Ontology (GO) 
enrichment analysis of these memory B-cell-associated 
genes showed that they were enriched in cytoplas-
mic translation, ribosomal protein complex produc-
tion, noncoding RNA treatment, rRNA metabolism 
and processing (Fig. 3A). Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis showed 

that they were mainly enriched in ribosomes, splicing 
bodies, antigen processing and presentation, and IgA 
production in intestinal immune networks (Fig.  3B). 
Based on the miRNA expression profile and memory 
B-cell-associated gene expression profile of TCGA-
STAD patients, Pearson’s correlation analysis was car-
ried out, and a coexpression network was constructed 
(Fig. 3C). We identified 78 strongly associated memory 
B-cell-associated miRNAs (Additional file 2: Table S2). 
Enrichment analysis using the ORA algorithm showed 
that the 78 miRNAs were mainly enriched in transcrip-
tion factors such as EP300, MAX, ESR1, ERG, BRD4, 
MYC, FOXA1, HIF1A, RUNX1, and CTCF (Fig. 3D).
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Fig. 3 Enrichment analysis and the coexpression network of memory B-cell-associated genes. A GO enrichment analysis of memory 
B-cell-associated genes. B KEGG enrichment analysis of memory B-cell-associated genes. C Coexpression network of memory B-cell-associated 
genes and miRNAs. D Transcription factor enrichment analysis of memory B-cell-associated miRNAs
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Screening of STAD memory B‑cell‑associated prognostic 
miRNAs
First, through univariate Cox regression analysis, we 
found that 24 STAD memory B-cell-associated miR-
NAs were significantly correlated with the prognosis 
of TCGA-STAD patients (Fig.  4A). Then, 11 miRNAs 
with relative importance > 0 were identified using RSF, 
namely, hsa-mir-125b-1, hsa-mir-145, hsa-mir-361, 
hsa-mir-125b-2, hsa-mir-100, hsa-mir-17, hsa-mir-
203a, hsa-mir-103a-1, hsa-mir-194-1, hsa-mir-221 and 
hsa-103a-2 (Fig. 4B, C), and five miRNAs, namely, hsa-
mir-145, hsa-mir-133a-2, hsa-mir-125b-2, hsa-mir-100 
and hsa-mir-221, were identified by StepCox(both) 
analysis (Fig.  4D). Finally, four shared miRNAs (hsa-
mir-145, hsa-mir-125b-2, hsa-mir-100 and hsa-
mir-221) of RSF and StepCox(both) were identified 
as memory B-cell-associated prognostic miRNAs 
(Fig. 4E).

Construction and validation of the prognostic signature 
of memory B‑cell‑associated miRNAs
The Pearson’s correlation coefficients were determined 
using multivariate Cox regression analysis, and the 
associated RS was calculated from the Cox regression 
model as follows: RS= (0.29590272 * hsa-mir-100 expres-
sion) + (-0.19295689 * hsa-mir-125b-2 expression) + 
(0.17369659 * hsa-mir-145 expression) + (-0.07541793 * 
hsa-mir-221 expression). According to the median RS, all 
patients were divided into high-risk and low-risk groups. 
hsa-mir-221 was highly expressed in the high-risk group, 
and hsa-mir145, hsa-mir-100, and hsa-mir-125b-2 were 
highly expressed in the low-risk group (Fig.  5A). K‒M 
curve analysis showed that patients in the high-risk 
group had a poorer prognosis (P<0.0001) (Fig. 5D). ROC 
curve analysis was used to assess the predictive ability 
of the model, and the AUC values and 95% confidence 
intervals (CIs) for predicting OS at 1, 3, and 5 years were 

Fig. 4 Screening of memory B-cell-associated prognostic miRNAs. A Screening candidate memory B-cell-associated miRNAs by univariate Cox 
regression analysis. B–C Random survival forest error rate versus the number of classification trees and the relative importance of 24 miRNAs. D 
Multivariate stepwise Cox regression analysis screened five prognosis-associated miRNAs from candidate miRNAs. E Venn diagram showed four 
miRNAs screened by both RSF and StepCox(both)
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0.6303 (0.560-0.701), 0.6403 (0.543-0.734), and 0.7092 
(0.528-0.891), respectively (Fig.  5G). Subsequently, 
TCGA-STAD patients were randomly divided into two 
groups in a 1:1 ratio, and we used these two groups as a 
validation cohort for internal validation. Patients were 
divided into high-risk and low-risk groups according to 
the median RS (Fig. 5B, C), and the results showed that 

the high-risk group had a poorer prognosis in both vali-
dation cohorts (Fig.  5E, F). ROC curve analysis further 
confirmed the stability of the RS model, validation cohort 
1, with AUCs and 95% CIs for predicting OS at 1, 3, and 5 
years of 0.6200 (0.515–0.723), 0.6751 (0.552–0.798), and 
0.7514 (0.600–0.903), respectively; for validation cohort 
2, the AUCs and 95% CIs for predicting OS at 1, 3, and 

Fig. 5 Construction and validation of the memory B-cell-associated miRNA prognostic signature. A–C RS distribution, survival status, and heatmap 
of the expression of four memory B-cell-associated miRNAs in the high-risk and low-risk groups of the training cohort, validation cohort 1, 
and validation cohort 2. D–F K‒M survival analysis of three cohorts. G–I Time-dependent ROC curve analysis of three cohorts
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5 years were 0.6456 (0.546–0.745), 0.6302 (0.510–0.751), 
and 0.7350 (0.540–0.940), respectively (Fig. 5H, I).

RS‑based clinical analysis and construction 
of the nomogram
We found that the high-risk and low-risk groups differed 
in both clinicopathological characteristics and OS. There 
were no significant differences between the high-risk and 
low-risk groups in terms of sex, age and distribution of 
tumour metastasis (M stage), while there were signifi-
cant differences in terms of lymph node involvement (N 
stage), depth of tumour infiltration (T stage) and tumour 
grade (Stage), and the proportion of patients with N3 
stage, T4 stage and Stage II disease was significantly 
higher in the high-risk group than in the low-risk group 
(Additional file  3: Table  S3). We divided STAD patients 
into different subgroups according to the index of clin-
icopathological characteristics for survival analysis, and 
the K‒M curves showed that patients in the high-risk 
group had a worse prognosis than those in the low-risk 
group, whether grouped by sex, age, TNM stage or Stage 
(Fig. 6A). In addition, we explored the clinical application 
of the RS in patients with STAD using univariate Cox 
regression and multivariate Cox regression analyses. Uni-
variate Cox and multivariate Cox results showed (Fig. 6B, 
C) that the RS was significantly associated with prognosis 
and was an independent factor affecting survival.

To improve the clinical utility of the model, a nomo-
gram was constructed based on our risk scores for 
prognostic characteristics and other clinicopathological 
indicators of patients to provide a more comprehensive 
prediction of patient OS (Fig. 6D). The results of the ROC 
curve of the nomogram showed reliable performance 
with AUCs of 0.7082, 0.6817 and 0.6815 (Fig.  6E). The 
calibration curve was used to test the consistency of the 
predicted and actual risks of the prediction model, and 
the results showed that the predicted OS of the nomo-
gram was close to the actual OS probability (Fig. 6F).

Analysis of the tumour microenvironment based on the RS
To investigate the relationship between the RS and TME, 
we used the ESTIMATE algorithm to calculate the stro-
mal score, immune score and ESTIMATE score of STAD 
patients, and the results showed that the high-risk group 
had significantly higher scores than the low-risk group 
(Fig.  7A). In terms of immune cells, the results of the 
CIBERSORT algorithm showed that the contents of naïve 
B cells, monocytes, M2 macrophages, resting dendritic 
cells and resting mast cells in the high-risk group were 
significantly higher than those in the low-risk group, 
whereas activated memory CD4 T cells, follicular helper 
T cells, resting NK cells, M0 macrophages, activated 

mast cells and neutrophils were significantly lower than 
those in the low-risk group (Fig. 7B).

Analysis of immunotherapy based on the RS
We found that the objective response rate of anti-PD-L1 
therapy in the low-risk group was significantly higher 
than that in the high-risk group (bilateral chi-square 
test, P=1.295e-10, Fig. 8A, B), and the TIDE score in the 
high-risk group was significantly higher than that in the 
low-risk group (Fig.  8D), indicating that patients in the 
high-risk group were more likely to develop immune 
evasion, immunotherapy might be less effective, and 
patients in the low-risk group were more likely to ben-
efit from ICB treatment. The results of the "EaSIeR" pack-
age showed that the EaSIeR immune response score of 
the low-risk group was higher than that of the high-risk 
group, further indicating that the ICB treatment effect 
was better in the low-risk group (Fig.  8C). In addition, 
we found that in terms of immune cell composition, CD8 
T cells and Treg T cells were positively correlated with 
the ICB treatment response (Fig. 8E). In terms of cellular 
communication, CD4 T-cell-endothelial cells and cancer 
cell-neutrophils were negatively correlated with the ICB 
treatment response, while natural killer cells-dendritic 
cells, neutrophil-B cells and natural killer cells-natural 
killer cells were positively correlated with the ICB treat-
ment response (Fig. 8F). The transcription factors STAT4, 
STAT1 and IRF1 were positively correlated with the ICB 
response, while CDX2 and TP63 were negatively corre-
lated with the ICB response (Fig. 8G). The receptor pairs 
CXCL10-SDC4, IFNG-IFNGR1-IFNGR2, CCL5-SDC4 
and CXCL16-CXCR6 were positively correlated with the 
therapeutic response to ICB (Fig. 8H).

Predicting potential anticancer drugs
To further explore the clinical application of prognos-
tic miRNAs, we used the CellMiner database to explore 
the relationship between prognostic miRNAs and drug 
sensitivity (Additional file  4: Table  S4). We found that 
the expression of hsa-mir-100 was positively correlated 
with sensitivity to dromostanolone propionate (corre-
lation=0.43, P=0.001) (Fig.  9A), the expression of hsa-
mir-125b-2 was positively correlated with sensitivity to 
lovastatin (correlation=0.44, P<0.001) (Fig.  9B), and the 
expression of hsa-mir-145 was positively correlated with 
sensitivity to zoledronate (correlation=0.37, P=0.003) 
(Fig.  9C). The expression of hsa-mir-221 was negatively 
correlated with sensitivity to SR16157 (correlation=0.54, 
P<0.001) (Fig. 9D). Because the prognosis of patients in 
the high-risk group was significantly poorer than that 
in the low-risk group, we predicted eight drugs with 
higher sensitivity in the high-risk group: AME 770041, 
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Fig. 6 RS-based clinical analysis and construction of the nomogram. A K‒M survival analysis of survival stratified by age, sex and stage. B–C The 
results of univariate Cox regression analysis and multivariate Cox regression analysis of clinical characteristics and risk scores. D Nomogram based 
on RS and clinical characteristics. E ROC curve analysis results. F Calibration curve analysis results. *** P<0.001



Page 11 of 17Liu et al. Journal of Translational Medicine          (2023) 21:648  

AP-24534, CGP-60474, dasatinib, HG-6-64-1, midostau-
rin, saracatinib, and TGX221 (Fig. 9E–L).

Discussion
STAD is the most common histological type of gastric 
cancer, and despite significant improvements in patient 
survival in recent years, it continues to have a high recur-
rence rate and an unsatisfactory prognosis [6]. STAD 
is mostly asymptomatic until its early stages and lacks 
effective screening methods for early detection, so many 
patients are diagnosed at advanced stages [39]. Treatment 
by endoscopic or limited surgical resection is the most 
promising treatment for patients with localized STAD 
[2]. Targeted therapies are more effective than chemo-
therapy for STAD patients; for example, trastuzumab and 
apatinib have been approved for the treatment of STAD 
patients, and the development of more effective drugs 
and the search for biomarkers with greater sensitivity and 
specificity remain the main challenges for STAD-targeted 
therapy [40]. Studies have shown that memory B cells 
are enriched in the tumours of ICB treatment respond-
ers, suggesting that memory B cells are of great impor-
tance for the development of biomarkers and targeted 
therapies [41]. In STAD, miRNAs regulate different sig-
nalling pathways, target genes involved in cell migration, 
angiogenesis and cell proliferation, and play an important 
role in either cancer promotion or suppression [42–46]. 
Therefore, it is essential to identify signatures of memory 
B-cell-associated miRNAs that can be used to predict 
the prognosis of STAD patients to guide individualized 
tumour treatment.

In the present study, we constructed a prognostic 
profile of memory B-cell-associated miRNAs in STAD 

patients by combining scRNA-seq and bulk RNA-seq 
analysis. We obtained scRNA-seq data from GSE163558 
for three primary gastric cancers and identified mem-
ory B-cell-associated genes by a single-cell sequencing 
data analysis process and reference to the uploader. GO 
enrichment analysis showed that memory B-cell-asso-
ciated genes were enriched in cytoplasmic translation, 
ribosomal protein complex generation, noncoding RNA 
processing, rRNA metabolism and processing. KEGG 
enrichment analysis showed that these genes were 
involved in pathways such as ribosomes, shear bodies, 
antigen processing and presentation, and IgA production 
by the intestinal immune network. Memory B-cell-asso-
ciated genes were enriched in cytoplasmic translation, 
ribosomal protein complex generation, and noncoding 
RNA processing. Then, we identified 78 memory B-cell-
associated miRNAs by constructing an mRNA‒miRNA 
coexpression network. Transcription factor enrich-
ment analysis showed that they were mainly enriched in 
EP300, MAX, ESR1, ERG, BRD4, MYC, FOXA1, HIF1A, 
RUNX1, CTCF and other transcription factors. These 
transcription factors play an important role in the pro-
gression of GC; for example, EP300 has the ability to 
regulate the expression of COL1A2 to control the drug 
resistance of gastric cancer cells to apatinib [47]. BRD4 
activates C-MYC through transcriptional and epigenetic 
regulation, which increases the proliferation of gastric 
cancer cells and inhibits the apoptosis of gastric cancer 
cells [48].

We identified four memory B-cell-associated miR-
NAs (hsa-mir-221, hsa-mir-100, hsa-mir-145, and hsa-
mir-125b-2) significantly associated with prognosis by 
univariate Cox, random survival forest, and stepwise 

Fig. 7 RS-based analysis of the tumour immune microenvironment. A Differences in the estimate, immune, and stromal scores 
between the low-risk and high-risk groups. B Differential expression levels of 22 types of tumour-infiltrating immune cells between the low-risk 
and high-risk groups. * P<0.05, ** P<0.01, *** P<0.001, ns not significant
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Fig. 8 RS-based analysis of ICB immunotherapy response. A Result of ICB immunotherapy response prediction in TCGA-STAD patients. B–D 
Differences in ICB immunotherapy response, EaSIeR immune score and TIDE score between the low-risk and high-risk groups. E–H Influence 
of immune cells, cell communication, transcription factors and ligand receptor pairs on ICB treatment response
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multiple regression analyses and constructed a prognos-
tic risk model based on these four miRNAs. The over-
expression target of hsa-mir-221 in gastric cancer cells 
has been reported to downregulate the expression of 
hepatocyte growth factor activator inhibitor type 1 pro-
tein, thereby enhancing cell proliferation and migration 
[49]. Hsa-mir-100, hsa-mir-145 and hsa-mir-125b-2 are 
tumour suppressors of gastric cancer and regulate poten-
tial signalling pathways for gastric cancer cell prolifera-
tion, apoptosis and metastasis; for example, hsa-mir-100 
antagonism increases the expression level of HS3ST2, the 
target gene of hsa-mir-100, leading to the activation of 
the Notch apoptotic pathway in tumour cells to suppress 
the development of gastric cancer [50]. Upregulation of 

hsa-mir-145 inhibits gastric cancer cell proliferation, 
increases apoptosis and blocks the cell cycle in G1 phase 
[51]. The expression of hsa-mir-125b-2 decreases cell 
viability and colony formation, promotes apoptosis and 
inhibits the migration and invasion of gastric adenocar-
cinoma cells, in addition to targeting the downregulation 
of PIK3CB expression [52]. Interestingly, among these 
miRNAs, hsa-mir-221 was expressed at low levels in the 
high-risk group, and hsa-mir-100, hsa-mir-145 and hsa-
mir-125b-2 were highly expressed in the high-risk group.

The risk scores of patients were calculated according to 
the prognostic characteristics, and patients were divided 
into high-risk and low-risk groups based on the median 
risk score value. We found that the prognosis of patients 

Fig. 9 Screening of potential antineoplastic drugs based on prognostic miRNAs and risk group. A–C hsa-mir-100, hsa-mir-125b-2 and hsa-mir-145 
were positively correlated with sensitivity to dromostanolone propionate, lovastatin and zoledronate, respectively. D hsa-mir-221 was negatively 
correlated with sensitivity to SR16157. E–L Eight drugs with higher sensitivity in the high-risk group
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in the high-risk group was significantly worse than that 
in the low-risk group. The accuracy and stability of this 
risk score model were also validated in two internal vali-
dation cohorts. Both univariate Cox regression analysis 
and multivariate Cox regression analysis showed that 
the RS could predict the prognosis of STAD patients 
independently of other clinical indicators and had good 
performance. We further constructed a nomogram con-
taining the risk score and clinicopathological indicators 
of patients to provide a metric for assessing the progno-
sis of patients from multiple aspects and used calibration 
curves to assess the predictive ability of the nomogram. 
The results showed that our nomogram has a superior 
predictive ability for OS.

The TME plays a key role in the anticancer response 
and can significantly affect prognosis [53]. We further 
explored the relationship between the RS and TME. We 
found that the immune score, stromal score and ESTI-
MATE score were significantly higher in the high-risk 
group than in the low-risk group, which may represent 
a higher level of immune cell infiltration in the TME of 
STAD patients. In addition, compared with the low-risk 
group, patients in the high-risk group had a higher pro-
portion of naïve B cells, monocytes, M2 macrophages, 
resting dendritic cells, and resting mast cells, whereas 
activated memory CD4 T cells, follicular helper T cells, 
resting NK cells, and neutrophils had higher propor-
tions in the low-risk group. M2 macrophages have pre-
neoplastic characteristics and promote tumour growth 
and metastasis [54]. Dendritic cells are the most potent 
antigen-presenting cells [55]. An increased percentage 
of NK cells in tumour tissues may indicate a better prog-
nosis [56]. Thus, the differences in TME revealed by risk 
grouping based on our model suggest that different prog-
noses of STAD patients are likely to arise from heteroge-
neity in the TME.

Cancer immunotherapy, represented by ICB therapy, 
has become a mainstream treatment modality for malig-
nancies, and TIDE characteristics have the ability to 
show the effectiveness of ICB therapy [57]. We found that 
TIDE scores were significantly higher in the high-risk 
group than in the low-risk group, suggesting that patients 
in the high-risk group are more likely to experience 
immune evasion, leading to ICB treatment failure. Dif-
ferent mechanisms in the TME are involved in mediating 
the immune response and influencing the efficacy of ICB 
treatment [58]. The EaSIeR results showed that immune 
response scores were lower in the high-risk group than 
in the low-risk group, indicating that ICB treatment was 
less effective in the high-risk group. Consistent with 
expectations, we further explored the effects of cellular 
components, cellular communication, transcription fac-
tors and ligand receptors in the TME of STAD patients 

on ICB treatment response and found that CD8 T cells, 
neutrophil-B cells, NK cells-CD8 T cells, and STAT4-
SDC4 were strong positive biomarkers of ICB treatment 
response in STAD patients. Consistent with the results 
of previous studies, CD8 T cells play an important role 
in the recognition and killing of tumour cells [59]. Neu-
trophils are able to directly secrete B-cell activating fac-
tors to regulate B cells and enhance the immune response 
[60]. NK cell-induced dendritic cells drive the initiation 
of type 17 CD8 T cells with the ability to produce IFN-γ 
and interleukin-17A [61]. STAT4-mediated miR-3619-5p 
controls the onset and progression of STAD by regulat-
ing TBC1D10B expression, and STAD patients with high 
STAT4 expression are predicted to have better clinical 
outcomes [62, 63]. The interaction of STAT4 and SDC4 
in the TME may recruit fibroblasts, which in turn inhibit 
immunotherapeutic responses [64, 65].

Finally, we also predicted potential anticancer drugs. 
The results showed that dromostanolone propionate, lov-
astatin, and zoledronate were positively correlated with 
the expression of hsa-mir-100, hsa-mir-125b-2, and hsa-
mir-145, respectively. However, SR16157 was negatively 
correlated with the expression of hsa-mir-221. In addi-
tion, our risk model classified the high-risk group with a 
poor prognosis, and we screened drugs that STAD was 
more sensitive to for the high-risk group, with the aim of 
guiding drug treatment decisions for these patients. The 
STAD of the high-risk group had the highest sensitivity 
to CGP-60474 among the eight drugs screened. A previ-
ous study showed that CGP-60474 is a potent inhibitor 
of cell cycle protein-dependent kinases and is associated 
with the control of cell cycle transition [66].

Although the risk model obtained in this study has a 
good ability to predict prognosis, it still has some limita-
tions. For example, all the data in this study were from 
public databases and were retrospective, and the stability 
of the predictive model must be further confirmed in a 
prospective cohort study. The results of drug sensitivity 
need to be further verified by cell experiments.

Conclusion
In summary, we constructed a novel prognostic signa-
ture of memory B-cell-associated miRNAs for STAD 
based on scRNA-seq and bulk RNA-seq data. This signa-
ture reflects the TME, immunotherapy response, prog-
nosis of STAD patients and provides some prognostic 
insights into individualized and precise treatment for 
STAD patients. In future research, we can further explore 
the specific regulatory mechanism and biological func-
tions of the prognostic miRNAs and their target genes 
in STAD patients. Confirmatory experiments can also be 
conducted on the predictive ability of the RS model and 
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the therapeutic effect of the drug CGP-60474 in clinical 
patients.
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