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Abstract 

Background Clear cell renal cell carcinoma (ccRCC) is an immunologically and histologically diverse tumor. How-
ever, how the structural heterogeneity of tumor microenvironment (TME) affects cancer progression and treatment 
response remains unclear. Hence, we characterized the TME architectures of ccRCC tissues using imaging mass 
cytometry (IMC) and explored their associations with clinical outcome and therapeutic response.

Methods Using IMC, we profiled the TME landscape of ccRCC and paracancerous tissue by measuring 17 mark-
ers involved in tissue architecture, immune cell and immune activation. In the ccRCC tissue, we identified distinct 
immune architectures of ccRCC tissue based on the mix score and performed cellular neighborhood (CN) analy-
sis to subdivide TME phenotypes. Moreover, we assessed the relationship between the different TME phenotypes 
and ccRCC patient survival, clinical features and treatment response.

Results We found that ccRCC tissues had higher levels of  CD8+ T cells,  CD163− macrophages, Treg cells, endothe-
lial cells, and fibroblasts than paracancerous tissues. Immune infiltrates in ccRCC tissues distinctly showed clustered 
and scattered patterns. Within the clustered pattern, we identified two subtypes with different clinical outcomes 
based on CN analysis. The TLS-like phenotype had cell communities resembling tertiary lymphoid structures, char-
acterized by cell–cell interactions of  CD8+ T cells-B cells and  GZMB+CD8+ T cells-B cells, which exhibited anti-tumor 
features and favorable outcomes, while the Macrophage/T-clustered phenotype with macrophage- or T cell-
dominated cell communities had a poor prognosis. Patients with scattered immune architecture could be further 
divided into scattered-CN-hot and scattered-CN-cold phenotypes based on the presence or absence of immune 
CNs, but both had a better prognosis than the macrophage/T-clustered phenotype. We further analyzed the rela-
tionship between the TME phenotypes and treatment response in five metastatic ccRCC patients treated with suni-
tinib, and found that all three responders were scattered-CN-hot phenotype while both non-responders were 
macrophage/T-clustered phenotype.
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Conclusion Our study revealed the structural heterogeneity of TME in ccRCC and its impact on clinical outcome 
and personalized treatment. These findings highlight the potential of IMC and CN analysis for characterizing TME 
structural units in cancer research.

Keywords Clear cell renal cell carcinoma, Tumor microenvironment, Immune architecture, Cellular neighborhood, 
Survival

Introduction
Renal cell carcinoma (RCC) is among the top 10 can-
cers worldwide, of which the clear cell variant is one 
of the most common and aggressive subtypes [1–3]. 
Early ccRCC can be well managed by surgery. However, 
advanced cases usually lose the chance of radical resec-
tion due to metastasis and are refractory to conventional 
chemotherapy and radiotherapy, thus having a disap-
pointing survival rate. Fortunately, the advent of targeted 
drugs and immunotherapy has brought promising pros-
pects for the treatment of ccRCC [4]. However, a sub-
stantial proportion of ccRCC patients still respond poorly 
to the therapies, and the reason remains unclear [5–7].

The prognosis and therapeutic strategy of cancer 
patients are commonly based on the traditional AJCC-
TNM staging. However, patients with the same clinical 
stage often have varying prognoses and immunotherapy 
responses. The tumor microenvironment (TME), espe-
cially the immune infiltrates, is crucial to the prolif-
eration, differentiation and metastasis of cancer cells. 
Insight into TME or tumor immune microenvironment 
(TIME) may aid in personalized clinical management for 
cancer patients. The immunoscore has been proven to 
have advantages over the traditional ACJJ-TNM staging 
in colon cancer [8]. Furthermore, stratification systems 
regarding the location and density of immune infiltrates 
have also been proposed to guide therapeutic decisions 
[9]. However, these simplified stratification systems only 
targeted specific immune cell types, such as  CD8+ T 
cells, and could not mimic the complex TIME. In recent 
years, high-throughput technologies such as single-cell 
sequencing, multicolor flow cytometry and mass cytom-
etry have fully displayed their talents in deciphering the 
intricate TIME, which identified many immune cell sub-
types associated with the survival, metastasis, recurrence 
and immunotherapy response of ccRCC [10–12]. To be 
noted, aside from specific immune cell subtypes, the spa-
tial architecture and cell-to-cell interactions of infiltrat-
ing immune cells also affect the prognosis and treatment 
of cancer. For example, the tertiary lymphoid structure 
(TLS), which promotes anti-tumor antibody secretion, 
antigen presentation, better prognosis and immuno-
therapy response, has been found in various tumors, 
such as RCC, melanoma and ovarian cancer [13–16]. In 
fact, the immune structures other than TLS in cancer are 

quite diverse. Keren et  al. [17] reported three immune-
phenotypes in triple-negative breast cancer using multi-
plexed ion beam imaging by time of flight (MIBI-TOF), 
including cold, mix and compartment. Sheng J. et al. [18] 
revealed three intra-tumor regions (normal, fibrotic and 
cancerous regions) in hepatocellular carcinoma and iden-
tified a variety of cell neighborhoods (CNs) associated 
with patient prognosis. Another study on hepatocellular 
carcinoma reported that the cell-to-cell interactions in 
local functional areas could affect the immunotherapy 
response. The proximity of  CD8+ T cells to  CD4+ T cells, 
rather than arginase  1high  macrophages, promoted the 
response of immune checkpoint inhibitor (ICI) treatment 
[19]. These studies indicated that although a complex sys-
tem, like an enormous genome encoding just a limited 
number of markers, the TME also has countable cell-to-
cell interactions or CN patterns [20, 21]. Therefore, it is 
quite necessary and feasible to investigate the local cell 
communities to understand tumor progression and guide 
treatment.

ccRCC is an immunologically and histologically hetero-
geneous tumor. However, the impact of TME structural 
heterogeneity on ccRCC needs further exploration. In 
this study, we surveyed the TME of ccRCC by IMC and 
discovered two distinct immune architectures. Using CN 
analysis, we further identified four different phenotypes 
associated with the prognosis of ccRCC and response to 
sunitinib. These results deepened our understanding of 
the spatiotemporal heterogeneity of immune infiltrates 
in ccRCC and will facilitate personalized clinical manage-
ment in the future.

Methods and materials
Patients and datasets
All samples used for phenotype identification were from 
the ccRCC tissue microarray (HKidE180Su03, Shanghai 
Outdo Biotech, Additional file  6: Table  S1). We finally 
enrolled 75 qualified samples for analysis, excluding three 
non-ccRCC tissues, nine samples with insufficient tis-
sues and three unsound scanning tissues. Through Imag-
ing Mass Cytometry (IMC) scanning, we got 86 mcd files 
of regions of interest (ROI). The information of ccRCC 
patients and ROIs were supplied in Additional file  6: 
Tables S2 and S4. To explore what changes have taken 
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place in the TME of ccRCC, we analyzed 13 cancerous 
and paired paracancerous tissues.

Five cancerous tissues from patients with metastatic 
ccRCC were collected at the Southwest Hospital, Chong-
qing, China (2019–2022). All patients received targeted 
therapy and/or immunotherapy after radical nephrec-
tomy. Clinical information is supplied in Additional 
file  6: Table  S6. Informed consent was received from 
each patient and the research design was approved by the 
Ethics Review Committee of Southwest Hospital, Army 
Medical University.

Section staining procedure for IMC
Section staining
Preheated the slide to 60  °C for 2 h and then immersed 
it into two m-xylene (X820562-500  ml, Macklin) vats 
separately to dewax for 10 min with loose lids. Next, we 
hydrated the slide in descending grades of ethanol (100%, 
95%, 80% and 70%) for 5 min each. Preheated a centrifuge 
tube containing 40 ml diluted Tris–EDTA (10 × diluted to 
1x, C1038, Solarbio) to 96 °C and incubated the hydrated 
slide with tissues for 30 min for antigen retrieval, leaving 
the lid loose to maintain internal and external pressure 
balance. After incubation, the centrifuge tube was cooled 
to 70  °C at room temperature (RT). The slide was then 
washed by  ddH2O and DPBS (14190144, Thermo Fisher) 
for 10 min each. Used a PAP pen to circle all tissues on 
the slide and blocked with 3% Bovine Serum Albumin 
(BSA, SRE0096-50G, Sigma) in DPBS for 45 min at RT.

Prepared the antibody cocktail with 0.5%BSA in DPBS. 
The information of the antibodies and cell segmenta-
tion reagents are supplied in Additional file 6: Table S3. 
Removed the blocking solution, pipetted the antibody 
mix onto the slide with ccRCC tissues and incubated the 
slide in a hydration chamber overnight. Washed the slide 
in 0.2% Triton™X-100 (85111, Thermo Fisher) in DPBS 
twice for 8  min each. Washed the slide in DPBS twice 
for 8  min each. Incubated the slide with Ir-intercalator 
(201192, Fluidigm) in DPBS (1:400) for 30 min at RT. The 
slide was then washed in DPBS for 5  min and air-dried 
for 30 min at RT.

IMC analysis
We used the Hyperion + ™ Imaging System (Fluidigm) 
to scan the tissues and obtained MathCaD (MCD) files 
containing multi-plexed images. In order to segment the 
image into single-cell data, we leveraged MCD Viewer 
software (V 1.0.5, Fluidigm) to convert MCD files to 
16-bit multi TIFF files. Next, CellProfiler (V 4.1.3, Broad 
Institute) was used to generate cellmask files from the 
TIFF files. Finally, we placed the cellmask and TIFF files 
of each tissue in a separate folder and generated csv 
files using the histoCAT software (V 1.76) [22]. The files 

acquired above were subsequently used for cell cluster-
ing, cell type identification and cellular neighborhood 
analysis. The spatial distribution of different markers was 
visualized using MCD Viewer software. The phenograph 
method in histoCAT software was employed to cluster 
cells from 13 pairs of ccRCC and adjacent tissues, fol-
lowed by tSNE dimensionality reduction. Wilcoxon’s rank 
sum test was utilized to assess the statistical significance 
between different cell clusters of the 13 pairs of ccRCC 
and adjacent tissues.

Dimensionality reduction, cluster identification 
and cell components analysis
The mean intensity and the pixel coordinates of the 
centroid of each cell were abstracted from the csv files. 
Next, we created a spatial image object for the cells in 
each ccRCC tissue using the seurat package (V 4.0.5) of 
R. After normalization with the SCTransform function, 
we merged all samples and select CD3, CD8a, CD20, 
CD4, CD68, CD31, Pan-keratin, Ecad, αSMA, and Vim as 
high-variant features for input into Principal Component 
Analysis (PCA). The findNeighbor function was utilized 
to define the edge weights between any two cells based on 
the shared overlap in their local neighborhoods, with the 
PCA set to 6 as input. Lastly, we employed the FindClus-
ters function to perform cell clustering with a resolution 
of 0.6, and calculated uniform manifold approximation 
and projection (UMAP) embeddings using PCA with a 
value of 6.

We drew the mean marker intensity curves and set the 
knee points as their thresholds for each marker to deter-
mine the positive cells. The mean marker intensities in T 
cells, B cells, macrophages, tumor cells, epithelial cells, 
endothelial cells and fibroblasts, as well as the proportion 
and number of various cell types in each ccRCC tissues, 
were calculated with a self-designed R script. Heatmap 
illustrating the average expression of the markers was 
drafted by the pheatmap function in the pheatmap pack-
age (V 1.0.1) of R.

Calculating mix score
We first defined T cells, B cells and macrophages as the 
T/B/M cells, and the rest of the cells as the other. A mix-
ing score was established to quantify the degree of mixing 
between T/B/M cells and other cells. The mixing score 
for a patient was defined as the proportion of T/B/M cells 
touching other cells and was calculated as the number 
of T/B/M-other cell interactions divided by the number 
of T/B/M-T/B/M interactions in the neighbors’ matrix. 
The mixing_score_summary function in the SPIAT 
[23] (Spatial Image Analysis of Tissue, V 0.4) package 
of R was used to calculate the mix score of each patient 
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(reference_marker = “T/B/M”, target_marker = “other”, 
radius = 30). If a patient had two or more ROI, we calcu-
lated a mean mix score as the final mix score.

Next, we abstracted the pixel coordinates of the cen-
troid of each cell from the established “seurat spatial 
image object” and simulated the spatial conformation of 
each tissue and the spatial distribution of T/B/M using 
the ggplot function in the ggplot2 package (V 3.3.5) of R.

Cellular neighborhood (CN) analysis
We used the identify_neighborhoods function (method =  
“hierarchical”, min_neighhorhood_size = 10, radius = 10) 
in the SPIAT (V0.4) package of R software to identify 
CNs of each tissue. Cells of interest were those we iden-
tified and annotated in the study. While cells that could 
not be annotated were not analyzed. A R script was 
designed to analyze the proportion and number of vari-
ous cell types in each CN. The CN with a proportion of 
a given cell type greater than 30% would be annotated 
as the cell type CN enriched. Additional file 6: Table S5 
described the cell type annotation rules. We then applied 
the ggplot function in the ggplot2 package (V 3.3.5) of R 
to plot the spatial distribution of cells and CNs. Due to 
the abundance of T cells, B cells and macrophages infil-
trating in the clustered group, we annotated the CN with 
a proportion of a given cell type greater than 20% as the 
cell type CN to detail and distinguish the immune inter-
actions.  For example,  CD8+ T  cell_CD163- macrophage 
CN represents the co-enrichment of  CD8+ T cells and 
 CD163- macrophage cells in that CN unit.

Survival analysis
For a specific cell component, we first calculate its pro-
portion in each tissue. Tissues with a proportion of the 
cells ≥ the third quartile (Q3) of all tissues were defined as 
the high infiltration group, and those ≤ the first quartile 
(Q1) of all tissues were allocated to the low infiltration 
group. The survfit function in the survival package (V 
3.2-13) of R was used to model the overall survival (OS), 
and the survival curve was drafted using the ggsurvplot 
function.

The survival curve of the different phenotypes identi-
fied in this study was also plotted with the survival pack-
age (V 3.2-13) of R.

Statistical analysis
Data were analyzed using the statistical package R (V 
4.0.5). For a certain cell component, we used its quar-
tiles to determine high (≥ Q3) and low groups (≤ Q1). 
The survival differences between the high and low cell 
type groups were analyzed by the R package ’survminer’, 
as were those between different phenotypes. The dura-
tion of survival was defined as the time from the date of 
diagnosis to the date of death or last known follow-up. 
The clinical characteristics of different phenotypes were 
compared by chi-square. We compared the proportions 
of different cell components in CNs or in total cells of 
each ccRCC tissue between different phenotypes. Distri-
butions were compared by 2-sided Wilcoxon’s test rank 
sum test. P values < 0.05 were considered statistically 
significant.

Results
Spatial characteristics and differences between the ccRCC 
and paired paracancerous tissues
The workflow of the study is depicted in Fig. 1A. We used 
the Imaging Mass Cytometry (IMC) to explore the struc-
tural heterogeneity across ccRCC tissues and their asso-
ciation with clinical features and survival.

We combined 17-marker antibodies including the main 
immune cells and non-immune cells, to characterize the 
TME of ccRCC. For immune components, T cell- and mac-
rophage-associated markers were selected because they are 
the main immune cells resident in ccRCC [24]. CD20 was 
also included due to its pivotal role in humoral immunity 
and TLS. Representative IMC images (patient 61 (P61)) 
showed the staining of marker antibodies. Markers such as 
αSMA, Pan-keratin, vimentin (Vim), CD31, etc. altered in 
density and spatial distribution between the cancerous and 
paracancerous tissues (Fig.  1B). To quantify the changes, 
we first extracted multi-plexed data of all cells from 13 can-
cerous and paired paracancerous tissues for dimensional-
ity reduction, and finally identified 27 clusters (Fig.  1C, 
Additional file  1: Figure S1A, B). We further defined 
them as  CD4+ T cells,  CD8+ T cells,  Ki67+CD8+ T cells, 
 CD45RO+DP+ (double positive  for  CD4+CD8+) T cells, 
 CD163+ macrophages,  CD163− macrophages,  GZMB+ 
macrophages, B cells, regulatory T cells (Treg), epithe-
lial cells, endothelial cells, mesenchymal cells, fibroblasts 

(See figure on next page.)
Fig. 1 Spatial characteristics and differences between the ccRCC and paired paracancerous tissues. A Workflow of IMC data processing and analysis, 
including tissue preparation, antibody staining, image acquisition, single-cell segmentation, phenotype clustering, CN identification and clinical 
analysis. B Representative IMC images (P61) displaying the staining of 17-marker antibodies in cancerous and paracancerous tissues. C Top: 
Combined tSNE plot illustrating that cells were grouped into 8 major cell types and 27 cell clusters in the cancerous and paracancerous tissues 
of ccRCC based on the expression of 17 markers, and are colored according to the cell cluster types. Bottom: tSNE plots showing the 27 cell clusters 
in cancerous and paracancerous tissues of ccRCC, respectively, and are colored according to patients. The letter A reflects the paracancerous 
tissue, the letter T reflects the cancerous tissue. D Heatmap illustrating the 17-marker expression profiles of the 27 cell clusters. Scale bar indicates 
the mean expression intensity. E Differences in cell components between cancerous and paracancerous tissues of ccRCC, including  CD8+ T cells, 
 Ki67+CD8+ T cells, Treg,  CD163− macrophages, endothelial cells, mesenchymal cells and fibroblasts
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Fig. 1 (See legend on previous page.)
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and other cells based on the expression profile of markers 
and tSNE in the 27 cell clusters (Fig. 1C, D, and Additional 
file 1: Figure S1C). Compared with the paracancerous tis-
sues, the ccRCC tissues showed more  CD8+ T,  CD163− 
macrophages, Treg cells, endothelial cells and fibroblasts, 
but less  Ki67+CD8+ T cells and mesenchymal cells (Fig. 1E, 
Additional file  1: Figure S1D). It is worth noting that the 
difference in the level of cell components between cancer-
ous and adjacent tissues also existed within the cancerous 
tissues.

Heterogeneity of cell components in ccRCC tissues 
and its relationship with clinical survival
To reveal the heterogeneous TME in ccRCC, we first used 
the UMAP to conduct dimensionality reduction for cells 
from 75 cancerous tissues. In total, we detected 468844 
cells and used a supervised lineage assignment approach to 
identify 7 major cell types, including T cells (CD3), B cells 
(CD20), macrophages (CD68), endothelial cells (CD31), 
mesenchymal cells (Vim), fibroblasts (αSMA) and tumor 
cells (E-cadherin (Ecad), Pan-keratin) (Fig.  2A, B, Addi-
tional file 2: Figure S2B). The expression profile of 17 cell-
specific markers in the 7 major cells is shown in Fig.  2C. 
Next, the number of the major cell types and the propor-
tion of cell components were analyzed. The analysis of cell 
composition in each sample revealed that ccRCC is an 
immunologically and histologically heterogeneous tumor 
(Fig. 2D, Additional file 2: Figure S2A). However, none of 
the levels of immune or non-immune cells affects the sur-
vival of ccRCC patients (Additional file 2: Figure S2C).

The immune cell distributions in the ccRCC tissues 
exhibited scattered and clustered status
Because different immune cells commonly exert func-
tions through interactions, we were encouraged to inves-
tigate the heterogeneity in spatial structure other than 
the level of immune cell infiltrates. Whether T cells, mac-
rophages or B cells, they all had clustered and scattered 
architectures in the ccRCC tissues (Fig.  3A). Regional 
microenvironment also exhibited two distinct immune 
architectures (Fig. 3B). To evaluate the spatial organiza-
tion of tumor-immune in ccRCC, we first used the coor-
dinate information of single cells extracted from each 
ccRCC tissue to generate cell distribution maps. The rep-
resentative cell distribution maps (scattered, P81; clus-
tered, P13) effectively capture the immune architecture 

observed in the corresponding IMC images (Fig.  3C). 
To assess the spatial proximity of T cells, B cells, mac-
rophages, and other cells, we utilized the SPIAT [23] 
package of R to compute the mix score of each ccRCC tis-
sue. In our cohort, the mix scores of P24 and P2 were set 
as the thresholds for distinguishing clustered and scat-
tered groups due to their representative immune struc-
tures (Fig. 3D). The clustered group exhibited aggregated 
regions of immune cells (blue dotted circle), and the scat-
tered group displayed a mix of tumor and immune cells. 
It is very attracive that the immune infiltrates in ccRCC 
tissue can be generally summarized as aggregation and 
dispersion patterns; however, they were not significantly 
related to the survival of patients (Additional file 3: Fig-
ure S3A).

We further evaluated five patients with metastatic 
ccRCC that were administrated sunitinib as the initial 
treatment after surgery (Additional file  6: Table  S6). 
Three cases with scattered architecture responded to 
treatment, including two stable diseases (SD) and one 
partial response (PR). While the rest two cases with 
clustered architecture showed progressive disease (PD), 
one patient still experienced PD after being transferred 
to Axitinib + Pembrolizumab treatment, and the other 
patient died without receiving the follow-up treatment 
due to rapid PD (Additional file 5: Figure S5A).

Cellular neighborhood (CN) analysis reflect the cell 
communities within the ccRCC tissues
To elucidate the functional units formed by cell-to-cell 
interactions, we used CN analysis to identify cell com-
munity in the regional microenvironment of ccRCC 
tissue. Schürch et  al. [20] defined CN by the center 
cell and its 10 nearest neighbors. However, in order to 
remove artificial neighbors with separate cells in dis-
tance, we define CN (cell number > 10) as the center 
cell, its primary neighbors within 10 µm, plus the sec-
ondary neighbors of the primary neighbors within 
10  µm (Fig.  4A). The numbers of various CNs in each 
ccRCC tissue were displayed in the heatmap (Fig.  4B, 
Additional file  2: Figure S2D). Interestingly, the CNs 
were also highly heterogeneous across different ccRCC 
tissues. The representative categorical dot plots and 
corresponding IMC images illustrated the ccRCC tis-
sues with clustered (P2 and P25) and scattered (P14 and 

Fig. 2 Heterogeneity of cell components in ccRCC tissues and its relationship with clinical survival. A Annotation rules of 7 major cell types, 
including T cells (CD3), macrophages (CD68), B cells (CD20), endothelial cells (CD31), fibroblasts (αSMA), mesenchymal cells (Vim) and tumor cells 
(Pan-keratin and/or Ecad), respectively. B UMAP maps colored by expression of CD3, CD68, CD20, CD31,αSMA, Vim, Pan-keratin and Ecad showing 
that cells from 75 ccRCC tissues. Scale bars indicate the normalized expression intensity. C Heatmap showing the 17-marker expression profiles 
across the 7 major cell types. Scale bar was normalized by z-score. D The proportion of different cell components and the number of 7 major cell 
types across various ccRCC tissues

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 The immune cell distributions in the ccRCC tissues exhibited scattered and clustered status. A Representative IMC images depicting 
the clustered and scattered distributions of T cells (CD3), macrophages (CD68) and B cells (CD20). Clustered architecture in P51, P26 and P82 vs 
scattered architecture in P29, P62 and P77. B Representative IMC images illustrating the ccRCC tissues with scattered (Top panel: P62) and clustered 
(Bottom panel: P90) immune architectures. C IMC images and corresponding cell distribution maps of ccRCC tissues. Top panel: clustered 
architecture, P13; Bottom panel: scattered architecture, P81. D Mix score of each ccRCC tissues. The mix scores of P24 and P2 in the cohort were set 
as the thresholds of clustered and scattered immune architectures, respectively

Fig. 4 Cellular Neighborhood (CN) analysis reflect the cell communities within the ccRCC tissues. A Analysis schedule of CN. The topology of IMC 
image was represented by categorical dot plot with different colors indicating various CNs. B Heatmap showing the number of CNs across various 
ccRCC tissues. The numbers were normalized by z-score for visualization. C Categorical dot plots and corresponding IMC images of representative 
tissues with clustered immune architecture. Top: P25; Bottom: P8. D Categorical dot plots and corresponding IMC images of representative tissues 
with scattered immune architecture. Top: P62; Bottom: P20

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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P71) immune architectures (Figs. 4C, D). The clustered 
group mainly has immune cell enriched CNs, such as 
 CD8+ T cell CN,  CD163−  macrophage_CD163+ mac-
rophage CN and  CD8+ T  cell_CD163− macrophage 
CN; while the scattered group is characterized by a 
large proportion of non-immune CNs, such as tumor 
cell CN, tumor cell_endothelial cell CN and endothelial 
cell_mesenchymal cell CN.

TLS‑like structure and macrophage/T cell 
communities in the clustered groups have distinct 
prognosis
Based on the CN features of the clustered group, we 
identified two different phenotypes. A group of ccRCC 
tissues possessed cell communities consisting of T cells 
and B cells (red box), we defined them as the TLS-like 
phenotype due to its similarity to the reported TLS 
structure [13] (Fig.  5A). The TLS-like phenotype had 
more anti-tumor properties, which contained  CD8+ T 
 cell_GZMB+CD8+ T cell, B cell  _CD8+ T cell, B  cell_
GZMB+CD8+ T cell and  GZMB+CD8+ T  cell_CD163− 
macrophage CNs (Fig. 5B). The rest of the tissues, though 
immune clustered, contained no B cell community but 
were mainly characterized by T cell CN, macrophage 
CN or T cell_macrophage CN enrichment. We classi-
fied them as the macrophage/T-clustered phenotype. 
Compared with the TLS-like phenotype, the CNs of the 
macrophage/T-clustered phenotype were pro-tumor, 
such as macrophage,  CD163+  macrophage_CD163− 
macrophage and  CD163+ macrophage_Treg CNs 
(Fig.  5A, C). We hypothesized that only the formation 
of CNs should better perform their physiological func-
tion by cell-to-cell interaction. Therefore, we analyzed 
the internal immune components in the CNs of the two 
phenotypes. The CNs of TLS-like phenotype had more B 
cells,  CD8+ T cells and  GZMB+CD8+ T cells, while the 
CNs of macrophage/T-clustered phenotype had more 
macrophages, T other cells and Treg cells (Fig. 5D, Addi-
tional file 2: Figure S2D). This explains why the TLS-like 
phenotype had better survival than the macrophage/T-
clustered phenotype under similar clinical characteristics 
(Fig. 5E, Additional file 3: Figure S3B).

Scattered group can be divided into immune‑cold 
and ‑hot phenotypes
In the scattered group, we found some tissues that had 
immune-associated CNs, while the rest (red box) didn’t, 
which were classified as scattered-CN-hot and scattered-
CN-cold phenotypes, respectively (Fig.  6A, Additional 
file  4: Figure S4A). Compared with the scattered-CN-
cold phenotype, the scattered-CN-hot phenotype was 
characterized by the spatial proximity of immune and 
non-immune components and higher proportions of B 
cells, T cells and macrophages (Fig.  6B, C). For the cell 
types in CNs, the scattered-CN-hot phenotype had more 
 CD163− macrophages and  GZMB+CD8+ T cells, and 
fewer fibroblasts, mesenchymal cells and endothelial cells 
(Additional file  4: Figure S4B). The representative IMC 
images displayed a scattered-CN-hot ccRCC tissue with 
 CD8+ T cell CN,  CD8+ T cell_mesenchymal cell CN and 
 CD8+ T cell_endothelial cell CN (Fig.  6D), and a scat-
tered-CN-cold ccRCC tissue with mesenchymal cell CN, 
mesenchymal_endothelial cell CN, fibroblast CN and 
fibroblast_endothelial cell CN (Additional file  4: Figure 
S4C). The two phenotypes had no statistical significance 
in the survival and clinical characteristics (Additional 
file  3: Figure S3C). However, the survivals of the scat-
tered-CN-cold and scattered-CN-hot phenotypes were 
superior to that of the macrophage/T-clustered group 
(Additional file 3: Figure S3D).

The four phenotypes were associated 
with the clinical outcomes of ccRCC patients
Based on the spatial distributions and cell interactions of 
immune cells, we identified four phenotypes in ccRCC. 
The identification process is to first divide the tissues into 
clustered and scattered immune architectures according 
to their mix scores, and then conduct CN analysis con-
sidering both immune and non-immune components 
to determine the characteristic CNs in each tissue. The 
characteristic CNs of the four phenotypes are as follows: 
The TLS-like phenotype has  GZMB+CD8+ T cell_B cell 
CN,  CD8+ T_ B cell CN,  GZMB+CD8+ T cell  _CD8+ T 
cell CN or  GZMB+CD8+  T_CD163− macrophage CN; 
the Macrophage/T-clustered phenotype has  CD163+ 
 macrophage_CD163− macrophage CN,  CD163+ mac-
rophage_Treg CN,  CD8+  T_CD163+ macrophage CN or 

(See figure on next page.)
Fig. 5 TLS-like structure and macrophage/T cell communities in the clustered groups has distinct prognosis. A Heatmap showing CN numbers 
across ccRCC tissues with clustered immune architecture. Red box denotes the TLS-like structure and blue box denotes the macrophage/T 
cell communities. Scale bar represents the number of CNs, with a maximum limit of 10. B Representative IMC images and characteristic CNs 
of the TLS-like phenotypes (P22 and P13). C Representative IMC images and characteristic CNs of the Macrophage/T-clustered phenotypes (P8 
and P51). D Comparison of proportions of different cell types in CNs between the TLS-like and Macrophage/T-clustered phenotypes, including B 
cells,  CD8+ T cells,  GZMB+CD8+ T cells,  CD163− macrophages,  CD163+ macrophages, Treg cells, T other cells and  GZMB+CD163− macrophages. E 
Comparison of survival between the TLS-like and Macrophage/T-clustered phenotypes



Page 11 of 18Zhang et al. Journal of Translational Medicine          (2023) 21:489  

Fig. 5 (See legend on previous page.)
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 CD163− macrophage CN; the scattered-CN-cold pheno-
type has non-immune CNs; the scattered-CN-hot phe-
notype has  CD8+ T cell CN,  CD8+ T cell_endothelial cell 
CN or  CD8+ T cell_mesenchymal cell CN (Fig. 7A). The 
survival of the four phenotypes was significantly different 
(Fig. 7B), indicating that the functional units formed by 
cell communities have the potential to predict the prog-
nosis of ccRCC patients.

The phenotype-specific CN rule was then applied to 
the five cases of metastatic ccRCC (Fig.  7A, Additional 
file  6: Table  S6). Compared with the responders, the 
non-responders had more  CD163− macrophage_Tumor 
cell CN enrichment (Additional file  5: Figure S5B). The 
two non-responders (cases 4, 5) were classified as the 
macrophage/T-clustered phenotype, and their survival was 
inferior to that of three non-responsive cases (cases 1, 2, 3) 
belonging to the scattered-CN-hot phenotype (Additional 
file 5: Figure S5C, S5D, S5E). However, more samples are 
needed to validate the conclusion.

Discussion
In this study, we discovered two distinct immune archi-
tectures in the ccRCC tissues. With the CN analysis, the 
ccRCC tissues were further divided into four prognostic 
TME phenotypes, which may additionally have potential 
in predicting the response to targeted therapy. These phe-
notypes may reflect the TME of ccRCC due to considering 
both immune and non-immune components, which will 
aid in more precise prognosis evaluation and personalized 
treatment.

With the rise of targeted therapy and immune-based 
therapy, traditional classifications of cancer patients based 
on ACJJ-TNM staging and pathological grading are show-
ing limitations due to their inability to reflect the therapeu-
tic response. Moreover, patients with the same clinical stage 
usually have various survival. For example, some patients 
with early stage ccRCC still have a metastatic risk after rad-
ical resection; the molecular mechanism underlying this is 
unknown, which easily leads to improper clinical decisions 
[25]. Exploring the TME features within ccRCC is helpful 
to identify early ccRCC patients with metastatic risk and 
optimize clinical therapeutics. In a retrospective study of 
436 ccRCC cases, Ohe et  al. [26] evaluated the immune 
score, three-tier and four-tier stratification systems. In con-
trast to other solid tumors, high-density  CD8+ T cells is 
associated with poor survival in ccRCC [26–28]. Although 

these stratification systems are promising, they are all 
based on a simplified model of  CD8+ T cell infiltration. The 
TME is a complex system in which B cells, Tregs and tumor 
associated macrophages are also potential immunothera-
peutic targets of ccRCC [29–31]. Therefore, using only one 
immune cell type to stratify cancer patients is insufficient. 
An international tumor infiltrating lymphocytes (TILs) 
working group proposed a standardized visual assessment 
of H&E breast cancer sections that included more TILs 
[32]. Subsequently, the International lmmuno-Oncology 
Biomarkers Working Group applied the standardized TILs 
assessment to other solid tumors, including lung cancer, 
gastrointestinal cancer, urogenital cancer, etc. [33]. The 
above work improved the consistency and repeatability of 
TILs measurements. However, as they pointed out in the 
reviews, the standardized measurement has the following 
problems: 1. The evaluation area only covers stromal TILs 
but not the tumoral area; 2. It is difficult to evaluate TLS 
structure due to the diversity of TLS conformations and 
the complexity of immune cells. Considering that in recent 
years, some ccRCC stratification systems covering non-
immune structures (such as vascular structure and cancer 
cell morphology) have also been proved to have high value 
in clinical management [34–36]. Therefore, to comprehen-
sively evaluate the disease status of ccRCC patients, we 
should not only monitor the immune cells but also con-
sider the non-immune cells and structural differences of 
TME in the tissues.

In this study, we used IMC, which can label multiple 
markers simultaneously at single-cell resolution while 
preserving spatial information, to obtain a high-dimen-
sional image of ccRCC tissue [37–39]. In contrast to pre-
viously reported systems, we analyzed the whole ccRCC 
tissues without distinguishing TILs in intra- or peri-
tumor [9, 32, 40]. We identified two immune architec-
tures macroscopically in the ccRCC tissues. Although the 
same immune architectures were reported in liver cancer, 
their clinical significance has not been discussed [18]. 
Unfortunately, we didn’t observe any statistical signifi-
cance in clinical characteristics or survival between the 
scattered and clustered groups. Therefore, we intended 
to further detail the intratumor cell communities associ-
ated with survival. Miheecheva et  al. [41] reported that 
immune composition is conserved within each individual 
patient but profoundly different among patients using the 
multiregional analyses. This denotes that the CN analysis 

Fig. 6 Scattered group can be divided into immune-cold and -hot phenotypes. A Unsupervised clustering of the ccRCC tissues with scattered 
immune architecture. Red box reflects the immune-cold phenotype. Scale bar represents the number of CNs, with a maximum limit of 10. B Spatial 
relationship between the immune (CD3, CD20 and CD68) and non-immune (αSMA, CD31, Vim and Ecad) components in the scattered-CN-cold 
and scattered-CN-hot phenotypes. C Comparison of the proportion of different cell types between the scattered-CN-cold and scattered-CN-hot 
phenotypes. D Representative IMC images of the scattered-CN-hot phenotype (P2 and P29). The zoomed areas display the characteristic CNs 
within the ccRCC tissues

(See figure on next page.)
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Fig. 7 The four phenotypes were associated with the clinical outcomes of ccRCC patients. A The workflow of ccRCC patient stratification based 
on mix score and characteristic CNs. B Comparison of survival among the four phenotypes, including the TLS-like, macrophage/T-clustered, 
scattered-CN-cold and scattered-CN-hot phenotypes
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of a ccRCC tissue may be well patient-matched to iden-
tify the disease status. We finally discovered that based 
on the specific CNs, ccRCC tissues can be subdivided 
into four prognostic phenotypes, including the TLS-like, 
Macrophage/T-clustered, scattered-CN-cold and scat-
tered-CN-hot phenotypes, respectively.

Although both Macrophage/T-clustered and TLS-like 
phenotypes belong to the TIME clustered structure, 
their distinct prognosis is determined by different CN 
units. The Macrophage/T-clustered phenotype repre-
sents the poorest survival prognosis among all TME 
phenotypes, which may be attributed to the presence of 
immunosuppressive cells such as  CD163+ macrophages 
and Tregs. Additionally, the Macrophage/T-clustered 
phenotype is characterized by specific CN unit primar-
ily composed of  CD163+ macrophages. A similar phe-
nomenon has been reported by Chakiryan et  al. [42], 
linking macrophage aggregates to worsened survival 
prognosis in ccRCC patients. CD163 is used to identify 
tumor-associated macrophages (TAMs) in malignant 
diseases. In general, the levels of  CD163+ TAMs corre-
late with poor OS and metastasis in malignant tumors, 
although the underlying mechanisms remain unclear. 
It is speculated that their strong anti-inflammatory 
effects may be one of the main reasons [43]. Addition-
ally, the pro-angiogenic effects of  CD163+ macrophages 
may also have an impact [44].  For example, in gastric 
cancer,  CD163+ TAMs are significantly associated with 
increased microvessel density and worsened OS [45]. 
Furthermore, the Macrophage/T-clustered phenotype 
exhibits a kind of CN unit composed of  CD163+ mac-
rophages and  CD8+ T cells. Braun et al. [46] observed 
the simultaneous enrichment of exhausted  CD8+ T 
cells and inhibitory M2-like macrophages in advanced 
ccRCC tissues, along with restricted T cell recep-
tor diversity. A study on liver cancer also found that 
the proximity of  CD8+  T cells to arginase-1high mac-
rophages, rather than  CD4+ T cells, is a salient feature 
of the TME in non-responders [19]. Therefore, we spec-
ulate that  CD163+ macrophage-educated  CD8+ T cells 
can lead to the immune suppressive or incompetent 
environment. The TLS-like phenotype is associated 
with a better survival prognosis, similar to previously 
reported TLS [13]. The reason for the favorable prog-
nosis of the TLS-like phenotype may be attributed to 
the formation of specific cell communities, involv-
ing  GZMB+CD8+ T cells, B cells, and  CD163− mac-
rophages, which collectively induce anti-tumor effect. 
Although the TLS-like phenotype also consists of CN 
units composed of T cells and macrophages, the cell 
subtypes are  GZMB+CD8+ T cells and  CD163− mac-
rophages, rather than  CD8+ T cells and  CD163+ mac-
rophages.  CD8+ T cells expressing GZMB have been 

shown to play a central role in viral clearance and 
eradication of malignant cells through antigen-spe-
cific interactions with major histocompatibility com-
plex class I-peptide complexes via T cell receptor [47]. 
Luo et  al. [48] also found in an animal experiment on 
prostate cancer that increased  GZMB+CD8+ T cells 
led to macrophage recruitment, primarily increasing 
tumor-killing M1 macrophages and reducing immu-
nosuppressive M2 macrophages, thereby triggering 
anti-tumor immunity. Among the four phenotypes of 
ccRCC, we once considered whether scattered-CN-cold 
and scattered-CN-hot were different stages of the scat-
tered group. But in Additional file 3: Figure S3C, we can 
observe the similar clinical stage composition between 
the scattered-CN-cold and the scattered-CN-hot phe-
notypes. Therefore, we ruled out the possibility that 
the scattered-CN-cold phenotype was formed due to 
less lymphocyte infiltration in the early stage of ccRCC. 
This indicates that evaluation based on TME struc-
tures can provide information beyond clinical staging. 
The survival of scattered-CN-cold patients is relatively 
favorable among the four TME phenotypes, similar to 
previous studies showing a correlation between low 
immune infiltration and improved survival in ccRCC 
[26, 49]. Notably, Xu et al. [49] demonstrated the poor 
response of immune-cold ccRCC to ICIs. This raises 
the question of whether targeting non-immune com-
ponents could be the primary approach to enhance the 
prognosis of scattered-CN-cold patients [50, 51], given 
that non-immune CN is a characteristic feature of this 
phenotype. Although there was no difference in sur-
vival between the scattered-CN-cold and -hot pheno-
types, they may differ in strategies to improve survival 
outcomes.

Subsequently, we observed that the metastatic lesions 
of patients with scattered-CN-hot phenotype were rela-
tively well controlled after sunitinib administration, while 
the patients with macrophage/T-clustered phenotype had 
PD, even if one patient was converted to axitinib + pem-
brolizumab. This indicates the potential of immunophe-
notypes identified in this study to predict the response to 
targeted drugs and/or immunotherapy.

However, our study has some limitations. Firstly, we 
did not investigate other immune cells beyond T cells, B 
cells, and macrophages. As a result, when identifying cel-
lular components in the CN units, we may have missed 
some aspects of the TME and cellular interactions. Sec-
ondly, the sample size in this study is still limited, par-
ticularly in terms of patients receiving immunotherapy, 
due to the following enrollment  criteria: 1. Collected 
samples were required to have no prior exposure to tar-
geted drugs or immunotherapy before nephrectomy to 
preserve the original TME of ccRCC; 2. Nephrectomy is 
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typically not the first choice for patients with metastatic 
ccRCC. Future analysis should include larger and inde-
pendent cohorts to ensure sufficient statistical power for 
identifying associations between clinical outcomes and 
the four TME phenotypes. Thirdly, the novelty of IMC 
technology imposes limitations on the analysis methods. 
Further development of analytical approaches is expected 
to enhance our understanding of spatial proteomics.

Conclusion
In conclusion, we revealed four distinct immune phe-
notypes of ccRCC and identified their specific immune 
cell subtypes and CNs. These findings shed light on why 
some ccRCC patients with similar clinical features have 
different survival outcomes from the aspect of spatial 
heterogeneity of TME. This reminds us that even early 
ccRCC patients are necessary to receive more active 
clinical intervention if they belong to the Macrophage/T-
clustered phenotype. More importantly, identifying the 
functional units formed by intercellular interaction may 
become a potential tool to evaluate prognosis and guide 
the ccRCC diagnosis and treatment.
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