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Abstract 

Background Alzheimer’s disease (AD) and cancer are common age-related diseases, and epidemiological evidence 
suggests an inverse relationship between them. However, investigating the potential mechanism underlying their 
relationship remains insufficient.

Methods Based on genome-wide association summary statistics for 42,034 AD patients and 609,951 cancer patients 
from the GWAS Catalog using the two-sample Mendelian randomization (MR) method. Moreover, we utilized two-
step MR to identify metabolites mediating between AD and cancer. Furthermore, we employed colocalization analysis 
to identify genes whose upregulation is a risk factor for AD and demonstrated the genes’ upregulation to be a favora-
ble prognostic factor for cancer by analyzing transcriptomic data for 33 TCGA cancer types.

Results Two-sample MR analysis revealed a significant causal influence for increased AD risk on reduced cancer risk. 
Two-step MR analysis identified very low-density lipoprotein (VLDL) as a key mediator of the negative cause-effect 
relationship between AD and cancer. Colocalization analysis uncovered PVRIG upregulation to be a risk factor for AD. 
Transcriptomic analysis showed that PVRIG expression had significant negative correlations with stemness scores, 
and positive correlations with antitumor immune responses and overall survival in pan-cancer and multiple cancer 
types.

Conclusion AD may result in lower cancer risk. VLDL is a significant intermediate variable linking AD with cancer. 
PVRIG abundance is a risk factor for AD but a protective factor for cancer. This study demonstrates a causal influence 
for AD on cancer and provides potential molecular connections between both diseases.
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Introduction
Alzheimer’s disease (AD), characterized by age-related 
cognitive decline, is the most common neurodegen-
erative disease to cause dementia and increased risk of 
mortality in aging populations [1]. Cancer is another age-
related disease causing the second most deaths world-
wide [2]. Intriguingly, abundant epidemiological evidence 
suggests an inverse relationship between AD and cancer 
[3–7]. Furthermore, some studies explored the mecha-
nism underlying the inverse correlation between AD and 
cancer. For example, it has been reported that immune 
regulation may links both diseases [8]. The p53 path-
way is a potential factor contributing to the correlation 
between AD and cancer [9]. In addition, a recent study 
provided biological evidence supporting the inverse cor-
relation between AD and cancer risk by examining Alz-
heimer’s biomarkers in autopsied brains [10]. Despite 
these prior studies, the questions on how AD reduce the 
risk of cancer and vice versa remain unresolved.

Mendelian randomization (MR) is a method of using 
genetic variants related to biological intermediate of 
interest to evaluate the cause-effect relationship [11]. 
This method has been widely utilized to explore the 
cause-effect relationship between biological or medical 
variables [12–15]. However, the use of MR to investigate 
the cause-effect relationship between AD and cancer 
remains unexplored. In this study, to explore the mecha-
nism of how AD reduce cancer risk, we used two-sample 
MR [16] to uncover the causal effect of AD on cancer 
and two-step MR [11] to identify metabolites mediat-
ing between AD and cancer. Furthermore, we employed 
colocalization analysis [17] and transcriptomic analysis 
to validate the findings by the MR analysis.

Methods
An illustration of the analytical methods is presented in 
Fig. 1.

MR analysis
We utilized two-sample MR analysis to explore the 
cause-effect relationship between AD and cancer. In the 
MR analysis, AD was the exposure of interest, cancer 
was the outcome, and SNPs was instrumental variables. 
The two-sample MR method was based on the following 
assumptions: (I) the instrumental variables are strongly 
associated with AD risk; (II) the instrumental variables 
influence risk of cancer only through their effect on AD 
risk; and (III) the instrumental variables are independent 
of confounders.

We collected genome-wide association summary sta-
tistics for 42,034 AD patients and 609,951 cancer patients 
from the GWAS Catalog (https:// www. ebi. ac. uk/ gwas/) 
[18]. Both patient populations were Europeans. The 

GWAS data for AD (ebi-a-GCST005921 [19]), including 
42,034 AD patients and 272,244 controls with 7,746,640 
SNPs, was used as the summary association statistics of 
the exposure (Table 1 and Additional file 1: Table S1). The 
GWAS data for cancer harbored 13 summary association 
statistics associated with 6 cancer types [20–24], each 
of which was used as the summary association statistics 
of the outcome in turn (Table  1 and Additional file  1: 
Table  S1). We employed five MR methods, including 
MR Egger, weighted median, inverse-variance weighted 
(IVW), simple mode, and weighted mode for robust 
analysis of causality. The causal effects of AD on cancer 
were determined to be significant based on the crite-
ria of P value < 0.05 generated by at least one of the five 
MR methods (Additional file  1: Table  S1). As suggested 
in previous studies [12, 14, 25], we identified the genetic 
variants associated with the risk of AD with the threshold 
P < 1 ×  10−5.

In addition, we utilized two-step MR analysis to iden-
tify mediator variables of metabolites mediating the 
cause-effect relationship between AD and cancer. The 
GWAS data for metabolites were also obtained from 
the GWAS Catalog (https:// www. ebi. ac. uk/ gwas/) [18] 
(Additional file 2: Table S2). In the two-step MR analysis, 
β0 − β1 × β2 was utilized as the direct effect of exposure 
on outcome [26], where β0 measures the causal effect 
of the exposure on the outcome, β1 the causal effect of 
the exposure to the mediator, β2 the causal effect of the 
mediator to the outcome, and β1 × β2 represents the 
mediating effect from the exposure to the outcome.

We assessed the directional pleiotropy based on the 
intercept obtained from the MR-Egger analysis [27]. The 
R package “TwoSampleMR” and the web tool MRbase 
(http:// app. mrbase. org/) were used for two-sample MR 
and two-step MR analysis, respectively.

Colocalization analysis
We employed colocalization analysis to identify target 
genes for AD. The colocalization analysis integrated 
information from all eQTL SNPs, including those in 
cis and trans [28] by combining eQTL data for mul-
tiple tissues and GWAS data. When GWAS signal-
ing and eQTL colocalization are detected, the GWAS 
loci may influence the expression phenotypes of target 
genes [29]. We identified target genes at risk loci for 
AD based on the value of the log Bayes Factor (LBF). 
A larger LBF represents a stronger association between 
loci and genes [30]. In the colocalization analysis, we 
employed the GWAS data for AD “ebi-a-GCST005921” 
and the expression quantitative trait loci (eQTL) data 
for whole blood and brain from the Genotype-Tissue 
Expression (GTEx) (https:// www. gtexp ortal. org/ home/ 

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
http://app.mrbase.org/
https://www.gtexportal.org/home/index.html
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index. html) (Additional file  3: Table  S3). Since this is 
an AD-associated colocalization analysis, we selected 
the eQTL data from GTEx associated with blood and 
brain tissues, including whole blood, brain cerebellum, 
brain caudate basal ganglia, brain cortex, brain nucleus 
accumbens basal ganglia, brain cerebellar hemisphere, 
brain frontal cortex BA9, brain putamen basal ganglia, 
brain hippocampus, brain anterior cingulate ganlia, 
brain hypothalamus, brain amygdala, brain spinal cord 
cervical and brain substantia nigra. We implemented 
the colocalization analysis with the R package “coloc” 

[31] and the web tool Sherlock (http:// sherl ock. ucsf. 
edu/ submit. html).

Transcriptomic analysis
Based on transcriptomic data (RSEM-normalized RNA-
Seq gene expression profiles) from TCGA (https:// portal. 
gdc. cancer. gov/), we analyzed the correlations between 
the expression of an AD risk gene (PVRIG) and molec-
ular and clinical features in 33 cancer types and pan-
cancer. The molecular and clinical features included 
stemness, immune, and overall survival (OS). The 33 
cancer types included adrenocortical carcinoma (ACC), 

AD (42034 cases)
ebi-a-GCST005921

Source of instruments for exposure

MR-IVW
Weighted median
MR-Egger
Simple mode
Weighted mode

Two-sample Mendelian 
Randomization

Endometrial cancer (9988 cases) 

Follicular lymphoma (522 cases)

Breast cancer (212862 cases)

Prostate cancer (110093 cases)

Oral cavity cancer (1223 cases)

  Bowel cancer (275263 cases)

Source of genetic association for  outcomes (609951 cases)

The negative cause effect of AD on 
cancer

Colocalization analysis

PVRIG upregulation is a risk 
factor for AD

PVRIG expression vs. stemness, immune, 
overall survival

PVRIG upregulation is a protective 
factor for cancer

eQTL data

Transcriptomic analysis

GTEx  V7 Brain and whole blood

PVRIG is an important bridge linking AD and cancer

Two-step Mendelian 
Randomization

The negative cause effect of AD on cancer is 
mediated by VLDL

Transcriptomic data 
33 TCGA cancer types 

pan-cancer

VLDL is a key mediator liking AD with 
cancer

Metabolites as mediator variables 
from GWAS Catalog 

Fig. 1 Schematic summary of the study

https://www.gtexportal.org/home/index.html
http://sherlock.ucsf.edu/submit.html
http://sherlock.ucsf.edu/submit.html
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


Page 4 of 10Dong et al. Journal of Translational Medicine          (2023) 21:527 

bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), cervical squamous-cell carcinoma 
(CESC), cholangiocarcinoma (CHOL), colon adenocar-
cinoma (COAD), lymphoid neoplasm diffuse large B-cell 
lymphoma (DLBC), esophageal carcinoma (ESCA), glio-
blastoma multiforme (GBM), head and neck squamous 
cell carcinoma (HNSC), kidney chromophobe (KICH), 
kidney renal clear cell carcinoma (KIRC), kidney renal 
papillary cell carcinoma (KIRP), acute myeloid leuke-
mia (LAML), brain lower grade glioma (LGG), liver 
hepatocellular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), lung squamous cell carcinoma (LUSC), meso-
thelioma (MESO), ovarian carcinoma (OV), and pan-
creatic adenocarcinoma (PAAD), pheochromocytoma 
and paraganglioma (PCPG), prostate adenocarcinoma 
(PRAD), rectum adenocarcinoma (READ), sarcoma 
(SARC), skin cutaneous melanoma (SKCM), stomach 
adenocarcinoma (STAD), testicular germ cell tumors 
(TGCT), thyroid carcinoma (THCA), thymoma (THYM), 
uterine corpus endometrial carcinoma (UCEC), uterine 
carcinosarcoma (UCS), and uveal melanoma (UVM).

We utilized the single-sample gene set enrichment 
analysis (ssGSEA) [32, 33] to evaluate the enrichment 
levels of stemness and immune signatures based on the 
expression profiles of their marker genes. The marker 
genes for stemness [34] and immune signatures [35, 36] 
are shown in Additional file  4: Table  S4. We employed 
the Pearson or Spearman method to evaluate the cor-
relation between two groups of data. We compared OS 
time between cancer patients with higher gene expres-
sion (> median) and those with lower gene expression 
(< median) by the Kaplan–Meier estimator [37]. The 

log-rank test P < 0.05 indicated the significance of sur-
vival time differences. We implemented survival analysis 
with the function “survfit ()” in the R package “survival.”

In addition, we used the Benjamini–Hochberg method 
[38] to calculate the false discovery rate (FDR) for adjust-
ing for P values in multiple tests.

Results
MR analysis reveals a negative cause‑effect relationship 
between AD and cancer
In the two-sample MR analysis, SNPs was taken as the 
instrumental variable, AD as the exposure of interest and 
cancer as the outcome. The GWAS data for AD (ebi-a-
GCST005921 [19]) was used as the summary associa-
tion statistics of the exposure and each of the 13 GWAS 
data for cancer the summary association statistics of the 
outcome (Table  1 and Additional file  1: Table  S1). The 
GWAS data for endometrial cancer “ebi-a-GCST006465” 
[20] included 8,758 cancer patients and 46,126 con-
trols with 9,464,330 SNPs. MR analysis demonstrated 
a significant causal influence for increased AD risk on 
reduced risk of endometrial cancer (PMR-Egger = 0.025, 
Pweighted-median = 0.004, PIVW = 0.014, Psimple-mode = 0.256 
and Pweighted-mode = 0.015; Table  2). The heterogeneity 
assessment showed little evidence of heterogeneity for 
the association (Cochran’s  QMR-Egger = 6.29 and P = 0.61, 
 QIVW = 8.23 and P = 0.51; Table 2). In addition, horizontal 
pleiotropy analysis showed little evidence of pleiotropy 
for the association (P = 0.097; Table 2).

Breast cancer is the most common cancer in women 
and also the most common cancer overall [39]. The 
GWAS data for breast cancer “ukb-b-13584” [20] 

Table 1 A summary of the data for Mendelian randomization analysis

Dataset # SNPs in GWAS Cases Controls Year

AD ebi-a-GCST005921 7,746,640 42,034 272,244 2018

Cancer

 Endometrial cancer ebi-a-GCST006465 9,464,330 8758 46,126 2018

ebi-a-GCST006466 8,947,630 1230 35,447 2018

 Follicular lymphoma finn-b-CD2_FOLLICULAR_LYM-
PHOMA_EXALLC

16,380,337 522 180,756 2021

 Breast cancer ieu-a-1126 10,680,257 122,977 105,974 2017

ieu-a-1132 10,680,257 38,197 45,494 2017

ukb-b-12227 9,851,867 16,586 345,223 2018

ukb-b-13584 9,851,867 35,102 388,356 2018

 Prostate cancer ieu-b-85 20,346,368 79,148 61,106 2018

ukb-b-7773 9,851,867 30,945 368,725 2018

 Oral cavity cancer ieu-b-94 7,510,833 1223 2928 2016

 Bowel cancer ukb-a-296 10,894,596 107,072 224,939 2017

ukb-b-7748 9,851,867 22,028 401,107 2018

ukb-b-17001 9,851,867 146,163 309,096 2018
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included 35,102 cancer patients and 388,356 controls 
with 9,851,867 SNPs. MR analysis showed a significant, 
negative, causal influence for AD risk on the risk of 
breast cancer (PMR-Egger = 0.113, Pweighted-median = 0.014, 
PIVW = 0.060, Psimple-mode = 0.712 and Pweighted-

mode = 0.033; Table  2). This analysis showed no sig-
nificant heterogeneity  (QMR-Egger = 12.99 and P = 0.11, 
 QIVW = 13.68 and P = 0.13; Table 2) or horizontal pleiot-
ropy for the association (P = 0.53; Table 2).

Bowel cancer, also known as colorectal cancer, is 
the third most common cancer worldwide [39]. The 
GWAS data for bowel cancer “ukb-b-17001” [20] 
included 146,163 cancer patients and 309,096 controls 
with 9,851,867 SNPs. As well, MR analysis suggested a 
causal influence for increased AD risk on reduced risk 
of bowel cancer (PMR-Egger = 0.099, Pweighted-median = 0.010, 
PIVW = 0.004, Psimple-mode = 0.134 and Pweighted-mode = 0.030; 
Table  2). This analysis showed little evidence of 

Table 2 Two-sample MR results of AD as the exposure and cancer as the outcome

Endometrial cancer (ebi‑a‑GCST006465) Method nsnp β se pval

Results MR Egger 10 − 0.1507 0.0547 0.0249

Weighted median 10 − 0.1279 0.0441 0.0037

IVW 10 − 0.0991 0.0402 0.0138

Simple mode 10 − 0.1297 0.1070 0.2561

Weighted mode 10 − 0.1297 0.0433 0.0150

Method Q Q_df Q_pval

Heterogeneity test MR Egger 6.2937 8 0.6144

IVW 8.2313 9 0.5110

egger_intercept se pval

Test for directional horizontal pleiotropy 0.0126 0.009 0.2014

Breast cancer (ukb‑b‑13584) Method nsnp β se pval

Results MR Egger 10 − 0.0039 0.0022 0.1129

Weighted median 10 − 0.0034 0.0014 0.0144

IVW 10 − 0.0029 0.0016 0.0604

Simple mode 10 − 0.0012 0.0032 0.7121

Weighted mode 10 − 0.0034 0.0013 0.0333

Method Q Q_df Q_pval

Heterogeneity test MR Egger 12.9930 8 0.1121

IVW 13.6812 9 0.1341

egger_intercept se pval

Test for directional horizontal pleiotropy 0.0002 0.0004 0.5333

Bowel cancer (ukb‑b‑17001) Method nsnp β se pval

Results MR Egger 10 − 0.0053 0.0028 0.0988

Weighted median 10 − 0.0061 0.0024 0.0096

IVW 10 − 0.0060 0.0021 0.0036

Simple mode 10 − 0.0085 0.0051 0.1336

Weighted mode 10 − 0.0062 0.0024 0.0302

Method Q Q_df Q_pval

Heterogeneity test MR Egger 4.6927 8 0.7899

IVW 4.8647 9 0.8459

egger_intercept se pval

Test for directional horizontal pleiotropy − 0.0002 0.0005 0.6893
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heterogeneity  (QMR-Egger = 4.69 and P = 0.79,  QIVW = 4.86 
and P = 0.85; Table  2) or horizontal pleiotropy for the 
association (P = 0.69; Table 2).

MR analysis also revealed a negative causal influence 
for AD risk on risk of other cancers, such as prostate can-
cer, follicular lymphoma, and oral cavity cancer (Addi-
tional file 1: Table S1). Inversely, when cancer was taken 
as the exposure of interest and AD as the outcome, MR 
analysis showed no significant causal effect of cancer on 
AD.

To explore the mechanism underlying the causal effects 
of AD on cancer, we performed two-step MR analysis 
with metabolites as mediator variables. When the GWAS 
data for AD (ebi-a-GCST005921 [19]) as the exposure 
of interest and the GWAS data for endometrial cancer 
“ebi-a-GCST006465” [20] as the outcome, we found very-
low-density lipoprotein (VLDL) to be a significant inter-
mediate variable linking AD with cancer (IVW method) 
(Table 3). That is, a positive causal effect of AD on VLDL 
(AD as the exposure of interest and VLDL as the out-
come) (PIVW < 0.01; β > 0) and a negative causal effect of 
VLDL on cancer (VLDL as the exposure of interest and 
cancer as the outcome) (PIVW < 0.05; β < 0) were uncov-
ered. Likewise, MR analysis demonstrated VLDL to be 

a significant intermediate variable linking AD with can-
cer in analyzing the GWAS data for other cancer cohorts 
(Additional file 2: Table S2).

Taken together, MR analysis reveals a significant, nega-
tive causal effect of AD on cancer and VLDL acting as an 
intermediate variable mediating the relationship between 
AD and cancer.

Identification of target genes and risk loci for AD 
by colocalization analysis
Expression quantitative trait loci (eQTL) are genetic vari-
ants associated with gene expression phenotypes [40]. 
Since eQTL data are tissue-specific, we only used eQTL 
data for whole blood and brain for AD-associated colo-
calization analysis. When using the eQTL data “GTEx V7 
Brain nucleus accumbens basal ganglia” and the GWAS 
data for AD “ebi-a-GCST005921” for colocalization anal-
ysis, certain genes whose expression showed significant 
positive associations with risk loci for AD were identified 
(P < 0.05, LBF > 0; Table 4). These genes included PVRIG 
(P < 0.001, LBF = 7.39), KAT8 (P < 0.001, LBF = 7.27), and 
STAG3 (P < 0.001, LBF = 6.73) (Table  4). Among these 
genes, PVRIG was commonly identified by analyzing the 
eQTL data for whole blood and different brain regions 

Table 3 Two-step MR results of VLDL as a mediator variable for AD and cancer

Prefix—S small size, L large size

Suffix—C total cholesterol, CE cholesterol esters, PL phospholipids, FC free cholesterol, L total lipids, P concentration of particles

VLDL nsnp β se pval Q Q_df Q_pval

AD as the exposure and VLDL as the outcome L.VLDL.C 10 0.1109 0.0298 0.0002 18.0300 9 0.0348

L.VLDL.CE 10 0.0969 0.0298 0.0012 16.9641 9 0.0493

L.VLDL.PL 10 0.1416 0.0293 0.0000 17.3709 9 0.0432

S.VLDL.FC 10 0.2240 0.0332 0.0000 22.7703 9 0.0067

S.VLDL.L 10 0.1986 0.0319 0.0000 19.7753 9 0.0194

S.VLDL.P 10 0.1840 0.0321 0.0000 19.9873 9 0.0180

S.VLDL.PL 10 0.1837 0.0295 0.0000 18.0111 9 0.0350

VLDL as the exposure and endometrial cancer as the out-
come

L.VLDL.C 9 − 0.1487 0.0678 0.0282 5.9211 8 0.6561

L.VLDL.CE 11 − 0.1503 0.0696 0.0308 12.4403 10 0.2565

L.VLDL.PL 9 − 0.1946 0.0768 0.0112 9.8292 8 0.2773

S.VLDL.FC 10 − 0.1523 0.0649 0.0188 9.5730 9 0.3862

S.VLDL.L 11 − 0.1282 0.0695 0.0650 13.3105 10 0.2070

S.VLDL.P 12 − 0.1420 0.0759 0.0615 13.3105 10 0.2070

S.VLDL.PL 10 − 0.1517 0.0625 0.0153 9.5537 9 0.3879

Mediating effect Direct effect

AD as the exposure, endometrial cancer as the outcome, 
and VLDL as the mediator

L.VLDL.C − 0.0165 − 0.0826

L.VLDL.CE − 0.0146 − 0.0845

L.VLDL.PL − 0.0276 − 0.0715

S.VLDL.FC − 0.0341 − 0.0650

S.VLDL.L − 0.0255 − 0.0736

S.VLDL.P − 0.0261 − 0.0730

S.VLDL.PL − 0.0279 − 0.0712
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(Additional file  3: Table  S3). It suggests that elevated 
expression of PVRIG is a risk factor for AD.

PVRIG upregulation is associated with favorable outcomes 
in cancer
To explore the role of PVRIG in cancer, we analyzed 
the associations between PVRIG expression and vari-
ous molecular and clinical features in 33 TCGA cancer 
types, including stemness, immune, and survival prog-
nosis. Stem cell-like characteristics in a fraction of can-
cer cells may confer cancer progression and treatment 
resistance [35]. Notably, PVRIG displayed significant 
negative expression correlations with stemness scores 
in pan-cancer and in 30 individual cancer types (Spear-
man correlation, FDR < 0.05) (Fig.  2A). PVRIG expres-
sion was significantly and positively correlated with the 
apoptosis pathway’s enrichment scores in pan-cancer 
and in 26 individual cancer types (FDR < 0.05) (Fig. 2A). 
In pan-cancer and in 30 individual cancer types, PVRIG 
expression was positively correlated with the enrichment 

scores of TILs (FDR < 0.05) (Fig.  2A). Moreover, PVRIG 
had a significant positive expression correlation with the 
ratios of CD8+/CD4+ regulatory T cells in pan-cancer 
and in 29 individual cancer types (Pearson correlation, 
FDR < 0.05) (Fig.  2B). These results collectively suggest 
that elevated expression of PVRIG is associated with 
active antitumor immune responses. Furthermore, in 
pan-cancer and in nine common cancer types (BLCA, 
BRCA, CESC, HNSC, LIHC, LUAD, PAAD, SKCM and 
THYM), increased expression of PVRIG was correlated 
with better OS (P < 0.05) (Fig. 2C). Taken together, these 
data suggest that PVRIG is a tumor suppressor gene in 
cancer.

Discussion
For the first time, we used the two-sample MR method 
to explore the causal effect of AD on cancer. This analy-
sis supports a significant causal influence for increased 
AD risk on reduced cancer risk, consistent with previ-
ous reports of the inverse relationship between AD and 

Table 4 Results by colocalization analysis of eQTL data for Brain nucleus accumbens basal ganglia and GWAS data for AD

Gene SNP Location Proximity eQTL pval

PVRIG rs1061230 chr7:99645201 cis 1.82e−08

KAT8 rs10871454 chr16:30955580 cis 3.75e−06

PRSS36 rs1060506 chr16:31040950 cis 8.60e−14

STAG3 rs1138417 chr7:99645082 cis 1.24e−11

SIGLEC11 rs10405621 chr19:55147163 cis 3.19e−06

CEBPZ-AS1 rs11124575 chr2:37353939 cis 6.36e−06

NUDT2 rs10814087 chr9:34255763 cis 6.32e−12

AP4M1 rs10281368 chr7:99493833 cis 8.68e−07

CYP2D7P rs1033460 chr22:40949252 cis 9.91e−11

GWAS pval LBF Nearby genes Nearby TF p‑value

3.50e−06 7.39 STAG3, GPC2, more… No 5.72E−06

1.46e−06 7.27 STX1B, PRSS53, more… Yes 5.72E−06

1.18e−05 7.13 KAT8, PRSS53, more… Yes 5.72E−06

3.38e−06 6.73 STAG3, GPC2, more… No 1.14E−05

9.35e−05 5.76 MIR4751, NUP62, more… Yes 5.72E−05

8.37e−05 4.89 CEBPZ, NDUFAF7, more… Yes 1.37E−04

6.47e−04 3.54 KIF24, UBAP1 No 6.63E−04

3.94e−04 3.53 MCM7, ZNF3, TAF6, more… Yes 6.75E−04

7.34e−04 3.33 TCF20, OGFRP1 Yes 7.89E−04

Fig. 2 Transcriptomics analysis reveals PVRIG upregulation to be associated with favorable outcomes in cancer. Correlations between PVRIG 
expression levels and stemness scores, apoptosis pathway’s enrichment scores, enrichment scores of tumor-infiltrating lymphocytes (TILs) (A), 
and ratios of CD8+/CD4+ regulatory T cells (B) in pan-cancer and in 33 individual cancer types. C Kaplan–Meier survival curves showing better 
overall survival in higher-PVRIG-expression-level (upper third) than in lower-PVRIG-expression-level (bottom third) cancer patients in pan-cancer 
and in nine individual cancer types. The Spearman’s correlation coefficients (ρ) and adjusted P values (FDR) are shown in A; the Pearson’s correlation 
coefficients (r) and FDR are shown in B; and the log-rank test P values are shown in C. *FDR < 0.05; **FDR < 0.01; ***FDR < 0.001; nsFDR ≥ 0.05

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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cancer [3–7]. Furthermore, we employed two-step MR 
to identify potential mediators of metabolites linking 
AD with cancer. We found VLDL to be a key mediator 
of the negative cause-effect relationship between AD 
and cancer. Finally, we uncovered PVRIG upregulation 
to be a risk factor for AD by colocalization analysis, 
while PVRIG likely plays a role in tumor suppression 
by transcriptomic analysis, as evidenced by that PVRIG 
expression had significant negative correlations with 
stemness scores, and positive correlations with antitu-
mor immune responses and overall survival. It suggests 
that PVRIG could be an important bridge linking AD 
and cancer.

Our results are in agreement with prior studies. For 
example, a recent study revealed elevated levels of VLDL 
in AD patients [41]. In contrast, another study demon-
strated a significant reduction of VLDL levels in cancer 
patients [42]. Guen et  al. [43] showed that PVRIG had 
the strongest eQTL association at the PILRA locus, a 
risk locus for AD. a recent study [44] showed that tumors 
highly expressing PVRIG were characterized by high 
levels of TILs, strong antitumor immune responses and 
favorable survival, in line with our results.

Interestingly, in a few cancer types, such as LGG, GBM, 
and DLBC, the association between PVRIG expression 
and the molecular features showed different results with 
most of the other cancer types (Fig. 2A). It indicates that 
the relationship between AD and cancer risk is positive 
in the few cancer types. This indication is supported by 
previous reports. For example, a previous epidemiologi-
cal investigation revealed a significant positive associa-
tion between AD mortality and malignant brain tumor 
mortality in people aged 65 and older in the US [45]. In 
addition, previous studies showed that TREM2 (Trigger-
ing Receptor Expressed On Myeloid Cells 2) acts as a risk 
factor for both AD and brain tumors [46, 47]. However, 
to date there are very few reports on the relationship 
between AD and DLBC risk that would be an interesting 
direction for investigation.

Our study may provide molecular insights into why AD 
patients are not susceptible to cancer, a conclusion estab-
lished by epidemiological observations. Our findings sug-
gest that the immune system may be an important factor 
responsible for the inverse relationship between AD and 
cancer risk. However, there are several limitations in this 
study. First, we did not perform experimental verifica-
tion of the tumor suppressive effect of PVRIG. Second, 
the role of VLDL as a mediator linking AD with cancer 
remains further proved by experimental and clinical data. 
Finally, it is worthy of exploring whether immunity is a 
key factor mediating the relationship between AD and 
cancer, since immune system has been shown to have 
associations with both disease [48, 49].

Conclusion
AD may result in lower cancer risk. VLDL is a sig-
nificant intermediate variable linking AD with cancer. 
PVRIG abundance is a risk factor for AD but a protec-
tive factor for cancer. This study demonstrates a causal 
influence for AD on cancer and provides potential 
molecular connections between both diseases.
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