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Abstract 

Background The pathogenic mechanisms shared between kidney stones and diabetes at the transcriptional level 
remain elusive, and the molecular mechanisms by which resveratrol exerts its protective effects against these condi-
tions require further investigation.

Methods To address these gaps in knowledge, we conducted a comprehensive analysis of microarray and RNA-
seq datasets to elucidate shared biomarkers and biological pathways involved in the pathogenesis of kidney stones 
and diabetes. An assortment of bioinformatic approaches was employed to illuminate the common molecular 
markers and associated pathways, thereby contributing to the identification of innovative therapeutic targets. Further 
investigation into the molecular mechanisms of resveratrol in preventing these conditions was conducted using 
molecular docking simulation and first-principles calculations.

Results The study identified 11 potential target genes associated with kidney stones and diabetes through the inter-
section of genes from weighted gene co-expression network analysis (WGCNA) and differentially expressed genes 
(DEGs) screening. Among these, Interleukin 11 (IL11) emerged as a pivotal hub gene and a potential diagnostic 
biomarker for both conditions, particularly in males. Expression analysis of IL11 demonstrated elevated levels 
in kidney stones and diabetes groups compared to controls. Additionally, IL11 exhibited correlations with specific 
cell types and differential expression in normal and pathological conditions. Gene set enrichment analysis (GSEA) 
highlighted significant disparities in biological processes, pathways, and immune signatures associated with IL11. 
Moreover, molecular docking simulation of resveratrol towards IL11 and a first-principles investigation of Ca adsorp-
tion on the resveratrol surface provided structural evidence for the development of resveratrol-based drugs for these 
conditions.

Conclusions Overall, this investigation illuminates the discovery of common molecular mechanisms underlying 
kidney stones and diabetes, unveils potential diagnostic biomarkers, and elucidates the significance of IL11 in these 
conditions. It also provides insights into IL11 as a promising therapeutic target and highlights the role of resveratrol. 
Nonetheless, further research is warranted to enhance our understanding of IL11 targeting mechanisms and address 
any limitations in the study.
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Background
Kidney stones, a persistent and agonizing disorder, is 
witnessing a rising global prevalence, with an estimated 
lifetime prevalence of 10% in the general population [1]. 
This growing trend, coupled with the observed sex gap, 
has been attributed to factors such as hormonal imbal-
ances, lifestyle habits, and comorbidities, which contrib-
ute to abnormal urinary composition and dehydration 
[1–3]. Nephrolithiasis, rather than being solely a urinary 
metabolic anomaly, has been shown through research to 
exhibit connections with multiple metabolic characteris-
tics, encompassing central adiposity, elevated triglyceride 
levels, hypertension, and diabetes [4]. Diabetes is a signif-
icant risk factor for kidney stones, particularly in males, 
with a 16% higher risk observed in diabetic patients com-
pared to individuals without the condition [5]. Insulin 
resistance, the hallmark of diabetes, may contribute to 
reduced urinary pH by disrupting ammoniagenesis and 
augmenting sodium and bicarbonate reabsorption [6]. 
Moreover, elevated blood glucose levels and concomi-
tant glycosuria independently heighten urinary calcium 
excretion, thereby facilitating the development of cal-
cium-based renal calculi in individuals with diabetes [2].

The prevention and treatment of diabetes and kidney 
stones with medication is a major concern for the general 
public. While dietary and behavioral interventions alone 
may be insufficient, the development of safe and effective 
stone-inhibiting drugs is urgently needed. Resveratrol, 
a natural polyphenol compound with multiple biologi-
cal activities, has been shown to help in treating or pre-
venting diabetes and decreasing insulin resistance [7, 8]. 
Studies have also demonstrated that resveratrol supple-
mentation can curtail the creation of reactive oxygen spe-
cies triggered by oxalate and diminish the manifestation 
of profibrotic elements, thereby decreasing kidney stones 
formation [9, 10].

Nonetheless, the overlapping phenotypic character-
istics and molecular signaling pathways underlying the 
pathogenesis of both kidney stones and diabetes at the 
transcriptional level continue to be enigmatic. Besides, 
the mechanisms by which resveratrol can improve diabe-
tes parameters and kidney stones are complex and not yet 
fully understood [11]. To elucidate the common biomark-
ers and pathways involved in the mechanism of kidney 
stones and diabetes, we first identified these biomarkers 
through microarray and RNA-seq datasets. Various bio-
informatics analyses were utilized to unravel the critical 
biomarkers and biological roles, thereby offering valuable 
perspectives on potential innovative therapeutic targets. 

Additionally, we employed the supercomputing platform 
and quantum mechanical computational theory to ana-
lyze the mechanism of resveratrol in preventing renal 
calcium stones from a new and microscopic perspective, 
providing basic structural evidence for the development 
of drugs based on resveratrol.

Methods
Data collection
A flowchart outlining this study is delineated in Fig.  1. 
The gene expression omnibus (GEO) database [12], spe-
cifically GSE73680, furnished a comprehensive dataset 
encompassing gene expression profiles from 33 normal 
renal papillary tissues and 29 tissues afflicted with Ran-
dall’s plaque (RP). Additionally, GSE41762 (comprising 
human islet tissues from 57 non-diabetic individuals and 
20 individuals with diabetes) and GSE38642 (comprising 
human islet tissues from 54 non-diabetic individuals and 
9 individuals with diabetes) contributed transcriptome 
data of controls and patients with diabetes.

Screening of module genes via weighted gene 
co‑expression network analysis (WGCNA)
WGCNA [13] was employed to analyze GSE73680 and 
GSE41762 datasets to determine gene modules associ-
ated with kidney stones and diabetes. Preliminarily, sam-
ples underwent evaluation for absent data points before 
clustering. Following this, a "soft" threshold power (β) 
was established in accordance with the scale-free topol-
ogy criterion, facilitating the construction of a bio-
logically significant scale-free network. Furthermore, a 
topological overlap matrix (TOM) was derived from the 
adjacency matrix, with a dynamic tree-cutting algorithm 
employed to identify gene modules. Gene significance 
(GS), module membership (MM), and modules cor-
related with clinical characteristics were subsequently 
computed, culminating in the visualization of the feature 
gene network. The utilization of the Pearson correlation 
coefficient and the P-value of eigengenes and disease 
traits facilitated the identification of pivotal modules 
associated with kidney stones and diabetes. Finally, the 
significant module genes from WGCNA of kidney stones 
and diabetes were combined to identify shared genes 
through AWFE diagrams.

Identification of differentially expressed genes (DEGs)
The identification of DEGs between the kidney stone 
cohort and the normal cohort was carried out using the 
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Fig. 1 Study flowchart of the whole procedures
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R package "limma", employing criteria of |log2 FC|> 0.5 
and P-value < 0.05. The results were visualized through 
volcano plots and a heatmap in R software (version 4.2.2). 
Subsequently, two sets of genes were generated, one for 
DEGs in kidney stones and the other for shared gene 
modules between kidney stones and diabetes, by fol-
lowing the aforementioned steps. A comparison of two 
sets of genes was conducted to reveal the genes associ-
ated with kidney stones and diabetes, and Chow-Ruskey 
diagrams were constructed. Thereafter, the Circos track 
plot was employed to map the location of shared genes 
on chromosomes, and the Circos plot demonstrated the 
interconnectivity among shared genes. To further inves-
tigate the interrelation among the obtained common 
genes, a network of protein–protein interactions (PPI) 
was established utilizing GeneMANIA [14].

Enrichment analysis of shared genes from kidney stones 
with diabetes
To determine the potential functions among shared 
genes from kidney stones with diabetes, analysis of Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways was conducted utilizing the 
"org.Hs.eg.db", "ggplot2", "clusterProfiler", and "enrich-
plot" packages in the R software. Additionally, Reactome 
pathway analysis was performed using an online tool 
that was freely accessible, manually curated and peer-
reviewed [15]. Afterward, GO analysis was executed to 
uncover overlapping gene-associated biological processes 
(BP), molecular functions (MF), and cellular components 
(CC). Moreover, KEGG and Reactome analysis were also 
performed to determine the enriched signaling pathways 
indicated by the potential targets. Significance of results 
was established based on the criterion of a P-value less 
than 0.05. Visualizations of the three leading terms of 
each group were depicted using Sankey plots and chord 
diagrams, courtesy of the digital arena for conducting 
data evaluation and depiction.

Machine learning
To further refine the selection of candidate genes asso-
ciated with kidney stones in diabetic patients, three 
machine learning algorithms were employed. Least Abso-
lute Shrinkage and Selection Operator (LASSO), a regres-
sion approach, facilitates variable selection to heighten 
the interpretability and predictive precision of a statisti-
cal model [16]. Conversely, Random Forest (RF) offers 
advantages such as unconstrained variable conditions 
and superior accuracy, sensitivity, and specificity, mak-
ing it suitable for the prediction of continuous variables 
and providing consistent forecasts [17]. Support Vector 
Machines Recursive Feature Elimination (SVM-RFE) is 
a sequence selection algorithm based on the maximum 

interval principle of SVM, wherein all feature sets of the 
data set are optimized for SVM model training in the first 
iteration, and then the scores of each feature are calcu-
lated in descending order [18]. The feature set with the 
smallest score is recorded, the feature with the smallest 
score is deleted, and the iteration is repeated until only 
one feature remains. Utilizing the R packages "glmnet", 
"randomForest", "e1071", "kernlab", and "caret" [19–21], 
we conducted LASSO regression, RF analysis, and SVM-
RFE algorithms. The convergence of results obtained from 
these three machine learning approaches were deemed as 
potential hub genes in kidney stones with diabetes.

Hub gene expression and receiver operating characteristic 
(ROC) evaluation
The hub gene’s expression profiles were initially assessed 
in the GSE73680 and GSE41762 datasets and subse-
quently verified in the GSE38642 dataset. Moreover, sub-
group analyses were performed on the GSE73680 dataset 
to examine the association between IL11 expression lev-
els and tissue of origin and sex distribution. Specifically, 
three distinct subcategories were delineated: the "Calculi" 
subgroup, consisting of Randall’s Plaque obtained from 
calcium stone formers; the "Normal" subgroup, encom-
passing unaltered papillary tissues samples from calcium 
stone formers; and the "Control" subgroup, comprising 
unremarkable papillary tissues derived from patients 
devoid of any renal calculi. Comparison between these 
subgroups was performed using the Wilcoxon rank-sum 
test, with a predetermined significance level of P < 0.05. 
ROC curves were generated to assess the diagnostic 
merit of the hub gene for kidney stones and diabetic 
diagnosis, respectively. The AUC values and their cor-
responding 95% confidence intervals were calculated to 
distinguish the disease group from the control group, 
with an AUC value exceeding 0.7 considered to be indic-
ative of a significant difference.

Evaluating the immune and stromal cell infiltration
To estimate the immune cell composition in kidney 
stones and control samples, we employed xCell, an online 
tool that performs cell type enrichment analysis for stro-
mal cell types and 64 immune and applies a novel method 
to lower confounding effects of closely related cell types 
[22]. Subsequently, spearman correlation analysis was 
executed to investigate the correlation between the piv-
otal genes and diverse cells, and the outcomes were visu-
alized in a heatmap.

Validation of hub gene expression in nephroseq and HPA 
database
To ascertain the association between the hub gene and 
clinical traits, Nephroseq v5 database [23], an integrated 
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webtool for analyzing gene expression datasets related to 
renal diseases, was employed. Additionally, expression 
profiles of IL11 and recognized cell type markers in the 
distinct single cell type clusters of the kidney were pro-
cured from the HPA database [24]. Subsequently, a cor-
relation analysis utilizing Pearson’s method was carried 
out, whereby a statistical significance was assigned to 
P < 0.05.

Subgroup analysis based on the hub gene expression
To gain a deeper understanding of the hub gene’s 
involvement in kidney stone disease, tissue samples 
from affected individuals were segregated into low- and 
high-expression subgroups as per the hub gene’s median 
expression. Gene set enrichment analysis (GSEA) was 
subsequently applied through the OmicShare tool [25], to 
distinguish functional and pathway differences between 
the two subclusters. Volcano plot construction was 
then performed to pinpoint DEGs with |log2 FC|> 0.5 
and P < 0.05. Subsequently, the "clusterProfiler" package 
was utilized for the execution of GO and KEGG analy-
sis, aiming to elucidate the biological roles attributed 
to the DEGs. Additionally, the Single Sample Gene Set 
Enrichment Analysis (ssGSEA) was carried out using 
the "GSVA" R package on 23 immune gene sets to assess 
the immunological characteristics of the subgroup sam-
ples. Lastly, a correlation matrix was constructed for all 
23 immunological cell subtypes, along with a correlation 
coefficient between the hub gene and immune cells with 
significantly different expression.

Mfuzz expression pattern clustering of the hub gene
Utilizing the R package “Mfuzz” [26], expression patterns 
were clustered by considering the hub gene’s expression 
levels. Following this, ssGSEA scores of various clustering 
modules in the kidney stone group and the normal group 
were calculated to ascertain the association between the 
clustering modules and the hub gene. Through this pro-
cess, we were able to identify the gene module that was 
most closely associated with the hub gene. We then inter-
sected the genes in this module with the common gene 
targets of kidney stones and diabetes to derive a set of 
core genes that are relevant to the hub gene’s expression.

Construction of co‑expression network of TF‑genes 
and miRNA‑genes
NetworkAnalyst 3.0 [27], a powerful visual analytics tool 
for conducting in-depth gene expression profiling and 
meta-analysis, was employed to establish co-expression 
networks of transcription factors (TFs) and miRNA 
interacting with the hub gene expression-related genes 
respectively. A comprehensive set of experimentally vali-
dated miRNA-gene interaction data was gathered from 

the TarBase [28], with TF targets derived from the JAS-
PAR [29].

Molecular docking validation of resveratrol with the core 
target
In this study, molecular docking experiments were con-
ducted to investigate the interaction between resveratrol 
and the core target [30]. Initially, the protein structure 
that corresponds to the core target was procured from 
the PDB database. Following this, the Pymol software 
was employed to eliminate water and ligands from the 
receptor protein. Additionally, Autodock tools software 
was utilized for receptor protein modification through 
hydrogenation and charge balancing. The Grid Box com-
mand was employed to access the Grid Option tool, 
which facilitated the processing of the receptor pro-
tein and the determination of the ligand binding pocket 
dimensions. These dimensions were ascertained based 
on the lattice points quantity and the inter-point spacing 
in each direction, with appropriate adjustments made to 
the lattice points number, binding pocket center, and grid 
points spacing. To simulate the binding mode of resvera-
trol with the target protein, Autodock Vina software was 
employed, and the affinity was subsequently computed 
to appraise the ligand’s binding efficacy to the receptor 
molecule, with a lower energy value indicating a superior 
binding effect.

First‑principles investigation of calcium adsorption 
on resveratrol surface
The comprehensive framework of first-principles meth-
ods encompasses all calculations in quantum mechani-
cal principles. These methods provide pertinent insights 
into the electronic structure properties of a system, 
facilitating the characterization of chemical bond cleav-
age, formation, and electronic reorganizations, including 
chemical reactions. Leveraging their inherent accuracy-
enhancement strategies, these theoretical approaches 
typically require solely the atomic species and coordi-
nates as inputs, enabling precise computation of diverse 
physicochemical properties exhibited by molecular 
systems. Currently, first-principles calculations primar-
ily rely on density functional theory (DFT), a method 
for computing quantum systems that replaces the wave 
function of the system with a functional of the particle 
density, thereby avoiding complex calculations in high-
dimensional space and facilitating practical and efficient 
computations [31]. Notably, VASP (Vienna Ab-initio 
Simulation Package) stands as a well-established software 
package, crafted by researchers affiliated with the Univer-
sity of Vienna, dedicated to materials calculations predi-
cated on density functional theory [32].



Page 6 of 27Shen et al. Journal of Translational Medicine          (2023) 21:491 

In this study, the adsorption properties of cal-
cium (Ca) on resveratrol  (C14H12O3) and oxalic acid 
 (C2H2O4) were investigated via DFT as the first-prin-
ciples calculation method [31] and the VASP. The 
generalized gradient approximation (GGA) based Per-
dew-Burke-Ernzrhof (PBE) functional was used to cal-
culate the exchange–correlation interactions, and the 
pseudo-potential description method was the projec-
tor augmented wave (PAW) method. The K-point was 
divided into 5 × 5 × 1, and the plane wave cutoff kinetic 
energy was 500  eV. During the structural optimiza-
tion stage, the conjugate gradient algorithm was used 
and the convergence criterion was that the discrepancy 
in overall energy between two distinct ion stages was 
below 0.0001  eV. The interaction between them was 
corrected using the D3 dispersion correction to density 
functional theory (DFT-D3) grime method. The charge 
transfer amount during adsorption was analyzed using 
the Bader charge. The adsorption energy of Ca on the 
molecular surface, defined as  Eads, is given by the for-
mula:  Eads =  Esub + Ca −   Esub −   ECa. If the calculated  Eads 
is negative, an exothermic reaction occurs when the 
two interact on the surface, and the more negative the 
value, the more stable the adsorption structure. The 
calculation platform was provided by the cluster system 
of the Shandong University Super Calculation Center.

In this investigation, an analysis of the energy req-
uisite for calcium to adsorb onto  C14H12O3 was con-
ducted, initially by ascertaining the structural formula 
of resveratrol and optimizing the  C14H12O3 structure 
to attain the most stable molecular conformation. Five 
distinct sites on the resveratrol molecular structure 
were designated as preliminary positions for comput-
ing the adsorption energy of calcium to  C14H12O3, with 
the outcomes compared. Moreover, to further corrobo-
rate the stable conformation of the adsorption system, 
the study delineated the modifications in the  C14H12O3 
structure following calcium adsorption, and a charge 
density difference diagram was employed to illustrate 
the charge distribution shifts pre- and post-calcium 
adsorption. Ultimately, by establishing a stable adsorp-
tion system and calculating the adsorption energy, 
the investigation compared calcium adsorption on 
 C14H12O3 and  C2H2O4.

Results
Identifying co‑expressed gene modules associated 
with kidney stones and diabetes
As shown in Fig.  2A–C, the WGCNA analysis of 
GSE73680 dataset, comprising of 33 normal papillary tis-
sues and 29 RP papillary tissues, resulted in the identifi-
cation of 9 gene modules associated with kidney stones. 
No samples were found to be outliers (Additional file 1: 
Fig.  S1A). The connection linking each module and the 
disease was appraised through a heatmap and the Spear-
man’s correlation coefficient. The MEyellow module 
was found to be positively correlated with kidney stones 
(r = 0.26, P = 0.04) and was therefore identified as the piv-
otal module for further scrutiny. Similarly, as shown in 
Fig.  2D–F, the WGCNA analysis of GSE41762 dataset, 
which included human islet tissues from 57 normal and 
20 diabetic groups, identified 21 gene modules associ-
ated with diabetic. No samples were removed as outliers 
(Additional file 1: Fig. S1B). The MEblue, MEpurple and 
MEbrown modules were found to be positively corre-
lated with diabetes (r = 0.24, P = 0.03; r = 0.38, P = 7e−04; 
r = 0.39, P = 4e−04) and were selected as key mod-
ules for further analysis, with 437, 160, and 183 genes, 
respectively.

Determination of DEGs in the GSE73680 dataset of kidney 
stones
Through rigorous analysis, a comprehensive list of 151 
DEGs were generated, comprising 58 downregulated 
genes and 93 upregulated genes, as evidenced in the vol-
cano plot (Fig.  3A). Additionally, to delve deeper into 
the most prominent differences between the disease and 
control cohorts, a heatmap was generated (Fig. 3B) show-
casing the top 30 genes exhibiting the the greatest degree 
of variation.

Enrichment analysis of shared genes from kidney stones 
and diabetes
The intersection of genes associated with kidney stones 
and diabetes was identified by comparing the genes pre-
sent in positively related modules for both conditions. 
Using AWFE diagrams, a total of 19 common genes 
were found across the four relevant modules in kidney 
stones and diabetes (Fig. 4A). Further analysis utilizing 
WGCNA-derived significant module genes and DEGs 

(See figure on next page.)
Fig. 2 Identification of module genes via WGCNA in the GSE73680 dataset of kidney stones and the GSE41762 dataset of diabetes. A Eigengene 
dendrogram and heatmap to illustrate the meta-modules of correlated eigengenes for the GSE73680 dataset of kidney stones. B Clustering 
dendrogram and merging of the gene co-expression modules represented by different colors in kidney stones. C Heatmap of the module–
trait relationship in kidney stones. At the row column intersection lies the correlation and p-value that correspond to each other. D Eigengene 
dendrogram and heatmap to illustrate the meta-modules of correlated eigengenes for the GSE41762 dataset of diabetic. E Clustering dendrogram 
and merging of the gene co-expression modules distinguished by varying colors in diabetic. F Heatmap of the module–trait relationship 
in diabetic. At the row column intersection lies the correlation and p-value that correspond to each other
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yielded 11 potential target genes for both diseases 
through Chow-Ruskey diagrams (Fig.  4B). The Circos 
track plot was used to visualize the location of these 
shared genes on chromosomes and provided insight 
into potential regions of genetic overlap between the 

two diseases (Fig.  4C). The shared genes were discov-
ered to have a positive correlation in their expression 
levels, as demonstrated by the GEO data in the Circos 
plot (Fig.  4D). Correlations among the shared genes 
were also examined using a coloring scheme, with blue 
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signifying positive correlation and red signifying nega-
tive correlation (Fig.  4E). A numerical expression was 
used when the P-value was 0.05 or greater. The PPI net-
work for the candidate genes was created via the Gene-
MANIA database (Fig. 4F), and functional analysis was 
conducted using GO, KEGG, and Reactome to identify 
potential mechanisms of action. The results revealed 
GO enrichment in regulation of regulation of removal 
of superoxide radicals, collagen catabolic process, cel-
lular response to glucose starvation, negative regulation 
of hormone secretion (BP); steroid binding, extracel-
lular matrix structural constituent, carbohydrate phos-
phatase activity (MF); and cell projection membrane, 
collagen-containing extracellular matrix (ECM), base-
ment membrane (CC) (Fig. 4G). Additionally, the genes 
exhibited a significant enrichment in KEGG pathways 
including fructose and mannose metabolism, cell adhe-
sion molecules, ECM-receptor interaction, leukocyte 
transendothelial migration, AMPK signaling pathway, 
and nitrogen metabolism (Fig.  4H). Reactome analy-
sis also demonstrated that the targets were intricately 
linked with ECM organization, assembly of colla-
gen fibrils and other multimeric structures, cell junc-
tion organization, collagen formation, and IL-6-type 
cytokine receptor ligand interactions (Fig. 4H).

Screening for candidate diagnostic biomarkers for kidney 
stones in individuals with diabetes using machine learning 
algorithms
Various machine learning algorithms were employed 
to identify potential diagnostic biomarkers from a set 
of 11 shared genes identified in both kidney stones and 
diabetes. The LASSO regression algorithm identified 
three biomarkers as demonstrated in Fig.  5A. By con-
trast, the RF algorithm determined four potential bio-
markers based on their importance, depicted in Fig. 5B, 
C. Moreover, the SVM-RFE analysis showed that a 
model involving two genes achieved the highest accu-
racy, as illustrated in Fig. 5D. By comparing the results 
of these three algorithms, a single potential biomarker, 
IL11, was identified as a shared biomarker for both kid-
ney stones and diabetes (as demonstrated in Fig. 5E).

Expression characteristics and diagnostic capability 
assessment of the candidate diagnostic biomarker
This investigation sought to expand on the significance 
of IL11 in the onset of nephrolithiasis among individu-
als afflicted with diabetes. To this end, our approach 
involved a comprehensive analysis of the expression 
profiles of IL11 in a patient cohort and compared it with 
that of a control group. Our results indicated a marked 
elevation in the levels of IL11 expression in both kid-
ney stones group (as illustrated in Fig. 6A) and diabetes 
group (Fig. 6C) when contrasted with the control cohort. 
Despite the absence of another appropriate database to 
validate IL11 expression levels in kidney stones, our find-
ings were confirmed by analysis of the GSE38642 dataset 
of diabetes patients (Fig. 6E). The diagnostic potential of 
IL11 was further evaluated using ROC curves based on 
the GSE73680 and GSE41762 datasets, which suggest 
that IL11 could potentially act as a diagnostic biomarker 
for kidney stones in diabetic patients (Fig.  6B, D). The 
ROC analysis of the GSE38642 dataset further reinforced 
the potential of IL11 as the most promising diagnostic 
marker for this condition (Fig.  6F). Additionally, sub-
group analysis of IL11 expression levels based on tissue of 
origin indicated a significant upregulation of IL11 expres-
sion in the "Calculi" group when contrasted with the 
"Normal" group, but "Normal" and the "Control" groups 
exhibited no substantial differentiation. (Fig. 6G). Moreo-
ver, we investigated the distribution of IL11 expression 
levels by sex and found a substantial elevation in male 
patients, but no significant difference was observed in 
female patients (Fig. 6H). These results provide compel-
ling evidence for the potential of the IL11 signature as an 
excellent diagnostic biomarker for kidney stones in indi-
viduals with diabetes.

IL11 as the hub gene used for cell type enrichment analysis 
and expression analysis in Nephroseq and HPA database
An xCell enrichment analysis was performed on gene 
expression data from 64 immune and stroma cell types, 
revealing a strong positive correlation between IL11 and 
several cell types including pro B-cells, mv Endothe-
lial cells, Mesangial cells, Memory B-cells, ly Endothe-
lial cells, and Endothelial cells (Fig.  7A). This analysis 

(See figure on next page.)
Fig. 4 Enrichment analysis of shared genes from kidney stones with diabetes. A AWFE sets of the shared genes between the MEyellow module 
of kidney stones and MEturquoise, MEblue, MEpurple, MEred, MEcyan modules of diabetic by overlapping them. B Chow-Ruskey diagrams of 17 
common genes identified from the intersection of DEGs in kindey stones using Limma and the shared genes between kidney stones and diabetic 
using WGCNA. Color of the borders around each intersection corresponds to the modules whose genes overlap. The green circle in the middle 
represents the overlap of all modules. Lighter shades of brown, blue and pink represent the overlap of fewer modules. Area of each intersection 
is proportional to number of genes within the intersection. C Circos track plot used to map the location of 11 shared genes on the chromosomes. 
D Circos plot demonstrating the interconnectivity among 11 shared genes. The hue and width of the ribbons are associated with the expression 
levels of genes, with red signifying a positive relationship and green indicating a negative one. E Matrix graphs of correlation analysis of 11 shared 
genes. F PPI network for the obtained 11 common genes constructed by GeneMANIA. G GO enrichment analysis of the obtained 11 common 
genes. H KEGG and Reactome enrichment analysis of the obtained 11 common genes
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Fig. 5 Screening for candidate diagnostic biomarkers for kidney stones with diabetic using machine learnings. A Screening for biomarkers 
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(See figure on next page.)
Fig. 6 Verification of IL11 as the hub gene. A The expression level of IL11 in the GSE73680 dataset of kidney stones. B ROC curve for IL11 
in the GSE73680 dataset of kidney stones. C The expression level of IL11 in the GSE41762 dataset of diabetic. D ROC curve for IL11 in the GSE41762 
dataset of diabetic. E The expression level of IL11 in the GSE38642 dataset of diabetic. F ROC curve for IL11 in the GSE38642 dataset of diabetic. G 
Subgroup analysis of IL11 expression levels based on tissue of origin. H Subgroup analysis of IL11 expression levels in kidney stones according to sex 
distribution in the GSE73680 dataset The Wilcoxon rank-sum was employed to compare the two data sets, and a P-value below 0.05 was considered 
statistically significant
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provides a comprehensive depiction of the cellular heter-
ogeneity landscape in tissue expression profiles. Further 
examination of IL11 expression levels in various data-
bases showed notable differences between normal and 
pathological conditions. In the Lindenmeyer Normal Tis-
sue Panel in Nephroseq v5 database, higher expression of 
IL11 was observed in the tubulointerstitium compared 
to the glomeruli (Fig. 7B). In the Higgins Normal Tissue 
Panel, IL11 was over-expressed in papillary tips com-
pared to other structures in the kidney (Fig.  7C). IL11 
expression was found to be over-expressed in chronic 
kidney disease with tubulointerstitial fibrosis and tubular 
cell damage, compared to normal kidney, in the Naka-
gawa CKD Kidney in Nephroseq v5 database (Fig.  7D). 
Analysis of the Woroniecka Diabetes in Nephroseq 
v5 database showed a significant negative correla-
tion between IL11 expression and the value of GFR 
(Fig.  7E). Additionally, in the Kurian Transplant Kidney 
in Nephroseq v5 database, IL11 expression was found to 
be significantly positively correlated with serum creati-
nine levels in open donor nephrectomy samples (Fig. 7F). 
Through single-cell analysis in the HPA database, IL11 
was predominantly enriched in kidney collect duct cells 
(Fig.  7G, H). These results provided important insights 
into the expression and distribution of IL11 in normal 
and pathological conditions, offering valuable informa-
tion for further investigation into its role in renal biology.

GSEA of biological functions and pathways based on IL11 
expression
The male RP papillary tissues were categorized into two 
subgroups, low-IL11 and high-IL11, by considering the 
median expression level of IL11. GSEA was conducted to 
ascertain biological activities and pathways with differ-
ential expression. The results of the GO analysis revealed 
significant differences in BP, CC, and MF between these 
two subgroups. The low-IL11 subgroup was enriched 
in extracellular structure organization, regulation of 
endothelial cell proliferation, collagen fibril organiza-
tion, and oxidative phosphorylation, while the high-IL11 
subgroup exhibited higher levels of phosphatidylcholine 
acyl chain remodeling and sensory perception of chemi-
cal stimulus (Fig.  8A). In terms of cellular components, 
the low-IL11 subgroup displayed increased enrichment 

in the extracellular matrix and basement membrane, 
whereas the high-IL11 subgroup exhibited higher levels 
of intermediate filament cytoskeleton (Fig. 8B). Similarly, 
at the molecular function level, the low-IL11 subgroup 
showed higher enrichment in growth factor binding 
and extracellular matrix structural constituents, while 
the group categorized as high-IL11 displayed elevated 
levels of both monooxygenase activity and olfactory 
receptor activity (Fig. 8C). Furthermore, GSEA revealed 
significant differences in hallmark activities of epithelial 
mesenchymal transition, angiogenesis, hypoxia, KRAS 
signaling, oxidative phosphorylation, apoptosis, myo-
genesis, coagulation, and DNA repair between the low-
IL11 and high-IL11 subgroups (Fig. 8D). The analysis of 
immune signatures also showed differences between the 
two subgroups, with elevated levels of certain signatures 
in the low-IL11 subgroup and decreased levels of one sig-
nature in the high-IL11 subgroup (Fig.  8E). KEGG and 
Reactome-based pathway analyses demonstrated dif-
ferential enrichment of pathways between the two sub-
groups, highlighting the role of IL11 in pathways related 
to ECM receptor interaction, focal adhesion, integrin 
cell surface interactions, collagen formation, and voltage 
gated potassium channels (Fig. 8F, G).

Identification of DEGs, functional distinctions and immune 
cell infiltration between the kidney stones subtypes
To elucidate the functional discrepancies between the 
subgroups of kidney stones with low and high levels of 
IL11, an analysis of DEGs was executed, leading to the 
discovery of 679 genes comprising 452 upregulated and 
227 downregulated genes which were visualized on a 
volcano plot (Fig.  9A). Subsequent scrutiny was per-
formed via GO and KEGG analysis to investigate the 
potential molecular processes and functions. GO analy-
sis indicated enrichment in various biological processes, 
including heart morphogenesis, extracellular matrix 
organization, mesenchyme development, and urogenital 
system development (BP). It also revealed enrichment 
in cellular components including the collagen-contain-
ing extracellular matrix and platelet alpha granule (CC), 
as well as molecular functions such as integrin bind-
ing, collagen binding, and actin binding (MF) (Fig.  9B). 
KEGG pathway analysis indicated enrichment in several 

Fig. 7 IL11 as the hub gene used for cell type enrichment analysis and expression analysis. A Correlation analysis among IL11 and 64 immune 
and stroma cell types in renal papillary Randall’s plaque (RP) and normal papillary tissue. B IL11 over-expression in tubulointerstitium vs. glomeruli 
tissue of the normal adult human kidney explored in the Nephroseq database. C IL11 over-expression in papillary tips vs. all other tissues 
of the normal adult human kidney explored in the Nephroseq database. D IL11 over-expression in chronic kidney disease vs. normal kidney 
explored in the Nephroseq database. E IL11 expression correlated with GFR in healthy living donors explored in the –Nephroseq database. F 
IL11 expression correlated with serum creatinine in open donor nephrectomy samples explored in the Nephroseq database. G Expression profiles 
of IL11 in kidney cell types based on the HPA database. H Heatmap for the expression of IL11 and recognized cell type markers across distinct single 
cell type clusters of the kidney based on HPA database

(See figure on next page.)
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pathways related to metabolism, environmental informa-
tion processing, organismal systems, cellular processes, 
and human diseases, as presented in Fig.  9C. Addition-
ally, GSVA revealed significantly higher levels of Natu-
ral Killer T (NKT) cells in patients in the IL11-high 

subgroup (Fig.  9D), with a direct relationship between 
the manifestation of IL11 and NKT cells (Fig. 9E). These 
findings provide a comprehensive understanding of the 
functional differences between the two subgroups and 
could potentially inform future studies.
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Fig. 8 GSEA between kidney stones subtypes based on IL11 expression levels. A GO:BP analysis via GSEA. B GO:CC analysis via GSEA. C GO:MF 
analysis via GSEA. D KEGG pathway analysis via GSEA. E Hallmark pathway analysis via GSEA. F Reactome pathway analysis via GSEA. G Enriched 
immune cell types via GSEA
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Fig. 9 Identification of DEGs, Functional enrichment analysis and Immune cell infiltration between kidney stones subtypes. A Volcano plots 
showing all DEGs. B Enriched GO items. C Enriched KEGG items. D Correlation matrix for all 23 immunological cell subtypes. E Correlation coefficient 
between IL11 and Natural killer T cell
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Identification and TF‑miRNA interaction network analysis 
of IL11 expression‑related genes
In this research, we performed an analysis of IL11 expres-
sion-related genes using Mfuzz followed by grouping the 
results into 100 clusters. The first 50 clusters were visu-
ally represented in Fig. 10A, while the other 50 were pro-
vided as Additional file  2: Fig.  S2. Using a combination 
of ssGSEA scores and expression attributes, the cluster-
ing modules between the kidney stones cohort and the 
normal cohort were compared, as depicted in Fig.  10B. 
The correlation between the class modules and IL11 is 
presented in Fig.  10C, where it was found that Cluster 
9 exhibited the strongest association to IL11, as shown 
in Fig.  10D. Through an intersection of common genes 
from kidney stones with diabetes and the Cluster 9 mod-
ule genes, we identified PROM1, TFPI2, and PFKFB3 as 
core genes related to IL11 expression in kidney stones 
(Fig.  10E). To uncover the regulatory mechanisms of 
IL11, PROM1, TFPI2, and PFKFB3, a network of miR-
NAs and IL11-related genes was constructed (Fig. 10F). 
Furthermore, potential TFs were predicted and a net-
work of TFs and potential biomarkers was established 
(Fig. 10G). Ultimately, our findings identified 19 miRNAs 
and 9 TFs involved in the regulation of IL11.

Visualization of molecular docking simulation 
of resveratrol towards IL11
As depicted in Fig. 11A, the molecular structures of res-
veratrol and IL11 subunit were illustrated in stick form 
and cartoon representation, respectively. In Fig. 11B, the 
2D molecular interactions between resveratrol and IL11 
were depicted, highlighting the creation of a hydrogen 
bond between ASP134 of IL11 and the pyrazole nitro-
gen of resveratrol. The hydrogen-bond interactions 
were indicated by green dotted lines, while light green 
and pink dotted lines represent van der Waals and alkyl 
interactions, respectively. The docking analyses were per-
formed using BIOVIA Discovery Studio, as described 
in the Methods section. The 3D molecular interactions 
between resveratrol and IL11 were illustrated in Fig. 11C, 
D, displaying the hydrogen bonds within the binding 
site (Fig.  11C) and the hydrophobicity surface view at 
the interface between resveratrol and IL11 (Fig. 11D). In 
these representations, resveratrol was shown in bold stick 
form, and potential binding sites were indicated in light 
stick form. The outcomes of the analysis demonstrate 
a strong binding ability between IL11 and resveratrol, 

with a binding strength of − 6.8 kcal/mol, as outlined in 
Table 1.

First‑principles investigation of Ca adsorption 
on the resveratrol surface
The molecular arrangement of resveratrol was initially 
determined (Fig.  12A) and subsequently optimized to 
attain its most stable conformation (Fig. 12B). Informed 
by the molecular structure of resveratrol (Fig.  12C), we 
selected five preliminary positions for calculating the 
adsorption of Ca on  C14H12O3. Our computational analy-
sis revealed negative adsorption energies for all initial 
arrangements. Notably, the configuration where Ca was 
positioned directly above the center of the 3,5-hydroxy-
benzene ring exhibited the minimum energy (− 0.874 eV) 
and the closest adsorption distance (2.39 Å, as presented 
in Table 2) (Fig. 12D). Consequently, the adsorption of Ca 
induced changes in the geometric structure of  C14H12O3, 
leading to charge accumulation between Ca and the car-
bon atoms of  C14H12O3. A Bader charge assessment dem-
onstrated the transfer of 0.855 e− charges from Ca to 
 C14H12O3 during the adsorption event (Fig. 12E). Lastly, 
to provide a comparative perspective, we examined 
the adsorption energy of oxalic acid in relation to Ca, 
revealing that the most stable configuration exhibited an 
adsorption energy of − -0.68 eV (Fig. 12F), a value greater 
than − 0.874 eV.

Discussion
The conditions of kidney stones and diabetes are wide-
spread medical issues that greatly affect the wellbeing 
of those afflicted. While the relationship between these 
two conditions has been well established [33], and res-
veratrol has shown promising results as a potential treat-
ment option in previous studies [8], additional inquiry 
is needed to attain a more thorough comprehension of 
their common pathogenic mechanisms and the therapeu-
tic potential of resveratrol supplementation in both dis-
orders. Given the substantial public health and economic 
burden, this study aims to screen for candidate diagnostic 
biomarkers for kidney stones in individuals with diabe-
tes, and to evaluate the therapeutic potential of resvera-
trol, so as to provide optimal prevention, diagnosis and 
treatment strategies for these conditions.

The intersection of genes associated with kidney 
stones and diabetes has been the subject of ongo-
ing research in the medical field [34]. The results of 

(See figure on next page.)
Fig. 10 Identification and TF-miRNA interaction network analysis of IL11 expression-related genes. A IL11 expression patterns identified by MFuzz. 
B The score of clustering module and expression characteristics comparing normal and calculi groups by ssGSEA. C Correlation between clustered 
modules and IL11. D Correlation between cluster 9 and IL11. E Venn diagram of common genes and cluster 9 identifying core genes related to IL11 
c expression in diabetic with kidney stone. F Co-expression network of TF interacting with IL11 expression-related genes. G Co-expression network 
of miRNA interacting with IL11 expression-related genes
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the study presented here open up new avenues for 
exploring the underlying mechanisms of these two 
conditions and the potential for developing targeted 
therapies. Through the use of advanced analytical 
methods, including WGCNA and DEGs, the study was 
able to identify a total of 11 potential target genes asso-
ciated with both diseases, and the expression levels of 
these identified genes exhibited a positive correlation. 
Functional analysis using GO, KEGG, and Reactome 
revealed a number of biological processes and path-
ways that were enriched to ascertain potential modes 
of action. The outcomes of GO analysis indicated that 

the genetic makeup were concentrated in collagen cata-
bolic process, and extracellular matrix structural con-
stituent, and collagen-containing extracellular matrix. 
The genes exhibited a significant enrichment in KEGG 
signaling pathways, particularly those related to fruc-
tose and mannose metabolism, cell adhesion molecules, 
and ECM-receptor interaction. Reactome analysis fur-
ther demonstrated a close association between the 
targets and extracellular matrix organization, collagen 
fibril assembly, and cell junction organization. Our 
findings indicate a correlation between the presence of 
shared genetic factors and the manifestation of organ 

Fig. 11 Visualization of molecular docking simulation of resveratrol towards IL11. A Docking models for resveratrol-IL11. Resveratrol and IL11 
subunit are illustrated in stick-form and as cartoons respectively. B 2D molecular interactions are illustrated for resveratrol-IL11. The pyrazole 
nitrogen of resveratrol forms a hydrogen bond with ASP134 of IL11. The interactions involving hydrogen bonds are depicted through green 
dashed lines, while van der Waals interactions are represented by light green dashed lines. The alkyl interaction is denoted by a pink dashed 
line. The docking analyses were performed using BIOVIA Discovery Studio, with details provided in the Methods Sect. 3D molecular interactions 
are illustrated for C hydrogen bonds between resveratrol and IL11 within the binding site, and D hydrophobicity surface view at the interface 
between resveratrol and IL11, respectively. The depiction of resveratrol’s molecular structure is rendered in bold stick form, with potential binding 
sites being indicated by light stick forms

Table 1 Molecular docking sites and energies between resveratrol and IL11

Target protein (PDB ID) Drug Amino acid residues of the binding site Binding affinity (kcal/mol)

IL11(6O4O) Resveratrol ASP134, PRO133, PRO132, PRO131, THR74, ARG75, ARG77, ALA78, LEU81, LEU84, 
ASP113, LEU116, ARG117, GLN120

− 6.8
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interstitial fibrosis, a crucial impact on the pathogen-
esis of both nephrolithiasis and diabetes [35]. Thus, it 
is imperative to address the deleterious effects of ele-
vated glucose levels and kidney stones on organ fibrosis 
and to explore the possibility of targeting these genetic 
determinants as a promising therapeutic strategy for 
individuals suffering from both disorders.

Fig. 12 First principles study on the adsorption of Ca on resveratrol surface. The structural formula of resveratrol was obtained A, and the structure 
of  C14H12O3 was optimized to obtain the most stable molecular conformation B. C Five sites (a-e)were selected as the initial positions 
for to calculate the adsorption energy of Ca on  C14H12O3. D The side view and top view of (a) the initial adsorption position of Ca on the geometric 
structure of  C14H12O3 and (b) the equilibrium adsorption position of Ca on the geometric structure of  C14H12O3. E The side view (a) and top 
view of (b) of electronic structure of Ca adsorbed on  C14H12O3 surface. Yellow/blue regions indicate charge aggregation/depletion, respectively, 
and the isosurface measures 0.0013 e/Å3. F The side view (a) and top view of (b) of the equilibrium adsorption position of Ca on the geometric 
structure of oxalic acid  (C2H2O4)

Table 2 The adsorption energies of Ca in different adsorption 
positions on  C14H12O3 surface

Adsorption site a b c d e

Eads(ev) − 0.874 − 0.359 − 0.341 − 0.443 − 0.439
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The utilization of multiple algorithms, such as LASSO 
regression, RF, and SVM-RFE, allowed for a comprehen-
sive assessment of a set of 11 candidate biomarkers. Upon 
comparison of the results from these algorithms, a single 
potential biomarker, IL11, was identified as a shared bio-
marker for both kidney stones and diabetes. Subsequent 
analysis of the expression profiles of IL11 in a patient 
cohort revealed that its expression levels were markedly 
raised in both the kidney stones and diabetic groups as 
compared to the control group. This was confirmed by 
analysis of three independent datasets, indicating that 
IL11 could potentially serve as a diagnostic biomarker for 
kidney stones in diabetic patients. The ROC analysis fur-
ther supported this potential, with the highest accuracy 
achieved in different datasets. Additionally, subgroup 
analysis of IL11 expression levels based on tissue of ori-
gin showed that its expression was considerably upregu-
lated in the "Calculi" cohort contrasted with the "Normal" 
cohort, however, no discernible disparity was detected 
between the cohorts labeled as "Normal" and "Control".

The IL-11 was first recognized in 1990 as a protein 
factor that promoted a murine plasmacytoma cell line, 
initially assumed to be dependent on IL-6 [36].The 
pleiotropic nature of IL-11 soon became apparent, as 
it was also characterized as a factor emanating from 
a bone marrow-derived cell line culture that impeded 
adipogenesis in preadipocytes [37]. Despite a surge of 
research on IL-11 during the 1990s, activity in this area 
has since diminished. Nonetheless, in the last decade, 
curiosity in IL-11 has flourished once again due to its 
involvement in numerous illnesses including diabe-
tes and various kidney diseases [38–40]. The primary 
pathological process underlying type 2 diabetes mel-
litus (T2DM) is islet dysfunction, which is character-
ized by impaired insulin secretion [41]. In advanced 
T2DM patients, the abnormal buildup of ECM, known 
as fibrosis, is frequently observed and may contribute 
to organ malfunction [41]. Research involving bio-
informatics analysis and animal models has revealed 
that high glucose levels could trigger the upregulation 
of IL11, leading to inflammation and fibrosis in islets, 
thus contributing to the development of islet dysfunc-
tion in T2DM [42]. Similarly, renal fibrosis is a common 
occurrence in various kidney diseases, which can lead 
to mechanical and electrical dysfunction and the pro-
gression of kidney dysfunction [40]. During the early 
stages of kidney stone formation or crystal-induced 
kidney injury, renal tubular epithelial cells (TECs) 
undergo epithelial-to-mesenchymal transition (EMT), 
contributing to renal fibrosis [43]. Findings indicate 
that the EMT of TECs is crucially reliant on IL-11, as 
TECs express IL-11 receptor-α (IL-11RA) and secrete 
IL-11 in reaction to injury in  vivo or provocation by 

various pathological mediators in  vitro, suggesting 
that this widespread cellular process can be triggered 
in response to damage stemming from diverse origins 
[38]. Prior research employing integrated imaging-
genomics analyses on primary human fibroblasts has 
demonstrated that the principal transcriptional reac-
tion to exposure to TGFβ1 is the elevation of IL11, 
which is essential for its pro-fibrotic impact [38]. In 
murine models, the manifestation of IL-11 transgenes 
or IL-11 administration precipitates kidney fibrosis 
or organ failure, whereas conditional elimination of 
Il11RA1 in TECs diminishes pathogenic signaling, tis-
sue injury, and offers protection against disease [40]. 
Furthermore, anti-IL11 treatment correlates with a 
decrease in renal pathology and enhanced renal func-
tion, without eliciting the side effects observed with 
anti-TGFβ, such as augmented tubule damage or renal 
inflammation [40]. These insights emphasize the crucial 
involvement of IL-11 signaling in TECs during impeded 
kidney regeneration and propose the potential of IL-11 
as a therapeutic target for initiating intrinsic healing 
processes in both chronic and acute renal disorders.

A cohort investigation involving Korean adults devoid 
of nephrolithiasis at the onset found that males exhibited 
a heightened propensity for kidney stones development 
in correlation with elevated concentrations of glucose, 
HbA1c, and insulin resistance, encompassing the pre-
diabetic spectrum [44]. Moreover, a positive association 
was discerned between HOMA-IR and the risk of neph-
rolithiasis in male subjects [45]. Contrarily, no substantial 
correlations were identified among female counterparts, 
suggesting the possibility of inherent gender disparities 
within this interrelation. Similarly, a prospective cohort 
study from Japan found that hyperinsulinemia was asso-
ciated with kidney stones formation in men, but no such 
relationship was observed in women [46]. In this current 
research, IL11 expression was considerably increased in 
male patients but not in female patients, highlighting the 
potential sex-specific effects of IL11 in the diagnosis and 
treatment of kidney stones in diabetic patients. Influen-
tial factors in renal resilience to injury induced by neph-
rolithiasis, diabetes, and various pathologies impacting 
renal performance, include sex hormones [47]. Estradiol 
exerts a renoprotective capacity and mitigates fibrosis, 
whereas testosterone elicits a contrary outcome [48, 49]. 
Such disparities could potentially stem from the modu-
lation of IL11 on TGFβ1 and collagen expression, sub-
sequently altering in synthesis and extracellular matrix 
degradation. However, the precise role of IL11 in kidney 
stone formation and how sex differences in IL11 affect 
kidney stones development require further research for 
confirmation. Further investigation is necessary to vali-
date both the exact involvement of IL11 in the formation 
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of kidney stones, as well as to determine the manner in 
which sex-related variances in IL11 impact the develop-
ment of kidney stones.

In this study, xCell enrichment analysis revealed a 
robust positive association between IL11 and various 
types of endothelial cells. Further exploration using the 
Nephroseq database showed that IL11 was notably ele-
vated in the tubulointerstitium in contrast to the glomer-
uli, and it was predominantly over-expressed in papillary 
tips when compared to other structures in the kidney. 
Through a single-cell analysis in the HPA database, it 
was determined that IL11 was mainly enriched in kidney 
collecting duct cells and proximal tubular cells. Scholars 
widely accept Randall’s plaque theory as the mechanism 
of stone formation, which suggests that crystal particle 
retention in the renal tubules is a prerequisite for the for-
mation of calcified plaques [50]. The deposited crystal 
particles can lead to mechanical injury or inflammatory 
immune response, causing damage to the renal tubules, 
promoting further crystal deposition and ultimately 
forming renal papillary calcified plaques [51]. The pro-
cess of crystal deposition can cause kidney damage and 
renal fibrosis, in which IL11 and its receptor may play a 
crucial role. These findings shed light on the expression 
and distribution of IL11 in the kidney, providing valu-
able insights for further investigation into its role in renal 
biology. Notably, it was discovered that over-expression 
of IL11 is associated with chronic kidney disease and cor-
relates positively with low GFR and elevated serum cre-
atine levels, indicating that IL11 could potentially have a 
detrimental impact on kidney function.

As per the median expression of IL11, the male RP 
papillary tissues were bifurcated into two subgroups. 
Upon conducting subgroup analyses, the GSVA analy-
sis revealed that several biological functions and path-
ways linked with renal fibrosis, such as extracellular 
matrix and basement membrane, collagen fibril forma-
tion and organization, epithelial mesenchymal transi-
tion, and focal adhesion, were enriched. Prior studies 
have demonstrated that the expression of the epithelial 
cell marker, calbindin-E, gradually decreases during the 
process of EMT in TECs, while new mesenchymal cell 
characteristics like α-SMA and vimentin are acquired, 
and components of the interstitial matrix like fibronec-
tin and type I collagen are produced [52–55]. IL11 
plays a critical role among the various factors regulat-
ing EMT in different ways [56]. Atypical accumulation 
of ECM constituents, such as fibronectin and type I 
collagen, characterizes renal fibrosis [57, 58]. The kid-
ney encounters a plethora of pathological influences, 
encompassing injury, infection, inflammation, hemo-
dynamic disturbances, and immunological responses, 
which inflict harm upon intrinsic cellular components 

and culminate in substantial collagen deposition [59–
61]. Consequently, an escalating progression of renal 
parenchymal fibrosis, fibrotic scarring, and eventual 
deterioration of renal functionality ensues, as corrobo-
rated by our research findings.

As revealed by the GO analysis between subgroups, 
DEGs were found to be enriched in ECM organization, 
collagen binding, and collagen-containing ECM, while 
KEGG analysis revealed enrichment in glycolysis and 
gluconeogenesis, PI3K-Akt signaling, endocrine, and 
calcium reabsorption pathways. Fibrosis constitutes a 
pathological phenomenon distinguished by the exces-
sive accumulation of collagen-enriched ECM, resulting 
in the gradual substitution of functional parenchymal tis-
sue and impaired organ performance [62]. Renal fibrosis 
serves as a defining feature of end-stage chronic kidney 
disease, afflicting approximately 20 million adults in the 
USA and roughly 10% of the global populace [63–65]. 
Persistent ECM deposition and anomalous fibroblast 
activity disrupt kidney structure, thereby compromis-
ing the functionality of the vasculature, glomeruli, and 
tubule-interstitium, and subsequently diminishing blood 
flow and overall organ performance [66, 67]. The release 
of IL-11 by fibroblasts and epithelial cells plays a pivotal 
role in fibroblast stimulation, myofibroblast differentia-
tion, and extracellular matrix deposition, facilitated by 
both Smad-independent mechanisms and the PI3K/Akt 
pathway [68, 69].Thus, targeting these fibrotic mediators 
or signaling pathways may represent a promising thera-
peutic strategy for combating fibrotic diseases, includ-
ing kidney stones associated with diabetes. In addition, 
the infiltration of immune cells into the tubulointerstit-
ium following injury is known to contribute significantly 
to the progression of various kidney diseases [70, 71]. 
According to the GSVA immune analysis, patients clas-
sified as IL11-high subgroup exhibited notably elevated 
levels of NKT cells. Interestingly, the expression of IL-11 
exhibit a positive association with the levels of NKT cells. 
NKT cells constitute a unique lymphocyte population 
expressing both NK receptors and TCRs, and secrete var-
ious cytokines that exert regulatory functions. NKT acti-
vation has been demonstrated to contribute to collagen 
deposition and myofibroblast formation, and is closely 
associated with the extent of tubulointerstitial fibrosis 
and subsequent decline of renal function, indicating a 
direct connection between the presence of NKT cells in 
the tissue and fibrosis, particularly in cases of obstructive 
nephropathy, such as kidney stones [72]. Taken together, 
these findings furnish a thorough understanding of the 
functional disparities between the two subtypes and 
their potential implications for future studies. They also 
highlight the importance of targeting fibrotic mediators 
and immune cells as potential therapeutic strategies for 
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treating fibrotic diseases, including kidney stones associ-
ated with diabetes.

The present study utilized Mfuzz to analyze the expres-
sion of IL11, followed by clustering into 100 groups. By 
comparing kidney stones groups with normal groups, 
Cluster 9 emerged as the most strongly associated with 
IL11. Further investigation revealed that PROM1, TFPI2, 
and PFKFB3 are crucial genes involved in the regulation 
of IL11 expression in patients with kidney stones and 
diabetes. To better understand the regulatory mecha-
nisms underlying IL11, PROM1, TFPI2, and PFKFB3, a 
comprehensive network was constructed that included 
miRNAs and IL11-related genes. In addition, a network 
of potential biomarkers and TFs was predicted. The 
results revealed 19 miRNAs and 9 TFs that are criti-
cal in this regulatory process. PROM1, also known as 
CD133, is expressed by renal progenitors and may serve 
as a marker of renal regeneration [73]. Targeting CD133 
may be useful in inhibiting proliferation or inducing dif-
ferentiation in renal nonmalignant pathology [74]. TFPI2, 
a Kunitz-type serine proteinase inhibitor family mem-
ber primarily produced by endothelial cells originat-
ing from various blood vessels, contributes to diabetic 

nephropathy progression by facilitating renal fibrosis and 
EMT through the modulation of the SMURF2/SMAD7-
mediated TGF-β/Smad signaling pathway [75]. In recent 
years, multiple studies have suggested that PFKFB3 is a 
central modulator in metabolic reprogramming. PFKFB3 
expression was upregulated in endothelial cells exposed 
to high glucose conditions and contributed to diabetic 
kidney disease by enhancing ECM production by inter-
acting with TGF-β [76, 77].

In the present investigation, the capacity of resveratrol, 
a natural polyphenolic compound, to interact with IL11 
was evaluated, revealing a potent binding affinity. This 
interaction implies that resveratrol holds promise as a 
therapeutic remedy for the management of diabetes and 
kidney stone conditions by targeting IL11. Resveratrol 
can be found in various plants such as Cassiae Semen and 
Polygoni Cuspidati Rhizoma Et Radix, as well as in com-
monly consumed dietary sources including grapes and 
peanuts, which have been utilized in traditional medici-
nal practices. The efficacy of resveratrol has been well-
documented in treating a broad spectrum of ailments, 
encompassing kidney stones and diabetes [10, 78]. Its 
therapeutic effects have been attributed to its capacity to 

Fig. 13 The pathogenic mechanisms shared between kidney stones and diabetes and the role of resveratrol
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impede the process of tubular epithelial cell EMT, fibro-
blast proliferation and differentiation, as well as to hinder 
the activation of myofibroblasts and to ameliorate renal 
fibrosis in kidney stones and diabetes by obstructing the 
activity of proliferation-related signaling pathways of 
both epithelial and interstitial cells [11]. These findings 
validate the outcomes of our current research.

The development of drugs for the treatment of kidney 
stones is confronted with various challenges, including a 
lack of precise analytical tools. However, the emergence 
of supercomputers and software has opened up new ave-
nues for investigating the interactions between atoms and 
molecules at the microscopic level. Unlike conventional 
experiments, computer simulations and calculations 
can provide a more detailed mechanism of action with 
greater accuracy and reliability [79]. This study employed 
first-principles calculations to scrutinize the basic issues 
related to Ca adsorption on the  C14H12O3 surface, includ-
ing the adsorption position, mode, and energy, to elab-
orate on the process in which resveratrol restrains the 
creation of calcium oxalate stones at a structural level. 
The computational results showed that the binding of 
resveratrol to Ca is stable, with negative adsorption ener-
gies in all Ca/C14H12O3 initial configurations, indicat-
ing a strong adsorption effect of resveratrol on Ca. We 
defined the adsorption distance as the shortest distance 
from Ca to a specific atom on  C14H12O3 after adsorption. 
Configuration (a) had the smallest adsorption energy and 
the most stable adsorption system, with Ca moving from 
the center of the 3,5-dihydroxyphenyl ring to a position 
diagonally above carbon 1. The relaxation and recon-
struction of the  C14H12O3 geometric structure demon-
strated the strong interaction between Ca and  C14H12O3. 
The charge transfer shown in the charge density differ-
ence map of the adsorption system indicated the stability 
of the adsorption between Ca and  C14H12O3 in terms of 
electronic structure. By comparing the adsorption energy 
of Ca on the  C14H12O3 surface with the  C2H2O4 surface, 
the study concluded that the adsorption of resveratrol on 
Ca is stronger than that of oxalic acid, providing evidence 
for the development of drugs based on resveratrol to pre-
vent and treat kidney stones.

Limitations are inherent in this study, despite includ-
ing some appropriate datasets from the GEO database. 
The amount of data obtained remains restricted. Fur-
thermore, the validation of the hub gene’s diagnostic 
potential in kidney stones was limited to a solitary suit-
able dataset, necessitating additional multicenter external 
datasets to investigate the exact molecular mechanism 
underlying the hub gene. In addition, further biologi-
cal experiments research and clinical trials are required 
to assess the correlation linking clinical parameters and 
the hub gene. Moreover, elucidating the underlying roles 

of IL11 in kidney stones with diabetes necessitates addi-
tional investigations. It is also imperative to clarify the 
precise mode of action of resveratrol in managing kidney 
stones with diabetes. In light of the constraints inherent 
in this investigation, the current research endeavors to 
furnish a preliminary outlook on the common biomark-
ers linked to both kidney stones and diabetes, as well as a 
significant theoretical and empirical basis for resveratrol 
in the treatment of these conditions.

Conclusions
Our study constituted the initial identification of unique 
biomarkers and pathways shared between kidney stones 
and diabetes at the transcriptional level. Through the 
amalgamation of diverse datasets and bioinformatic tech-
niques, we pinpointed IL11 as a core biomarker in the 
mutual mechanism underlying these conditions, thereby 
rendering it a promising therapeutic target (Fig.  13). 
Notably, our findings revealed that resveratrol exhib-
ited a robust binding affinity for IL11, underscoring its 
potential as a therapeutic agent. Moreover, we harnessed 
supercomputing and quantum mechanical computa-
tional theories to scrutinize the preventive mechanism 
of resveratrol against calcium oxalate stone formation 
from an innovative and microscopic standpoint. Taken 
together, our research illuminated the intricate associa-
tion between kidney stones and diabetes, paving the way 
for the creation of novel therapeutic approaches. None-
theless, further research is warranted to enhance our 
understanding of IL11 targeting mechanisms and address 
any limitations in the study.
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