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Abstract 

Background The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) 
play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off‑target effects, 
making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple mod‑
els are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning 
model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy.

Methods In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types 
in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway 
in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling path‑
way and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We 
also performed functional analysis, survival analysis, and a case study of triple‑negative breast cancer to demonstrate 
our model’s potential in translational cancer medicine.

Results Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The down‑
stream analysis showed that the identified genes are typically involved in the canonical NFκB‑regulated pathways, 
particularly in adaptive immunity, anti‑apoptosis, and cellular response to cytokine stimuli. These genes were found 
to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients 
with a specific cancer subtype, triple‑negative breast cancer (TNBC), which is known to be influenced by NFκB‑
regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation 
was identified that accurately predicts TNBC patients and poor short‑term survival in non‑TNBC patients, providing 
a potential avenue for developing precision medicine for cancer subtypes.

Conclusions In conclusion, our approach enables the discovery of genes in NFκB‑regulated pathways in response 
to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, provid‑
ing valuable insights for discovering more precise and targeted cancer therapeutics.

Keywords Ensemble learning model, Carcinogenesis, Nuclear factor kappa B (NFκB), Tumor necrosis factor (TNF), 
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Background
Tumor necrosis factor (TNF) is a cytokine that regulates 
abundant critical cell functions, including cell prolifera-
tion, inflammation, differentiation, migration, and apop-
tosis [1, 2]. TNF has been implicated in various diseases 
[3] and cancers [2, 4]. Among the downstream factors of 
TNF, nuclear factor kappa B (NFκB)  is a transcription 
factor that resides in the cytoplasm of cells and translo-
cates into the nucleus to turn on gene transcription. TNF 
regulates this activation and further triggers the NFκB 
canonical pathway essential for cell proliferation, migra-
tion,  inflammation, and anti-apoptosis [5, 6]. NFκB is 
ubiquitous and plays a crucial role in immune response 
and cancer formation. However, the aberrant activation 
of NFκB is frequently observed in various diseases [7–10] 
and cancers [11–13]. Due to its pivotal role as a "prime 
regulator" in inflammatory pathways, NFκB has been 
proposed as a therapeutic target for cancer by inhibiting 
NFκB to prevent the proliferation of cancer cells [14, 15]. 
However, targeting NFκB poses challenges as its inhi-
bition affects cancer cell proliferation and suppresses 
immune responses in cancer cells and the survival of nor-
mal cells.

Additionally, NFκB exhibits sensitivity to external stim-
uli such as chemotherapy and radiation therapy, both of 
which inhibit apoptosis in cancer cells [15, 16]. Moreover, 
NFκB can be activated by diverse signals from receptors, 
including members of the TNF and IL-1 cytokine fami-
lies, and engages in cross-talk with other transcription 
factors, signaling pathways, or miRNAs [17, 18]. These 
differently oriented impacts and sophisticated networks 
make developing NFκB-based drugs more challenging 
and require careful consideration to achieve effective and 
precise therapeutic interventions.

Numerous therapeutic strategies have been devel-
oped to inhibit NF-κB, a protein that can effectively treat 
malignancies [16]. However, many of these strategies are 
associated with adverse side effects, and some patients 
do not respond to the available therapies [18, 19]. Based 
on those circumstances, a more profound understanding 
of the mechanisms involved in the pathway of specific 
genes can help design effective therapeutic interven-
tions. Various technological approaches have been pro-
posed to advance progress in cancer therapy [20–22]. 
With advancements in computer hardware, biochemical 
technology, and the massive amount of biological data-
sets, scientists have made breakthroughs in this endeavor, 
and the application of machine learning has become an 
indispensable trend in various fields, including genetics, 
genomics [23], and proteomics [24]. In addition, machine 
learning techniques have been widely employed in can-
cer research. Supervised learning algorithms are the most 
prevalent in modern biomedical research for creating 

models that predict patients’ risk factors, the presence of 
cancer, prognosis, and treatment outcomes. In essence, 
supervised learning algorithms analyze patterns or struc-
tures in input data, such as clinical or pathological images 
and molecular data, from cancer patients to build precise 
prediction models for diagnosis, early detection, and 
treatment decisions for future patients with uncertain 
cancer status. Several machine learning algorithms have 
received approval from the Food and Drug Administra-
tion (FDA) for practical clinical application. For exam-
ple, Paige Prostate has been approved for the diagnosis 
of prostate cancer using biopsy slides [25], and Optel-
lum has been approved for lung cancer detection via CT 
images [26].

Typical machine learning architectures rely on exten-
sive data training to achieve reliable results. Accordingly, 
the generalizability of machine learning models devel-
oped for practical application is a significant concern, 
as there is often a lack of gold-standard tests or repre-
sentative datasets for evaluation. Consequently, the inad-
equacy in data acquisition emerges as one of the most 
significant limitations in the development of machine 
learning techniques for medical applications and further 
makes the identification of potentially valuable biomark-
ers more challenging. In such cases, a semi-supervised 
learning approach can often be employed. A semi-super-
vised learning approach involves training the machine 
learning model using a well-known gene collection asso-
ciated with specific diseases and then utilizing the model 
to identify other markers related or similar to the well-
known gene set from unlabeled whole-genome data for 
further applications [23]. The one-sample support vec-
tor machine (SVM), Support Vector Data Description 
(SVDD), and autoencoder are semi-supervised learning 
approaches usually used to identify genes associated with 
the tested genes, which in this study are NFKB/TNF hall-
mark genes. However, these algorithms primarily focus 
on patterns within the positive samples, consequently 
requiring a large sample size. Conversely, the ensemble 
learning system capitalizes on the differences between 
positive and negative samples to discern patterns in posi-
tive samples, making it less reliant on a large positive 
sample size. Since hallmark gene sets in cellular systems 
are usually relatively small, typically numbering in the 
hundreds rather than thousands, the one-sample SVM, 
SVDD, and autoencoder may be less suitable compared 
to the ensemble learning model.

The NFκB/TNF signaling pathways play a crucial role 
in carcinogenesis and have widespread impacts on the 
living system. However, the abundant downstream effects 
exerted by these pathways often come with unexpected 
consequences. These hidden off-target effects make 
them unsuitable as direct therapeutic targets in cancer. 
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To tackle this challenge, we propose an ensemble learn-
ing model that utilizes a semi-supervised learning algo-
rithm to extract the putative genes regulated by NFκB in 
response to TNF. Specifically, our model takes the NFκB/
TNF hallmark genes as positive samples and employs 
cancer patients as features to learn the transcriptomics 
pattern of NFκB/TNF hallmark across cancer patients. 
Accordingly, our model is designed to recognize the 
genes involved in the NFκB/TNF signaling pathways and 
carcinogenesis. Indeed, the downstream analyses show 
the model’s accuracy in discovering genes within the 
NFκB/TNF signaling pathway and influential on carcino-
genesis. Furthermore, we demonstrated the applicability 
of the proposed framework in cancer medicine in breast 
cancer as a case study. 

Methods
A detailed description of mRNA expression profiles from 
16 cancer types in TCGA, the hallmark and cancer-dys-
regulated (C6) genes from MSigDB [27], functional and 
survival analysis of the voted genes, enrichment analysis 
of gene sets and patient groups, classification of breast 
cancer subtypes, a prediction model for classifying 
patients’ TNBC statuses, and the conventional approach 
to identify the genes of interest can be found in the Sup-
plementary Materials and Methods section.

Construction of the ensemble learning model
This study aims to identify genes that are associated 
with the NFκB/TNF regulatory pathways and also have 
impacts on cancers. To achieve this goal, we utilized the 
NFκB/TNF hallmark gene set from MSigDB [27], which 
covers genes regulated by NFκB in response to TNF, as 
our positive data. The NFκB/TNF hallmark gene set con-
tains 200 genes, and the RNA-Seq data from TCGA cov-
ered 198. These 198 NFκB/TNF hallmark genes were then 
used as positive samples during model training. MSigDB 
contains 50 hallmark gene sets, including the NFκB/TNF 
gene set, each representing certain biological states or 
processes. We excluded the 4147 genes belonging to the 
other 49 hallmark gene sets during the training process 
to avoid potential disturbances for model learning. Con-
sequently, we considered the remaining 15,326 genes, 
which are not included in any hallmark gene sets, as the 
negative sample set. After model training, we applied the 
trained model to the complete transcriptome data, com-
prising 19,671 genes that include the previously excluded 
4147 ones, to identify potential cancer-influential genes 
involved in the NFκB/TNF pathway. In summary, for 
each cancer type, we trained one cancer-specific ensem-
ble learning model, resulting in 16 ensemble models. We 
then combined the prediction results of each gene from 
these 16 cancer-specific models to create a pan-cancer 

ensemble learning model. The workflow of the ensemble 
learning model is depicted in Fig. 1a, and the details for 
constructing our ensemble learning model are described 
as follows.

In our proposed model, the genes were considered as 
samples, while the patients from 16 cancer types served 
as features. It is important to note that the dataset con-
sisted of 198 positive samples (the NFκB/TNF hallmark 
gene) and 15,326 negative samples (non-hallmark genes), 
resulting in a highly imbalanced ratio of negative to posi-
tive data (NP ratio), that is 99:1. We then employed the 
ensemble learning model that combines multiple mem-
ber classifiers, typically weak, to build a strong ensemble 
classifier and can address the imbalanced class problem 
by adjusting the NP ratio for member classifiers. Con-
sidering the interpretability and reproducibility of the 
ensemble model for advanced analyses, we selected the 
linear support vector machine (SVM) algorithm as the 
basis for each member classifier. SVM utilizes support 
vectors, which are representative points, to construct a 
hyperplane for data classification. This choice of SVM 
allows for flexibility in discovering more candidate genes 
for effective integration and analysis. Other algorithms, 
such as neural networks, random forests, and logistic 
regression, were not selected due to their lower inter-
pretability, reproducibility, or sensitivity to outliers in the 
data.

During the training process of the ensemble model, 
determining the sampling NP ratio is crucial. To address 
this issue, we employed a bagging strategy and randomly 
sampled data with various NP ratios: 1:1, 10:1, 15:1, 20:1, 
25:1, and 30:1. For each cancer type, we trained 1,000 
member classifiers for each ratio. During the train-
ing phase of each member classifier, we implemented a 
hold-out method that utilized 70% of the sampling data 
for training and reserved the remaining 30% for test-
ing (Fig.  1a). We utilized the precision of testing data 
to evaluate the performance of each member classifier 
in predicting the NFκB/TNF hallmark gene for unseen 
data. In addition, we applied each trained member clas-
sifier to the initial data, which consists of 198 NFκB/TNF 
hallmark genes (positive) and 15,326 non-hallmark genes 
(negative). We then calculated the precision of the initial 
data to assess the overall performance of each member 
classifier in predicting the NFκB/TNF hallmark genes. 
Consequently, median precision from all the member 
classifiers across 16 cancer types, derived from the test 
and initial data, was employed to determine an appropri-
ate NP ratio for the final ensemble model (Fig. 1b).

As expected, the median precision of the testing data 
decreased as the NP ratio increased. In contrast, the 
median precision of the initial data increased, suggesting 
that including more negative data improved the overall 
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representation of information. At an NP ratio of 20, the 
median precision of the initial data exceeded 0.5; and 
the median precision of the testing data remained 0.75, 
which is acceptable (Fig. 1b). In ensemble learning mod-
els, a weak classifier usually performs poorly but should 
still outperform random guessing. The ratio of 20 met 
this requirement, as it performed better than random 
guessing on the initial data while maintaining stability 
on the testing data. Therefore, we used an NP ratio of 20 
(3960 negatives: 198 positives) to train the member clas-
sifiers in the ensemble model (Fig. 1a and b). Finally, we 
employed the majority voting method to determine the 
confidence of the tested genes (samples). This method 
aggregated multiple weak classifications by counting the 
overall votes, representing the predicted probability of 
involvement in the NFκB/TNF pathway and its associa-
tion with patient cohorts for each gene. Specifically, we 
trained 1000 classifiers for each cancer type to assemble 
the ensemble learning model, resulting in 16 ensemble 

models. In other words, for each gene, the maximal vote 
is 1000 in each cancer type. Additionally, we averaged the 
votes of each gene from the 16 cancer types to create a 
pan-cancer ensemble model. It is important to note that 
the average vote in the pan-cancer ensemble model is 
computed only from the cancer types that voted for the 
tested gene rather than from all 16 cancers.

Results
Accurate identification of NFκB/TNF hallmark genes 
in cancers using the ensemble learning model
In this study, we designed an ensemble learning model 
to identify genes involved in NFκB-regulated pathways 
downstream of TNF and carcinogenesis by using mRNA 
expression profiles of tumor patients as features. For 
each cancer type, we trained 1,000 classifiers to build an 
ensemble model specific to that single cancer. A pan-can-
cer ensemble model was also created by combining votes 
from the ensemble models of all 16 cancer types. The 

Fig. 1 Performance of the ensemble learning model. a Overview of the model workflow. RNA‑Seq data from patients diagnosed with 16 different 
types of cancers are used as features, while the NFκB/TNF hallmark gene sets are used as positive samples. The bar chart displays the number 
of patients per cancer type in descending order, and the pie chart represents the proportion of each gene subset. We trained 1000 member 
classifiers of linear SVM with an NP ratio of 20 to construct the final ensemble learning model for each cancer type. Finally, we applied the majority 
voting method that sums up the predictions from each member classifier to determine the tested genes’ confidence. b Median precision for testing 
and initial data across all cancer types. The upper panel displays the median precision of the testing data (grey dashed line) and the initial data (red 
dashed line) at different NP ratios. At the NP ratio of 20, the median precision of the initial data surpasses 0.5, meeting the minimum requirements 
of a weak classifier. The lower histogram depicts the distribution of precision values from the initial (red) and testing (grey) data at the NP ratio 
of 20. c The area under the receiver operating characteristic curve (AUC) of the proposed ensemble model and the conventional correlation 
approach for each cancer type. The AUC values were calculated based on the false positive rate (FPR) and the true positive rate (TPR) obtained 
from the prediction of the 198 NFκB/TNF hallmark genes. d The receiver operating characteristic curve (ROC) for the pan‑cancer ensemble model 
(upper panel) and conventional correlation approach (lower panel). e Distribution of the average votes of genes in each cancer prevalence. 
The average votes (Avg. vote) were calculated only from the cancer types that voted on the tested gene rather than all 16 cancers. The cancer 
prevalence is the number of cancer types in which the tested gene received votes. The median of average votes positively correlates with cancer 
prevalence. The data points with and without blue borders are the NFκB/TNF hallmark and non‑NFκB/TNF hallmark genes, respectively. The genes 
with zero average votes were excluded here
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ensemble learning model assigns confidence scores to 
samples by aggregating votes from individual classifiers, 
thus revealing potential positive samples/targets. Our 
proposed method demonstrated high accuracy in identi-
fying NFκB/TNF hallmark genes in 13 out of 16 cancer 
types (AUC ≥ 0.75, Fig. 1c) and performed even better in 
the pan-cancer model (AUC = 0.94, Fig.  1d). Compared 
to the conventional approach that used the Pearson 
correlation coefficient to identify a gene set with a high 
correlation to the 198 NFκB/TNF hallmark genes, our 
ensemble learning models demonstrated superior perfor-
mance (Fig. 1c and d). Notably, the median precision of 
each member classifier for the initial data is around 0.5 
(Fig. 1b), indicating that the outstanding performance is 
not due to overfitting.

The pan-cancer model identified NFκB/TNF hallmark 
genes implicated in multiple cancer types, as evidenced 
by their high prevalence across different cancer types and 
their corresponding high average votes (Fig. 1e and Addi-
tional file 1: Fig. S1). The average vote in the pan-cancer 
ensemble model is computed only from the cancer types 
that voted for the tested gene rather than from all 16 can-
cers. Among the 23 NFκB/TNF hallmark genes voted in 
all 16 cancer types, EGR1, JUNB, and ZNF36 exhibited 
an average vote of 1,000. Previous studies have suggested 
that these genes play critical roles in tumorigenesis 
across cancers [28–30]. Similarly, the average vote of 
non-NFκB/TNF hallmark genes increases with their can-
cer prevalence (Fig.  1e). The non-NFκB/TNF hallmark 
genes refer to those genes not included in the NFκB/TNF 
hallmark gene set. Among the non-NFκB/TNF hallmark 
genes that received votes across all 16 cancer types, four 
genes (SRGN, CCN2, TNFRSF12A, and ZFP36L1) with 
an average vote exceeding 900 have been reported as reg-
ulated by TNF and NFκB [31–40]. That strongly suggests 
that they could participate in NFκB/TNF pathways. Fur-
thermore, the involvement of these four genes in carcino-
genesis has been observed across various cancer types 
[41–51]. These findings suggest that the genes with the 
higher average vote and cancer prevalence could be more 
reliable for being involved in TNFA/NFκB pathway.

Newly identified candidate genes involved 
in the NFκB‑regulated pathways downstream of TNF 
in cancer progression
Upon validating the accuracy of our ensemble model 
in identifying the NFκB/TNF hallmark genes, we fur-
ther investigated the involvement of the newly identi-
fied candidate genes in the NFκB-regulated pathways 
downstream of TNF. In this context, the newly iden-
tified candidate genes refer to those non-NFκB/TNF 
hallmark genes that received at least one vote across all 
cancer types, hereafter referred to as ‘candidates’. Addi-
tional file 1: Table S1 records the precise number of genes 
with/without votes for each cancer type. We evaluated 
the functional similarity between the candidates and six 
central genes of the TNF and NFκB family (TNF, NFKB1, 
NFKB2, REL, RELA, and RELB) [52]. Specifically, we 
applied the Jaccard index, calculated based on the pro-
portion of the shared experimentally validated biologi-
cal processes between two genes, to assess the functional 
similarity between each gene in the RNA-Seq data and 
the six central genes of the TNF and NFκB family. The 
candidates showed significant enrichment in the high 
functional similarity region of TNF and RELA (Fig.  2a). 
Additionally, the candidates showed substantial enrich-
ment scores for functional similarity to NFKB1, RELB, 
and REL, although they situated in the middle functional 
similarity region (Fig. 2a). However, the candidate genes 
showed lower functional similarity to NFKB2 and exhib-
ited insignificant enrichment (Fig. 2a). When comparing 
the candidates to the non-candidate genes (those non-
NFκB/TNF hallmark genes receiving no votes across all 
cancer types), the candidates displayed higher similarity 
to the canonical pathway genes TNF, RELA, NFKB1, and 
RELB (Table 1). However, there is almost no difference in 
similarity to the REL gene and significantly lower similar-
ity to the non-canonical pathway gene NFKB2 (Table 1). 
These findings align with the results observed from the 
enrichment analysis (Fig.  2a). In contrast, the conven-
tional correlation-based approach did not identify genes 
with significantly higher functional similarity to any of 
the core member genes. (Additional file 1: Fig. S2). These 

(See figure on next page.)
Fig. 2 Functional analysis of the predicted candidates. a Functional similarity between the six core member genes and the predicted candidates. 
For each core member gene, only those genes having nonzero similarity to the corresponding core member gene were used in GSEA. We 
ranked these genes (x‑axis) based on their functional similarity to the corresponding core member gene to calculate the enrichment score 
(ES, y‑axis) by hitting the tested gene set‑the predicted candidates. The number of hits in the candidate gene set is denoted as ’hit,’ while ’miss’ 
represents the number of genes without hits. The p‑values (P) and z‑scores were derived from 10,000 random permutations of gene ranking 
during the GSEA process. The maximal enrichment scores (ES) are marked as red circles. b Highly‑voted functional modules within the candidates 
for each cancer type. The details of identifying the highly‑voted functional modules formed by the predicted candidates in each cancer type are 
described in the Supplementary Information. Each pie chart shows the functional modules in which the highly voted candidates are involved 
in the corresponding cancer type. The percentage denotes the relative significance of one functional module to the others. Color coding is used 
to highlight functional modules associated with notable biological processes: red (positive regulation of tumor necrosis factor production or cellular 
response to cytokine stimulus), blue (immune response), green (negative regulation of cell death), and orange (cancer metastasis). The biological 
processes with long descriptions are represented by their GO terms (Additional file 1: Table S2)
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of fibroblast migration

regulation of heterotypic

cell-cell adhesion

regulation of ERK1and ERK2 cascade

positive regulation of
MAPK cascade

positive regulation of

peptide secretion

positive regulation

of protein secretion
positiv

e regulation of

peptide hormone se
cre

tion

po
sit

ive
 re

gu
lat

ion
 of

he
ter

oty
pic

 ce
ll-c

ell
 ad

he
sio

n

po
sit

ive
 re

gu
lat

ion
 o

f

leu
ko

cy
te

 d
iffe

re
nt

iat
ion

po
sit

ive
 re

gu
la

tio
n 

of

in
tra

ce
llu

la
r s

ig
na

l t
ra

ns
du

ct
io

n

po
si

tiv
e 

re
gu

la
tio

n
of

 c
el

l m
ig

ra
tio

n

CHOL
GO1 positive regulation of cell migration, 33.4%
GO2 GO:1902041, 21.9%
GO3 blood vessel diameter maintenance, 19.8%
GO4 plasminogen activation, 12.1%

GO5 GO:0008625, 6.8%
GO6 response to calcium ion, 3.7%
collagen fibril organization, 2.4%

collagen fibril

organization

regulation of phosphate

metabolic process

m
orphogenesis of a

polarized epithelium
peptide cross-linking
protein localization

to cell periphery
protein localization to

plasm
a m

em
brane

G
O

:0002484

G
O

:0002486

cellular response to

organic cyclic com
pound

m
acrophage m

igration inhibitory

factor signaling pathway

ERK1 and ERK2 cascade

response to

interferon-gamma

response to UV-Acellular responseto UV-A
cellular response tocytokine stimulus

additional categories

negative regulation of
peptidase activity

negative regulation of

apoptotic process

negative regulation of

protein metabolic process

negative regulation of

programmed cell death

ne
ga

tive
 re

gu
lat

ion
 of

 ce
llul

ar

pro
tei

n m
eta

bo
lic 

pro
ce

ss

regulation of

apoptotic process

regulation of wound healing

positive regulation of

leukocyte cell-cell adhesion

positive regulation of
lym

phocyte activation

positive regulation of
inflam

m
atory response

84
40

00
2:

O
G G

O
:2000446

positive regulation of

T cell activation

regulation of ERK1

and ERK2 cascade
regulation of protein

localization to cell periphery

regulation of protein

localization to plasma membrane

positive regulation

of wound healing

positive regulation

of angiogenesis

positive regulation of

type I interferon production

GO:0002824

positive regulation ofadaptive immune response

positive regulation of
T cell mediated immunity

regulation of protein

localization to membrane

positive regulation

of cell migration

positi
ve regulation

of gene expressi
on

COAD
GO1 positive regulation of cell migration, 44.6%
GO2 negative regulation of programmed cell death, 18.9%
GO3 cellular response to cytokine stimulus, 18.2%
GO4 GO:0002486t, 5.1%
GO5 protein localization to plasma membrane, 4.1%

peptide cross-linking, 3.0%
morphogenesis of a polarized epithelium, 2.2%
regulation of phosphate metabolic process, 2.2%
collagen fibril organization, 1.8%

hem
idesm

osom
e

assem
bly

cellular response to

organic cyclic com
pound

response to UV-A

cellular response

to UV-A

positive regulation of

wound healingregulation of

wound healing
GO:0002824

GO:0002822

positive regulation

of adaptive immune

response

positive regulation

of T cell mediated

immunity

regulation of protein

phosphoryla
tion

GO:00
43

61
8

ne
ga

tiv
e 

re
gu

lat
ion

 o
f

ap
op

to
tic

 p
ro

ce
ss

ne
ga

tiv
e 

re
gu

la
tio

n 
of

pe
pt

id
as

e 
ac

tiv
ity

ne
ga

tiv
e 

re
gu

la
tio

n 
of

hy
dr

ol
as

e 
ac

tiv
ity

re
gu

la
tio

n 
of

ph
os

ph
or

yl
at

io
n

negative regulation of

program
m

ed cell death

negative regulation of

endopeptidase activity

negative regulation of

protein m
etabolic process

regulation of

apoptotic process

positive regulation

of gene expression

endothelial
cell development

cellular response
to type I interferon

type I interferonsignaling pathway

cellular response
to interferon-gamma

cellular response

to cytokine stimulus

response to

tumor necrosis factorresponse to

interfe
ron-gamma

GO:00
02

48
4

G
O

:0
00

24
86

m
on

on
uc

le
ar

ce
ll 

di
ffe

re
nt

ia
tio

n

ESCA
GO1 mononuclear cell differentiation, 34.0%
GO2 negative regulation of endopeptidase activity, 32.1%
GO3 positive regulation of T cell mediated immunity, 21.7%
GO4 cellular response to UV-A, 9.3%
hemidesmosome assembly, 3.0%

protein localization to
plasm

a m
em

brane

peptide cross-linking

dendritic cell

differentiation

G
O

:0002484

GO:0002486

mononuclear

cell differentiation

regulation of intrinsic

apoptotic signaling pathway

negative regulation of

apoptotic processnegative regulation of
programmed cell death

regulation of
apoptotic process

cellular response to

growth factor stimulus

cellular response to

cytokine stimulus

response to UV-A

cellular re
sponse to UV-A

ce
llu

lar
 re

sp
on

se
 to

 or
ga

nic

cy
clic

 co
mpo

un
d

po
sit

ive
 re

gu
lat

ion
 of

pr
ote

in 
meta

bo
lic

 pr
oc

es
s

ne
ga

tiv
e 

re
gu

lat
ion

 o
f

pr
ot

ein
 m

et
ab

oli
c p

ro
ce

ss

re
gu

la
tio

n 
of

 p
ep

tid
yl-

ty
ro

sin
e

ph
os

ph
or

yla
tio

n
ne

ga
tiv

e 
re

gu
la

tio
n 

of
pe

pt
id

as
e 

ac
tiv

ity
po

si
tiv

e 
re

gu
la

tio
n 

of
 c

el
lu

la
r

pr
ot

ei
n 

m
et

ab
ol

ic
 p

ro
ce

ss
-lyditpep fo noitaluger evitisop
noitalyrohpsohp enires

regulation of

peptidase activity

additional categories
positive regulation of

lym
phocyte differentiation

positive regulation of

cell-cell adhesion
positive regulation of

type I interferon production

positive regulation of l

eukocyte cell-cell adhesion

regulation of lymphocyte

proliferation

positive regulation of

leukocyte proliferation

regulation of mononuclear

cell proliferation

positive regulation of cytokine-

mediated signaling pathway

positive regulation of
lymphocyte activation

positive regulation ofinflammatory response

positive regulation of
wound healing

positive regulation of

epithelial cell proliferation

positive regulation of

mononuclear cell proliferationpositive regulation of

lymphocyte proliferation
po

siti
ve

 re
gu

lat
ion

 of

ce
ll m

igr
ati

onpo
sit

ive
 re

gu
lat

ion
 of

ad
ap

tiv
e i

mmun
e r

es
po

ns
e

G
O

:0
00

28
24

po
si

tiv
e 

re
gu

la
tio

n 
of

ge
ne

 e
xp

re
ss

io
n

HNSC
GO1 GO:0002824, 46.6%
GO2 regulation of peptidase activity, 14.3%
GO3 cellular response to organic cyclic compound, 12.6%
GO4 negative regulation of programmed cell death, 11.7%

GO5 mononuclear cell differentiation, 10.1%
peptide cross-linking, 2.9%
protein localization to plasma membrane, 1.7%

GO:1990440

GO:0002484

GO:0002486

antigen processing andpresentation of endogenouspeptide antigenvia MHC class I

antigen processing and

presentation of endogenous

peptide antigen via

MHC class II

CD4-positive CD25-

positive alpha-beta regulatory

T cell differentiation

T ce
ll m

ed
iat

ed
 im

mun
ity

po
sit

ive
 re

gu
lat

ion
 o

f T

ce
ll m

ed
iat

ed
 cy

to
to

xic
ity

po
si

tiv
e 

re
gu

la
tio

n 
of

le
uk

oc
yt

e 
m

ed
ia

te
d

cy
to

to
xi

ci
ty llec T f o noit al uger
yti ci xot ot yc det ai de

m

re
gu

la
tio

n 
of

 C
D

4-
po

si
tiv

e

C
D

25
-p

os
iti

ve
 a

lp
ha

-b
et

a

re
gu

la
to

ry
 T

 c
el

l d
iff

er
en

tia
tio

n

po
sit

ive
 re

gu
lat

ion
 o

f C
D4

-

po
sit

ive
 C

D2
5-

po
sit

ive
 a

lph
a-

be
ta

re
gu

lat
or

yT
 ce

ll d
iffe

re
nt

iat
ion

positive regulation of

CD4-positive alpha-

beta T cell differentiation

positive regulation

of memory T cell

differentiation

positive regulationof T cell mediatedimmunity

regulation of

T cell mediated

immunity

positive regulation of

lymphocyte mediated

immunity

GO:00
02

82
4po

sit
ive

 re
gu

la
tio

n

of
 a

da
pt

ive
 im

m
un

e

re
sp

on
sepo

si
tiv

e 
re

gu
la

tio
n

of
 le

uk
oc

yt
e 

m
ed

ia
te

d
im

m
un

ity

re
gu

la
tio

n 
of

ly
m

ph
oc

yt
e 

m
ed

ia
te

d

im
m

un
ity

G
O

:000282

KICH
GO1 GO:0002824, 70.7%
GO2 T cell mediated immunity, 25.4%
GO3 GO:1990440, 4.0%

neutrophil aggregation
endothelial cellapoptotic process

macrophage migration inhibitory
factor signaling pathway

cellular response to lipid

cellular response to

organic cyclic compound

vasoconstriction

regulation of

vasoconstriction

regulation of

tube diameter

blood ve
sse

l

diameter m
ain

tenance

mon
on

uc
lea

r c
ell

dif
fer

en
tia

tio
n

GO:0
00

24
84

G
O

:0
00

24
86

T 
ce

ll 
m

ed
ia

te
d 

im
m

un
ity

pe
pt

id
yl

-c
ys

te
in

e noitalysortin-S

noit al ysorti n ni et or p

pl
as

m
in

og
en

 a
ct

iv
at

io
n

zy
m

og
en

 a
ct

iv
at

io
n

pr
ot

ei
n 

pr
oc

es
sin

g

pe
pt

ide
 cr

os
s-

lin
kin

g

additio
nal ca

tegorie
s

positive regulation of
cell-cell adhesion

positive regulation ofgene expression

GO:1902042

regulation of endothelial

cell apoptotic process

regulation of epithelial

cell apoptotic processGO:1902041
negative regulation of

apoptotic processnegative
 regulation of

programmed ce
ll d

eath

reg
ula

tio
n o

f

ap
op

tot
ic 

pro
ce

ss

ad
dit

ion
al 

ca
te

go
rie

s

po
sit

ive
 re

gu
la

tio
n 

of

pe
pt

id
e 

se
cr

et
io

n

re
gu

la
tio

n 
of

 T
ce

ll a
ct

iva
tio

n

G
O

:2
00

04
48

G
O

:2
00

04
46

fo
noit al uger e vitisop

noi sehda ll ec-ll ec et yc okuelpo
si

tiv
e 

re
gu

la
tio

n 
of

T 
ce

ll 
ac

tiv
at

io
n

po
si

tiv
e 

re
gu

la
tio

n 
of

ly
m

ph
oc

yt
e 

ac
tiv

at
io

n
G

O
:0

00
28

24
po

sit
ive

 re
gu

lat
ion

 of

ad
ap

tiv
e i

mmun
e r

es
po

ns
e

GO:00
02

82
2

positive regulation of T

cell m
ediated im

munity

regulation of T cell
mediated immunity

KIRC
GO1 regulation of T cell mediated immunity, 32.2%
GO2 negative regulation of apoptotic process, 14.8%
GO3 positive regulation of cell-cell adhesion, 14.0%
GO4 peptide cross-linking, 11.7%
GO5 T cell mediated immunity, 10.9%

GO6 blood vessel diameter maintenance, 6.6%
GO7 cellular response to organic cyclic compound, 6.1%
endothelial cell apoptotic process, 1.9%
neutrophil aggregation, 1.8%

inclusion body assem
bly

peptide cross-linking

protein localization to

cell periphery

protein localization to

plasma membrane

cellular response to

organic cyclic compound

response to interferon-gamma
macrophage migration inhibitory

factor signaling pathway
ERK1 and ERK2 cascade

regulation of apoptotic process

negative regulation of

programmed cell death

negative
 re

gulation of

apoptotic 
process

T 
ce

ll p
ro

life
ra

tio
n

de
nd

rit
ic

ce
ll d

iffe
re

nt
ia

tio
n

G
O

:0
00

24
84

G
O

:0
00

24
86

T cell m
ediated im

m
unity

positive regulation

of angiogenesis
regulation of protein

localization to m
em

brane
positive regulation of protein l

ocalization to plasma membrane

positive regulation of

gene expression

regulation of protein l

ocalization to plasma membrane

positive regulation of cell migration

GO:2000448

GO:2000446

positive regulation of

T cell mediated immunity

positive regulation of

wound healing

regulatio
n of

ERK1 and ERK2 ca
sca

de

re
gu

lat
ion

 of
 m

on
on

uc
lea

r

ce
ll p

ro
life

ra
tio

n

re
gu

la
tio

n 
of

 l
ym

ph
oc

yt
e 

pr
ol

ife
ra

tio
n

re
gu

la
tio

n 
of

 T
 c

el
l

m
ed

ia
te

d 
im

m
un

ity

KIRP
GO1 regulation of T cell mediated immunity, 27.6%
GO2 positive regulation of cell migration, 17.8%
GO3 T cell mediated immunity, 16.1%
GO4 negative regulation of apoptotic process, 13.4%

GO5 ERK1 and ERK2 cascade, 12.0%
GO6 protein localization to plasma membrane, 6.5%
GO7 peptide cross-linking, 4.0%
inclusion body assembly, 2.6%

inclusion body assem
bly

collagen fibril organization

m
acrophage m

igration inhibitory

factor signaling pathw
ay

G
:0008625

ERK1 and ERK2 cascade

regulation of heterotypic

cell-cell adhesion

positive regulation of

gene expression
positive regulation of

cell-cell adhesionmyeloid leukocytedifferentiationmononuclear celldifferentiation

GO:0002484

GO:0002486

vasoconstriction

regulation of

vasoconstric
tion

reg
ula

tio
n of

tub
e d

iam
ete

r

blo
od

 ve
ss

el

dia
mete

r m
ain

ten
an

ce

pu
rin

e 
rib

on
uc

leo
sid

e 
dip

ho
sp

ha
te

m
et

ab
oli

c p
ro

ce
ss

AD
P 

m
et

ab
ol

ic 
pr

oc
es

s
pu

rin
e 

nu
cl

eo
si

de
 d

ip
ho

sp
ha

te
m

et
ab

ol
ic

 p
ro

ce
ss

nu
cl

eo
si

de
 d

ip
ho

sp
ha

te
ph

os
ph

or
yl

at
io

n
nu

cl
eo

si
de

 d
ip

ho
sp

ha
te ssecorp cilobate

m

pyruvate m
etabolic process

ribonucleoside diphosphate

m
etabolic process

nucleotide phosphorylation
plasm

inogen activation
zym

ogen activation

protein processing

peptide cross-linking

additional categories

G:2000448

GO:2000446

GO:1902042

regulation of mononuclear

cell proliferation

regulation of

lymphocyte proliferation
regulation of

ERK1 and ERK2 cascaderegulation of M
APK ca

sca
de

po
sit

ive
 re

gu
lat

ion
 of

T ce
ll m

ed
iat

ed
 im

mun
ity

po
sit

ive
 re

gu
lat

ion
 of

ad
ap

tiv
e i

mmun
e r

es
po

ns
e

G
O

:0
00

28
24

G
O

:1
90

20
42

po
si

tiv
e 

re
gu

la
tio

n 
of

ER
K1

 a
nd

 E
R

K2
 c

as
ca

de

LIHC
GO1 GO:1902042, 33.9%
GO2 peptide cross-linking, 25.1%
GO3 blood vessel diameter maintenance, 11.3%
GO4 GO:0002486, 9.5%

GO5 positive regulation of cell-cell adhesion, 8.7%
GO6 ERK1 and ERK2 cascade, 7.5%
GO7 collagen fibril organization, 4.0%

no
it

az
il

ac
ol 

ni
et

or
p

yr
eh

pir
ep

 ll
ec

 o
t

protein localization to

plasm
a m

em
brane

additional categories

cell-cell junction organization

actin filam
ent bundle organization

actin filament bundle assembly

GO:0002484

GO:0002486

morphogenesis of a polarized epithelium

mononuclear cell differentiation

regulation of ERK1 and ERK2 cascade
positive regulation of wound healingpositive regulation of ERK1 and ERK2 cascade

regulation of wound healing

additional categories

positive regulation of cell m
igration

positi
ve

 re
gulatio

n of a
ngiogenesis

ad
dit

ion
al 

ca
teg

or
ies

pr
ot

ein
 p

ho
sp

ho
ry

lat
ion

ph
os

ph
or

yla
tio

n
pe

pt
id

e 
cr

os
s-

lin
ki

ng
zy

m
og

en
 a

ct
iv

at
io

n

pr
ot

ei
n 

pr
oc

es
si

ng

additional categories

cellular response to type I interferon
response to type I interferon

response to interferon-gam
m

a

ERK1 and ERK2 cascade

response to UV-A

cellular response to UV-A

cellular response to

cytokine stimulus

additional categories

negative regulation of proteolysis

positive regulation of

protein phosphorylation
regulation of protein phosphorylationnegative regulation of

programmed cell deathregulation of peptidase activity

positive regulation of phosphorylation

negative
 regulation of peptidase activ

ity

regulatio
n of e

ndopeptid
ase

 activ
ity

ne
ga

tiv
e r

eg
ula

tio
n o

f g
en

e e
xp

res
sio

n

re
gu

lat
ion

 o
f a

po
pt

ot
ic 

pr
oc

es
s

ne
ga

tiv
e 

re
gu

la
tio

n 
of

pr
ot

ei
n 

m
et

ab
ol

ic 
pr

oc
es

s

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ce
llu

la
r p

ro
te

in
 m

et
ab

ol
ic

pr
oc

es
s

po
si

tiv
e 

re
gu

la
tio

n 
of

ge
ne

 e
xp

re
ss

io
n

LUAD
GO1 negative regulation of gene expression, 31.9%
GO2 cellular response to cytokine stimulus, 18.2%
GO3 protein processing, 12.3%
GO4 positive regulation of angiogenesis, 11.2%

GO5 regulation of wound healing, 7.9%
GO6 mononuclear cell differentiation, 7.3%
GO7 actin filament bundle assembly, 7.3%
GO8 protein localization to plasma membrane, 3.7%

additional categories

G
O

:0002484

G
O

:0002486

additional categories

regulation of tube diam
eter

blood vessel diam
eter m

aintenance

additional categories

positive regulation of

cell-cell adhesion

positive regulation of cell migration

additional categories

zymogen activation
protein processing

peptidyl-tyrosine modificationpeptidyl-tyrosine phosphorylation
plasminogen activation

peptide cross-linking

additional categories

positive regulation of wound healing

positive regulation of

intracellular signal tra
nsduction

positive regulation of M
APK cascade

positi
ve re

gulation of E
RK1 and ERK2 ca

sca
de

reg
ula

tio
n o

f M
APK ca

sc
ad

e

ad
dit

ion
al 

ca
te

go
rie

s
ce

llu
la

r r
es

po
ns

e 
to

or
ga

ni
c 

cy
cl

ic
 c

om
po

un
d

ER
K1

 a
nd

 E
R

K2
 c

as
ca

de
re

sp
on

se
 to

 c
al

ci
um

 io
n A-V

U ot esnopser

cellular response to U
V-A

cellular response to

grow
th factor stim

ulus
additional categories

regulation of proteolysis

positive regulation of

protein m
etabolic process

positive regulation of

cellular protein metabolic process

regulation of peptidase activity

negative regulation of

cellular protein metabolic process

negative regulation of

protein metabolic process

regulation of protein
modification process

additional categories

GO:1903557positive regulation of

tumor necrosis factor production

negative
 regulation of gene expressi

on

positi
ve

 re
gulatio

n of a
poptotic 

proce
ss

reg
ula

tio
n o

f p
rot

ein
 ph

os
ph

ory
lat

ion

GO:19
02

04
2

ne
ga

tiv
e 

re
gu

lat
ion

 o
f a

po
pt

ot
ic 

pr
oc

es
s

ne
ga

tiv
e 

re
gu

la
tio

n 
of

pr
og

ra
m

m
ed

 c
el

l d
ea

th

re
gu

la
tio

n 
of

 a
po

pt
ot

ic
 p

ro
ce

ss

po
si

tiv
e 

re
gu

la
tio

n 
of

 g
en

e 
ex

pr
es

si
on

LUSC
GO1 negative regulation of apoptotic process, 28.7%
GO2 regulation of proteolysis, 17.1%
GO3 cellular response to growth factor stimulus, 15.9%
GO4 regulation of MAPK cascade, 11.5%

GO5 peptide cross-linking, 10.8%
GO6 positive regulation of cell migration, 6.3%
GO7 blood vessel diameter maintenance, 5.1%
GO8 GO:0002486, 4.6%

protein localization

to early endosome

peptide cross-linking
m

orphogenesis of
a polarized epithelium

negative regulation of
gene expression

positive regulation of

gene expression

cellular response to

cytokine stim
ulus

response to tumor

necrosis factor

macrophage migration inhibitory

factor signaling pathway
GO:0002484

GO:0002486

T cell mediated immunity

positive regulation of protein

localization to early endosome

regulation of p
rotein

localiza
tion to early 

endosome

regulation of protein

localization to endosome

positive regulation of

protein localization
to endosom

e

positive regulation
of cell m

igration 84
40

00
2:

O
G G
O

:2000446

positive regulation of

lym
phocyte activation

positive regulation of

T cell mediated immunity

regulation of
T cell mediated immunity

GO:0002824

positive regulation of

adaptive immune response

GO:0002822

PRAD
GO1 GO:0002822, 39.1%
GO2 positive regulation of cell migration, 17.2%
GO3 T cell mediated immunity, 14.8%
GO4 macrophage migration inhibitory factor
signaling pathway, 10.7%

GO5 negative regulation of gene expression, 8.5%
GO6 morphogenesis of a polarized epithelium, 3.5%
GO7 peptide cross-linking, 3.2%
protein localization to early endosome, 2.8%

peptide cross-linking

additional categories

collagen fibril organization

protein localization to

cell periphery

protein localization to

plasm
a m

em
brane

GO:0002484

GO:0002486

mononuclear cell differentiation
additional categoriesGO:2000448

GO:2000446regulation of protein localizationto cell periphery
regulation of protein localization

to plasma membrane

negative regulation of transforming

growth factor beta production

positive regulation

of angiogenesis

positive regulation

of cell migration

positive regulation

of wound healing

po
siti

ve
 re

gu
lat

ion
 of

 sm
oo

th

mus
cle

 ce
ll p

rol
ife

rat
ion

ne
ga

tiv
e r

eg
ula

tio
n

of 
pr

ote
oly

sis

ne
ga

tiv
e 

re
gu

lat
ion

 o
f a

no
iki

s
re

gu
la

tio
n 

of
 a

no
iki

s

re
gu

la
tio

n 
of

 a
po

pt
ot

ic
 p

ro
ce

ss
ne

ga
tiv

e 
re

gu
la

tio
n 

of
ap

op
to

tic
 p

ro
ce

ss
ne

ga
tiv

e 
re

gu
la

tio
n 

of
pr

og
ra

m
m

ed
 c

el
l d

ea
th

negative regulation of

gene expression

negative regulation of cellular
ss

ec
or

p 
cil

ob
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results highlight the effectiveness of our ensemble model 
in identifying genes involved in the canonical NFκB-
regulated pathways, which are known to be downstream 
of TNF [5, 6, 14].

To demonstrate the involvement of the predicted can-
didates in the canonical NFκB-regulated pathways, we 
performed a network-based functional enrichment anal-
ysis combined with gene set enrichment analysis (GSEA). 
This analysis aimed to identify functional modules 
formed by the highly-voted candidates in each cancer 
type, shedding light on their potential biological func-
tions. To note, we performed GSEA by ranking the can-
didates based on their votes in the corresponding cancer 
type to hit the genes in the tested functional module to 
calculate the enrichment score. Our results showed that 
the functional modules involved in the positive regu-
lation of tumor necrosis factor production or cellular 
response to cytokine stimulus were present in ten of the 
sixteen cancer types (Fig.  2b, red labels). This observa-
tion strengthens the hypothesis that the highly voted 
candidates play a significant role in the NFκB-regulated 
pathways downstream of TNF. Besides, across the sixteen 
cancer types, the most prevalent functions were related 
to the immune response (Fig.  2b, blue labels). Previous 
studies have indicated that the canonical NFκB-regulated 
pathways predominantly regulate innate and adaptive 
immunity [53]. Notably, the highly voted candidates were 
associated with adaptive immunity, such as T-cell medi-
ated immunity and antigen processing and presentation 
of endogenous peptide antigen via MHC class I via ER 
pathway. These functions rely on the canonical NFκB 
pathway rather than the non-canonical one [54, 55].

In addition, functional modules involved in anti-apop-
totic processes, such as negative regulation of apop-
totic process or programmed cell death, were found 

in fourteen studied cancer types, except for KICH and 
PRAD (Fig.  2b, green labels). These findings are in har-
mony with previous studies indicating that the canoni-
cal NFκB pathway, when activated by TNF and other 
proinflammatory factors, promotes carcinogenesis by 
inhibiting apoptosis [12, 56, 57]. Furthermore, functional 
modules linked to cancer metastasis, including positive 
regulation of cell migration and positive regulation of 
angiogenesis, were found in nine studied cancer types 
(Fig.  2b, orange labels). That supports the idea that the 
canonical NFκB pathways downstream of TNF regulate 
angiogenic genes to trigger angiogenesis and promote 
metastasis [58]. Together, these results demonstrate the 
involvement of the highly voted candidates in the canoni-
cal NFκB-regulated pathway and highlight their potential 
oncogenic role in cancer progression.

The ensemble model can identify cancer‑dysregulated 
and poor‑prognostic genes in cancers
We have illustrated that the ensemble model highlights 
candidate genes implicated in the canonical NFκB-
regulated pathways downstream of TNF, and it uncovers 
their potential oncogenic roles through functional mod-
ule analysis. Subsequently, we delved deeper into whether 
the genes identified by our ensemble model (voted genes) 
collectively contribute to carcinogenesis. The term "voted 
genes" is hereafter used to describe genes that received 
at least one vote across all cancer types, including those 
hallmark genes. Our findings show that cancer-dysregu-
lated genes, obtained from the oncogenic gene set (C6) 
in MSigDB [27], are significantly enriched in the voted 
genes (71.72%, p-value = 5.90 ×  10–171, Fisher’s exact test). 
Cancer-dysregulated genes also earned more votes within 
individual cancer types, except for CHOL and KICH 
showing moderate significance, and had higher average 
votes from the pan-cancer model across cancers (Fig. 3a 
and Additional file  1: Fig. S3). That indicates that genes 
with higher votes are more likely to be dysregulated in 
cancer. 

Furthermore, our results also show that the propor-
tion of cancer-dysregulated genes increases with the vote 
threshold, demonstrating a positive correlation between 
votes and the potential oncogenicity of the identified 
genes (Fig. 3b and Additional file 1: Fig. S4). In contrast, 
the genes identified by the conventional correlation-
based approach did not consistently exhibit significant 
oncogenicity across cancers or within each type (Addi-
tional file 1: Fig. S5 and S6). These findings confirm the 
oncogenicity of the voted genes and suggest that genes 
with higher votes have a greater likelihood of being 
involved in carcinogenesis.

Subsequently, to further understand the roles of voted 
genes in cancer progression, we explore their impact 

Table 1 Comparison of functional similarity

 BP Biological Processes

(#) represents the number of genes with non-zero similarity, excluding NFκB/
TNF hallmark genes

The similarity is evaluated using the Jaccard index, which measures the shared 
experimentally validated biological processes with the central member genes. 
The table presents each category’s average BP similarity of the (#) genes

 The p-values are derived from the Wilcoxon rank-sum test

BP similarity Candidate (#) non‑
candidate(#)

p‑value Cohen’s d

TNF 0.0685 (2715) 0.0558 (6390) 6.79E‑15 0.24

RELA 0.1092 (2692) 0.0994 (6323) 3.21E‑07 0.11

NFKB1 0.1056 (2658) 0.1023 (6197) 2.57E‑03 0.04

RELB 0.0851 (2671) 0.0831 (6286) 3.11E‑02 0.04

REL 0.1599 (2688) 0.1706 (6317) 9.25E‑01 − 0.07

NFKB2 0.1680 (2619) 0.1999 (6101) 1.08E‑04 − 0.15
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on patient survival using a pan-cancer survival influ-
ential gene set compiled by our previous study [59]. We 
observed that genes linked to poor survival outcomes are 
significantly overrepresented among the genes identified 
by the pan-cancer model (24.99%, p-value = 2.56 ×  10–43, 
Fisher’s exact test). These poor-prognostic genes also 
exhibit a significant enrichment among genes with more 
votes (Fig.  3c). It is noteworthy that genes with larger 
z-scores of estimated survival hazard ratio have a higher 
likelihood of being voted on by the pan-cancer ensemble 
model (z = 15.04, p-value = 3.97 ×  10–51, logistic regression 
with Wald test), implying a connection between highly-
voted genes and poor patient survival, indicative of their 
potential oncogenic nature. Notably, the poor-prognostic 
genes were significantly overrepresented among the 198 
hallmark genes (41.92%, p-value = 8.11 ×  10–23, Fisher’s 
exact test), suggesting that the detrimental characteris-
tics of the genes identified by the pan-cancer model may 
be inherited from the NFκB/TNF hallmarks. Moreover, 
our findings show that patients with higher risk scores 

calculated by these genes identified by the pan-cancer 
model exhibit poor prognoses in both internal and exter-
nal datasets (Fig. 3d), underscoring the predictive prog-
nostic potential of these genes. Furthermore, patients 
in stage IV possess significantly higher risk scores than 
those in other stages (Fig. 3e), indicating a potential role 
of these genes receiving votes from the pan-cancer model 
in cancer metastasis. Overall, these results strongly sup-
port the oncogenic potential of the voted (identified) 
genes in carcinogenesis and highlight their ability to pre-
dict the prognosis of cancer patients.

An application of the ensemble model to identify subtypes 
and to predict the prognosis of breast cancer patients
To further show the model’s applicability in cancer medi-
cine, we selected triple-negative breast cancer (TNBC) 
as a case study. This selection was motivated by the fact 
that TNBC has been reported to be strongly associated 
with the dysregulation of NFκB/TNF [60–63]. Within the 
ensemble learning model, patients bearing larger absolute 

14.84
11.94
11.15

10.01
9.85
9.36
8.98
8.83
8.8

8.57
6.34
6.11
5.59
4.89
4.88

0 5 10 15

LUSC
BRCA
UCEC
COAD
STAD
HNSC
BLCA
LUAD
THCA
KIRC

PRAD
ESCA
KIRP
LIHC

CHOL
KICH

z-score of ES

Pan-cacner

Fig. 3 Oncogenicity and prognostic impact of the identified genes. a Enrichment analysis of oncogenic genes (C6) for each cancer and pan‑cancer 
model’s identified (voted) genes. Z‑scores were calculated based on 10,000 random permutations generated in the GSEA process, wherein 
genes were ranked by votes to hit oncogenic genes in the C6 gene set. b Positive correlation between the proportion of oncogenic genes 
and average votes. The x‑axis denotes the average votes of predicted genes across 16 cancer types. Each point represents the proportion 
of oncogenic genes with an average vote equal to or greater than the corresponding threshold on the x‑axis. The red and gray circles indicate 
significant and insignificant enrichment, respectively, as determined by Fisher’s exact test. c Enrichment analysis of pan‑cancer poor‑prognostic 
genes for identified genes of pan‑cancer model. Herein, the identified genes were ranked by their average votes in the pan‑cancer model to hit 
the pan‑cancer poor‑prognostic genes. Z‑score and p‑value were calculated from 10,000 random permutations of genes’ average vote. The 
number of hits in the poor‑prognostic gene set is denoted as ’hit,’ while ’miss’ represents the number of the identified genes without hits. To note, 
among the 4678 identified genes in the pan‑cancer model, only 4022 genes are provided with a pre‑calculated hazard ratio (the exponential 
regression coefficient) in the Cox regression model from our previous study. d Kaplan–Meier plots (KM plot) of 5‑year survival based on risk score 
calculated from the identified genes. The risk scores were calculated by combining the identified genes’ expression levels with their coefficients 
in a pre‑trained pan‑cancer Cox‑regression model. We classified patients into low and high‑risk groups based on the median risk score. Kaplan–
Meier plots were generated for both the internal (cancer types included in our ensemble learning model) and independent (cancer types 
not included in our ensemble learning model) datasets to evaluate the impact of the identified genes on patient survival. The number of patients 
in each group is indicated by "n" in the plots. e Risk score of patients in different stages. This figure illustrates the progression of patients’ risk scores 
across different pathologic stages. It exhibits a trend where the risk scores increase sequentially from stage I to stage IV: stage I < stage II < stage 
III <  < stage IV
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weights have more influence on predicting NFκB/TNF 
hallmark genes, indicating a potential connection to the 
NFκB/TNF pathway. Our results show that patients with 
larger weights in the model are significantly overrepre-
sented in TNBC patients (Fig.  4a and Additional file  1: 
Fig. S7). Furthermore, these highly weighted patients are 
significantly overrepresented in ER-negative and PR-neg-
ative patients but significantly underrepresented in ER-
positive and PR-positive patients (Fig. 4a and Additional 
file 1: Fig. S7). A similar, but not significant, correlation 
was also observed between the highly weighted patients 
and their HER2 status (Fig.  4a and Additional file  1: 
Fig. S7). These findings suggest that patients with larger 
weights in the model may be sensitive to ER and PR sta-
tus and the NFκB/TNF pathway dysregulation. This con-
clusion is supported by previous studies indicating the 
mutual suppression between NFκB/TNF and ER/PR in 
breast cancer [60–63]. Moreover, the ER + /PR + patients 
receiving endocrine therapy could have a better progno-
sis by repressing NFκB [60–63]. This recapitulates the 
association between TNBC and the NFκB/TNF pathway. 
Briefly, these results support the reliability and interpret-
ability of our model, suggesting that the model can rec-
ognize patients with subtypes of breast cancer that are 
highly associated with NFκB/TNF genes.

To further demonstrate the effectiveness of our model 
in exploring TNBC, we uncovered the functional mod-
ules that are significantly enriched with highly-voted can-
didates in the BRCA ensemble model and significantly 
activated or inactivated in TNBC patients (Fig.  4b and 
Additional file 1: Table S3). We determined the status of 
these modules in TNBC patients by evaluating the activ-
ity of the functional modules identified in BRCA (Fig. 2b, 

BRCA panel) through GSEA that used fold-change of 
gene expression level as gene rank. Each gene’s fold 
change was calculated from the differential expression 
analysis between TNBC and non-TNBC implemented 
by the Limma-Voom R package [64]. Out of the sixteen 
identified functional modules, fifteen were up-regulated, 
and one was down-regulated in TNBC patients; one-
third of the up-regulated modules are involved in the 
immune process. As anticipated, these functional mod-
ules can accurately predict TNBC patients in the TCGA 
dataset, excluding two MHC class I-related modules con-
taining only three genes for each (Fig.  4c and Table  2). 
However, the area under the precision-recall curve 
(AUCPR) from the TCGA dataset was only satisfactory 
(Fig.  4c and Table  2). Notably, the identified functional 
modules can also accurately predict TNBC patients in 
two external datasets with higher AUCPR values than the 
TCGA dataset (Fig. 4c and Table 2). This robust perfor-
mance highlights the potential of these modules as prom-
ising diagnostic network biomarkers for determining 
TNBC status in breast cancer patients.

Furthermore, this outstanding performance suggests 
that non-TNBC patients in the TCGA dataset with a 
high probability of TNBC predicted by our model could 
exhibit similar transcriptome characteristics to TNBC 
patients. To further examine these non-TNBC patients, 
we investigated the best-performing functional mod-
ule, mononuclear cell differentiation, for TNBC pre-
diction. Gene expressions in this module effectively 
distinguished TNBC status and the trajectory of recep-
tor status in patients (Fig. 4d). Non-TNBC patients with 
luminal breast cancer, who expressed estrogen receptors, 
were predicted with lower probabilities of being TNBC 

(See figure on next page.)
Fig. 4 Triple‑negative breast cancer analysis. a Enrichment analysis of breast cancer subtypes for patients by their weights in the BRCA ensemble 
model. The z‑score of each subtype was calculated through 10,000 random permutations during the GSEA process, wherein patients were ranked 
by their weights in the BRCA model to hit patients with different subtypes. b The highly voted functional modules activated/inactivated in TNBC 
patients. The z‑score, calculated from 1000 random permutations during the GSEA process, reflects the functional module’s activity in TNBC 
patients. We assessed the activity of the highly‑voted functional modules identified in BRCA by performing GSEA, wherein genes were ranked 
by their fold‑change (TNBC vs. non‑TNBC patients) to hit the member genes in the tested module. The modules marked in red indicate activated, 
while those marked in green indicate inactivated in TNBC patients. c The performance of identified functional modules in identifying TNBC patients. 
We performed 100 hold‑out processes for each module to assess the potential overfitting. During the hold‑out process, 60% of the sampling 
data was used for training, and the remaining 40% was used for testing. The performance metrics shown here are AUC and AUCPR values derived 
from the testing data. d Principal component analysis (PCA) of BRCA samples by expression profiles of the functional module “mononuclear 
cell differentiation”. The left panel illustrates the separation of TNBC and non‑TNBC patients based on the expression profiles of the functional 
module, with the p‑value obtained through a permutational multivariate analysis of variance (PERMANOVA). The right panel displays the trajectory 
of the receptor status in BRCA patients. e The association between the TNBC probability and non‑TNBC patients’ ER level. The TNBC probabilities 
of all BRCA patients were predicted by a naïve logistic regression model using gene expression profiles in the mononuclear cell differentiation 
module. The subtypes of non‑TNBC patients are displayed by colors. f Aalen’s additive regression model estimated the hazard rate of non‑TNBC 
patient survival. The patients’ age and predicted TNBC probability are covariates in the model. The three vertical dash lines represent the time 
point of one, three, and five years from left to right. g The 3‑year hazard ratio of age and predicted TNBC probability for non‑TNBC patients. The 
hazard ratios were calculated by a multivariate Cox regression model using age and TNBC probability as covariates. h The Kaplan Meier survival 
curve of the estimated three‑year survival probability of non‑TNBC patients with high and low predicted TNBC probability. The p‑value is estimated 
by the log‑rank test. i The functional module of mononuclear cell differentiation. The size of each node in the figure represents the magnitude 
of the gene’s impact on TNBC prediction. Red and blue nodes represent genes with positive and negative z‑scores, respectively. Genes 
with an absolute z‑score greater than two are labeled in white
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(Fig. 4e). On the other hand, patients with lower or zero 
estrogen receptor levels, such as those classified as HER2 
enriched or unclassified by immunohistochemistry stain-
ing, tended to be predicted with higher probabilities 
of TNBC (Fig.  4e). This observation suggests that gene 
expressions in the module could be associated with the 
molecular subtyping of breast cancer.

Moreover, the predicted probability of these non-
TNBC patients has a significant effect on the hazard rate 
of death in the first three years while having a decreasing 
effect after five years (Fig. 4f ). Notably, while the hazard 
rate of age positively correlates with the survival dura-
tion, the magnitude of the hazard rate associated with age 
is less than that of the predicted TNBC probability. This 
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observation indicates that the predicted TNBC probabil-
ity has a more considerable impact on patient prognosis 
than age. The hazard ratio of predicted probability is 12 
on 3-year overall survival (Fig.  4g), indicating that non-
TNBC patients with higher predicted probability have an 
increased risk of dying within the first three years. Using 
a predicted probability cut-off of 0.05, which is top 20% 
of non-TNBC patients, the patients with higher probabil-
ity have significantly lower 3-year overall survival rates 
(Fig.  4h). This result implies that non-TNBC patients 
with higher predicted probability may have progressive 
breast cancer and a higher risk of short term mortality. 
However, when using genes as covariates instead of pre-
dicted probability, only a few genes significantly affected 
the non-TNBC patient mortality hazard ratio (Additional 
file 1: Fig. S8). That suggests that these genes must work 
as a module, not individually, to affect patient survival.

Accordingly, targeting the pivotal node in the network 
has the potential to disrupt its molecular function and 
hinder tumorigenesis. LGALS1 and UBD are the top 
two hubs in the mononuclear cell differentiation module 
with the highest degree and most significant effect size in 
predicting TNBC (Fig.  4i). Previous study has indicated 
that UBD (FAT10/Ubiquitin D) promotes the invasion 
of the progressive breast cancer cell by stabilizing ZEB2 
[65]. Galectin-1 (LGALS1) has been reported to be asso-
ciated with the metastatic potential of breast cancer [66, 
67]. Inhibition of LGALS1 has been shown to reduce the 

metastatic capability of the MDA-MB-231 breast can-
cer cell line [68], and expression of LGALS1 can affect 
the metastasis of breast cancer, supporting our hypoth-
esis that targeting LGALS1 could obstruct tumor pro-
gression. In addition, UBD regulates the TNF-induced 
NFκB activation in immune response [69], and LGALS1 
has been found to participate in TNF/ NFκB-regulated 
inflammation [70, 71]. Notably, these two genes were 
identified as candidate genes by our ensemble learn-
ing model but not recognized as the NFκB/TNF hall-
mark genes in the MsigDB, highlighting the ability of our 
approach to uncover promising genes in NFκB-regulated 
pathways downstream of TNF. In conclusion, the "mono-
nuclear cell differentiation" functional module has sig-
nificant potential for predicting the prognosis of breast 
cancer and hindering the mechanism of breast cancer 
metastasis.

Discussion
In this study, we proposed an ensemble learning model 
that can accurately identify the genes involved in 
NFκB-regulated pathways downstream of TNF and car-
cinogenesis. Our ensemble learning method addresses 
the challenge of imbalanced data by utilizing boot-
strap sampling, which helps decentralize samples with 
uncertain status and improve the predictions’ robust-
ness. We determined a proper sampling ratio through 
a systematic process, as depicted in Fig.  1b. Another 

Table 2 Performance of the identified modules in predicting TNBC

Module #genes TCGA E‑GEOD‑76250 E‑GEOD‑58135

AUC AUCPR AUC AUCPR AUC AUCPR

Mononuclear cell differentiation   20 0.93 ± 0.01 0.51 ± 0.05 0.93 ± 0.03 0.98 ± 0.01 0.95 ± 0.03 0.85 ± 0.08

Positive regulation of leukocyte proliferation   15 0.91 ± 0.02 0.50 ± 0.06 0.93 ± 0.03 0.99 ± 0.01 0.83 ± 0.05 0.63 ± 0.09

Cellular response to cytokine stimulus   52 0.91 ± 0.02 0.51 ± 0.05 0.91 ± 0.04 0.98 ± 0.02 0.95 ± 0.03 0.89 ± 0.07

Positive regulation of cell–cell adhesion   27 0.91 ± 0.02 0.52 ± 0.06 0.92 ± 0.04 0.98 ± 0.02 0.90 ± 0.03 0.71 ± 0.08

Cellular response to lipid   36 0.90 ± 0.02 0.55 ± 0.06 0.91 ± 0.04 0.97 ± 0.02 0.94 ± 0.03 0.85 ± 0.07

Transmembrane receptor protein tyrosine kinase signaling 
pathway

  46 0.90 ± 0.03 0.51 ± 0.06 0.92 ± 0.04 0.98 ± 0.01 0.92 ± 0.03 0.78 ± 0.09

Positive regulation of cell migration   78 0.90 ± 0.02 0.52 ± 0.07 0.93 ± 0.04 0.98 ± 0.02 0.94 ± 0.03 0.79 ± 0.10

Regulation of T cell activation   21 0.90 ± 0.02 0.48 ± 0.06 0.94 ± 0.03 0.99 ± 0.01 0.91 ± 0.05 0.73 ± 0.10

Negative regulation of protein metabolic process   90 0.89 ± 0.03 0.48 ± 0.06 0.90 ± 0.03 0.97 ± 0.02 0.95 ± 0.02 0.87 ± 0.07

Positive regulation of gene expression 112 0.88 ± 0.03 0.45 ± 0.06 0.93 ± 0.03 0.98 ± 0.02 0.94 ± 0.03 0.83 ± 0.07

Negative regulation of gene expression   88 0.87 ± 0.03 0.45 ± 0.07 0.92 ± 0.03 0.98 ± 0.01 0.95 ± 0.02 0.86 ± 0.07

Regulation of protein modification process 117 0.85 ± 0.03 0.48 ± 0.05 0.94 ± 0.04 0.99 ± 0.02 0.95 ± 0.02 0.86 ± 0.07

Positive regulation of cellular biosynthetic process 147 0.84 ± 0.03 0.42 ± 0.06 0.91 ± 0.04 0.98 ± 0.02 0.95 ± 0.02 0.88 ± 0.06

Positive regulation of macromolecule biosynthetic process 139 0.84 ± 0.03 0.43 ± 0.05 0.91 ± 0.04 0.98 ± 0.02 0.95 ± 0.02 0.87 ± 0.05

Antigen processing and presentation of endogenous peptide 
antigen via MHC class I via ER pathway

    3 0.69 ± 0.04 0.19 ± 0.02 0.81 ± 0.04 0.96 ± 0.01 0.48 ± 0.08 0.26 ± 0.05

Antigen processing and presentation of endogenous peptide 
antigen via MHC class I via ER pathway, TAP‑independent

    3 0.69 ± 0.03 0.18 ± 0.02 0.80 ± 0.05 0.96 ± 0.01 0.48 ± 0.08 0.25 ± 0.04
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critical consideration in our study is the number of 
member classifiers in the ensemble model. To ensure 
unbiased predictions and maintain model performance 
and rationality, we constructed 16 independent ensem-
ble models for 16 cancer types, each comprising 500 
classifiers. This analysis reveals a strong correlation 
(Spearman’s ρ ranging from 0.97 to 0.99 across the 16 
cancers) between gene votes in the original ensem-
ble models and those in the independent models with 
500 member classifiers (Additional file 1: Fig. S9). This 
finding underscores the stability and robustness of 
our model and validates the sufficiency of using 1,000 
member classifiers to capture the overall information 
for the studied cancers. Our ensemble learning model’s 
exceptional stability and performance indicate that it 
can effectively identify credible genes involved in the 
NFκB/TNF pathway.

The analysis also revealed that the number of member 
classifiers is a potential limitation of the ensemble learn-
ing model. Having too few member classifiers can result 
in the model being unable to capture the comprehensive 
information within the samples. Conversely, too many 
member classifiers can lead to excessive computational 
demands, reducing the model’s efficiency. Another fac-
tor that could limit the performance of the ensemble 
learning algorithm is the balance between features. For 
example, in constructing a pan-cancer ensemble learn-
ing model, simply combining all patients (features) from 
multiple cancers may not be ideal, as the uneven distribu-
tion of cancer types could confound the model or cause 
the results to be skewed towards cancer types with larger 
sample sizes. This is also a major reason why we chose 
the current strategy for constructing the pan-cancer 
model in this study.

On the other hand, the NFκB/TNF hallmark genes 
exhibit higher average votes and higher cancer preva-
lence across multiple cancer types (Fig. 1e), implying that 
the predicted candidates with more votes and greater 
cancer prevalence are more likely to be reliable in terms 
of their pan-cancer association with the NFκB/TNF path-
way. Indeed, we highlighted three pan-cancer NFκB/TNF 
hallmark genes (EGR1, JUNB, and ZNF36) [28–30] and 
identified four candidates (SRGN, CCN2, TNFRSF12A, 
and ZFP36L1) that are highly potentially involved in 
NFκB/TNF pathways in various cancers [31–40]. Con-
versely, genes with high votes but low cancer prevalence 
may be involved in the NFκB/TNF pathway in a cancer-
specific manner. For instance, STAT5, an NFκB/TNF 
hallmark gene, received 744 votes exclusively in BRCA. 
Previous studies have linked STAT5A, also known as 
mammary gland factor (MGF), to mammary function 
and its high expression in human breast cancers [72, 73]. 
These results suggest a substantial correlation between 

STAT5A and breast cancer, potentially suggesting its 
specificity to breast cancer.

Another two examples are C9 and G6PC, which are 
two candidate genes that obtained more than 900 votes 
only in LIHC. C9 protein is a subunit of the complement 
membrane attack complex (MAC) that targets patho-
gen cell membranes to cause cell lysis and death in the 
immune system. TNF has been observed to be able to up-
regulate the expression of C9 [74], revealing its involve-
ment in the NFκB/TNF pathway. Furthermore, G6PC 
has been reported to be up-regulated by HNF4A [75]. 
HNF4A is down-regulated by TNF [76] and suppressed 
by NFκB [77]. Additionally, mRNA expression of Tnf-α 
is significantly increased in G6pc knock-out mice [78]. 
These observations suggest a regulatory relationship 
between TNF and G6PC, although direct experimental 
evidence remains to be provided. It is worth noting that 
C9 and G6PC have been reported to be highly and spe-
cifically expressed in liver tissue according to Genotype-
Tissue Expression (GTEx, dbGaP, phs000424.v8.p2) and 
BioGPS [79]. Previous studies have uncovered the roles 
of C9 and G6PC in the NFκB/TNF pathways and their 
tissue specificity in the liver. However, their connections 
to LIHC are not widely reported, necessitating further 
evidence to confirm this relationship.

On the other hand, candidate genes that receive votes 
in only one cancer type tend to have relatively low vote 
counts, with a median vote of 7 and a mean of 67.68. 
Most of these predictions (votes) may be attributed to 
random sampling. Accordingly, it is essential to exercise 
caution when evaluating the confidence of these potential 
cancer-specific candidates with low votes and low cancer 
prevalence in only one cancer type, and further investiga-
tion is required to confirm their association with specific 
cancer.

Although our ensemble learning model demonstrates 
exceptional performance overall, its prediction accu-
racy is relatively poor for KICH compared to the other 
15 cancer types, with an AUC of 0.57 (Fig. 1c). Likewise, 
the GSEA analysis of cancer-dysregulated genes in KICH 
showed overrepresentation as well, though only with 
moderate significance (Fig. 3a and Additional file 1: Fig. 
S3). In addition, the identified highly-voted functional 
modules in most cancer types encompassed a wide range 
of biological processes, including regulation of tumor 
necrosis factor production, cellular response to cytokine 
stimulus, adaptive immunity, anti-apoptosis, cell migra-
tion, and angiogenesis (Fig.  2b). These functional mod-
ules are closely related to the canonical NFκB-regulated 
pathway and cancer progression. However, in the case of 
KICH, the identified functional modules are associated 
with immunity only, lacking the presence of other types 
of functional modules. This observation suggests that the 
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mechanism of the NFκB/TNF pathway in KICH may dif-
fer from other cancer types.

Besides investigating TNBC, we analyzed the rela-
tionship between smoking history and patients’ coef-
ficients in the LUAD ensemble model. Previous studies 
have reported that tobacco smoking could  induce the 
inflammation associated with the TNF and NFκB signal-
ing pathways, promoting the development of lung cancer 
[80, 81]. We found that non-smoking patients tended to 
possess smaller coefficients with moderate significance 
(z-score = −  1.25, Additional file  1: Fig. S10a), suggest-
ing that non-smoking patients might be less affected by 
the NFκB/TNF pathway. Conversely, smoking patients, 
including reformed smokers, tended to have larger coef-
ficients (Additional file 1: Fig. S10b), although this asso-
ciation is not statistically significant (z-score = 0.83). 
Notably, most patients in the LUAD dataset are smokers 
(433/508 = 85%), which may have influenced the insig-
nificant association between the coefficients and smoking 
history. Nevertheless, our study still confirmed a positive 
correlation. Combined with the TNBC analysis, the find-
ings from the LUAD patients reinforce the capability of 
our ensemble model in identifying patients with specific 
cancer types associated with the NFκB/TNF-regulated 
pathways.

Conclusions
We have developed an ensemble learning model that can 
predict genes involved in the NFκB/TNF-regulated path-
ways and carcinogenesis. This approach differs from the 
existing prediction models by utilizing gene expression 
profiles of cancer patients as features and genes as sam-
ples. The genes identified by the model are likely involved 
in the NFκB/TNF-regulated pathways, particularly the 
canonical ones, and exert a significant influence on can-
cer progression and patient prognosis. Importantly, our 
model offers interpretability, enabling the identification 
of specific cancer subtypes, such as TNBC. Addition-
ally, we have demonstrated that the functional module of 
mononuclear cell differentiation can accurately predict 
the TNBC status and assess the prognosis of non-TNBC 
patients. This ensemble learning model demonstrates 
exceptional predictive performance in identifying genes 
associated with specific mechanisms and effectively 
handles highly imbalanced data. By providing precise 
targets for precision medicine in cancer subtypes, our 
model could offer valuable insights for tailored treatment 
approaches. Moreover, its flexibility, traceability, retro-
spective capability, and interpretability enhance its utility 
in cancer research.
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