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Abstract 

Background There are many studies indicating that alterations in the abundance of certain gut microbiota are asso-
ciated with colorectal cancer (CRC). However, a causal relationship has not been identified due to confounding factors 
such as lifestyle, environmental, and possible reverse causal associations between the two. Furthermore, certain host 
gene mutations can also contribute to the development of CRC. However, the association between genes and gut 
microbes in patients with CRC has not been extensively studied.

Methods We conducted a two-sample Mendelian randomization (MR) study to reveal the causal relationship 
between gut microbiota and CRC. We obtained SNPs associated with gut microbiome abundance as instrumental 
variables (IVs) from a large-scale, multi-ethnic GWAS study, and extracted CRC-related datasets from an East Asian 
Population genetic consortia GWAS (AGWAS) study and FinnGen consortium, respectively. We analyzed a total of 166 
bacterial features at four taxonomic levels, including order, family, genus, and species. The inverse-variance-weighted 
(IVW), weighted median, MR-Egger, and simple median methods were applied to the MR analysis, and the robustness 
of the results were tested using a series of sensitivity analyses. We extracted IVs of gut microbiota with direct causal 
association with CRC for SNP annotation to identify the genes in which these genetic variants were located to reveal 
the possible host gene-microbiome associations in CRC patients.

Results The findings from our MR analysis based on CRC-associated GWAS datasets from AGWAS revealed causal 
relationships between 6 bacterial taxa and CRC at a locus-wide significance level (P < 1 ×  10–5). The IVW method 
found that family Porphyromonadaceae, genera Anaerotruncus, Intestinibacter, Slackia, and Ruminococcaceae UCG004, 
and species Eubacterium coprostanoligenes group were positively associated with CRC risk, which was generally 
consistent with the results of other complementary analyses. The results of a meta-analysis of the MR estimates 
from the AGWAS and the FinnGen datasets showed that family Porphyromonadaceae and genera Slackia, Anaerotrun-
cus, and Intestinibacter replicated the same causal association. Sensitivity analysis of all causal associations did not indi-
cate significant heterogeneity, horizontal pleiotropy, or reverse causal associations. We annotated the SNPs at a locus-
wide significance level of the above intestinal flora and identified 24 host genes that may be related to pathogenic 
intestinal microflora in CRC patients.
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Introduction
Colorectal cancer (CRC) is a common malignancy of the 
digestive system that mainly originates from epithelial 
cells. It currently ranks third in incidence among com-
mon malignancies worldwide and is the second leading 
cause of tumor-related deaths [1, 2]. In recent years, the 
incidence of CRC has increased in many Asian countries 
including China [3]. It has become imperative to identify 
as many risk factors associated with CRC as possible for 
the prevention and treatment of CRC.

The human gastrointestinal tract hosts a large popula-
tion of microorganisms that can interact with each other 
as well as with the intestinal microenvironment and 
other species in the environment. The relative abundance 
of certain gut microbiota may change under the influence 
of gene, drugs, and various metabolic and environmental 
factors, which can lead to a decrease in beneficial com-
mensal flora and an increase in conditionally pathogenic 
and disease-causing bacteria [4], causing further changes 
in flora metabolism that can lead to disease in the intes-
tine or in other target organs through a series of com-
plex mechanisms. Several animal models have found an 
association between intestinal flora and CRC. In a study 
by Wong et  al., feces from CRC patients and non-CRC 
patients were fed to healthy mice by gavage, and the 
results showed that the ratio of Th1 to Th17 cells, level 
of inflammatory markers, number of polyps, and prolif-
eration levels of intestinal mucosal cells were significantly 
higher in mice fed feces from CRC patients compared to 
controls [5]. The association between intestinal flora and 
CRC has also been found in CRC patients with familial 
adenomatous polyposis (FAP), a precancerous condi-
tion of hereditary CRC. Dejea et  al. found E. coli that 
formed biofilms as the predominant flora in surgically 
resected tissue from the colon of FAP patients, demon-
strating that intestinal flora can form biofilms that induce 
upregulation of colonic epithelial interleukin 17 expres-
sion, causing abnormal alteration of colonic epithelial 
DNA, heterogeneous proliferation of epithelial cells, and 
subsequent progression to malignant tumor [6]. How-
ever, it is difficult to prove the causal association between 
gut microbiota and CRC by randomized controlled trials 
due to confounding factors such as diet, lifestyle, and the 
underdeveloped technology used in fecal transplantation 
experiments. In addition, recent studies have found a cor-
relation between abnormal expression of genes related to 

CRC occurrence and the abundance of pathogenic bacte-
ria [7, 8]. However, most studies have focused only on the 
association between a limited number of genes and gut 
microbes or specific bacteria [9, 10]. Therefore, the asso-
ciation of host genes with the gut microbiome in CRC 
needs to be further discovered and studied.

Mendelian randomization (MR) uses genetic variants 
in non-experimental data to infer the causal effect of 
an exposure on an outcome. The idea of MR is to use 
genome-wide association studies (GWAS) to obtain 
single-nucleotide polymorphisms (SNPs) that exhibit 
strong correlations with specific outcomes that can 
serve as a tool to infer causal associations between 
exposure factors and outcomes. These SNPs can be 
used to test for causal associations between exposure 
factors and outcomes while avoiding the effects of con-
founding factors because they are based on random 
Mendelian genetic variation. Biological genotypes are 
formed by random assignment during meiosis, a pro-
cess that is generally not influenced by external factors. 
We therefore conducted an MR study to evaluate the 
causal association of gut microbiota on CRC. Annota-
tion of the SNPs of the intestinal flora validated by MR 
analysis can find associated genes.

Methods
Data sources
We obtained SNPs associated with gut microbial abun-
dance from the MiBioGen consortium’s GWAS study, 
which included 25 cohorts of 18,340 subjects from 
countries including the United States, Italy, and South 
Korea, and which focused on identifying genetic loci 
that influence the relative abundance of gut microbes 
by analyzing the 16SrRNA sequencing profiles of their 
subjects [11]. We obtained a dataset of genetic vari-
ants associated with CRC from a large GWAS study of 
East Asian populations, which included three cohorts 
with a total of 6692 CRC patients and 27,278 controls 
[12]. In addition, we obtained the CRC risk-related 
dataset from the FinnGen consortium for validation, 
which included 7427 CRC patients and 25,600 controls 
(Table 1) [13]. The GWAS studies selected for this MR 
analysis were ethically approved, and materials such as 
informed consent forms were available in the supple-
mental materials of the respective original publications.

Conclusion This study supported the causal relationship of gut microbiota on CRC and revealed a possible correla-
tion between genes and pathogenic microbiota in CRC. These findings suggested that the study of the gut microbi-
ome and its further multi-omics analysis was important for the prevention and treatment of CRC.

Keywords Mendelian randomization (MR), Gut microbiota, Gene, Colorectal cancer (CRC), Causal relationship
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Study design
Our overall study design is shown in Fig. 1. We screened 
eligible SNPs from the GWAS dataset of the MiBioGen 
consortium using specific criteria as instrumental vari-
ables (shown in 2.3) for the gut microbiota. As shown in 
the Fig.  2, our MR study design satisfied the three nec-
essary assumptions [14], and also followed the require-
ments of STROBE-MR [15] (Additional file 2: Table S1).

Instrument selection
First, we screened for SNPs associated with bacterial 
abundance from the GWAS study at the locus-wide sig-
nificance level (P < 1 ×  10–5) for each bacterial taxa at four 
taxonomic levels: order, family, genus, and species. Sec-
ond, we screened and removed SNPs located on chro-
mosome 23 and also removed SNPs containing multiple 
alleles (> 2) to avoid unwanted effects on our MR analy-
sis results. Third, we removed SNPs with a minor allele 
frequency (MAF) of less than 0.01. Fourth, we used sam-
ples from the 1000 Genomes European Project as a refer-
ence to examine the linkage disequilibrium (LD) between 
instrumental variables (IVs), following the criteria of 
 r2 < 0.01 and window size > 10,000  kb, thus avoiding the 
effect of LD between IVs. Fifth, some IVs may be strongly 

correlated (P < 5 ×  10–8) with confounders or outcome 
events, referred to as horizontal pleiotropy, and the reli-
ability of the results would be affected if these SNPs were 
included as instrumental variables for MR analysis [16]. 
Therefore, we obtained SNPs significantly associated 
with confounding characteristics (such as BMI and age) 
using PhenoScanner to preliminarily exclude the effect of 
horizontal pleiotropy. As a result, we did not detect SNPs 
with strong correlations with other confounding factors. 
Finally, we used SNPs that met all the above criteria as 
IVs for downstream MR analysis. We also screened for 
SNPs associated with gut microbial abundance from 
the GWAS study at a genome-wide significance level 
(P < 5 ×  10–8) to include as IVs to make the analysis more 
comprehensive. The screening process for instrumental 
variables is shown in Fig. 3.

Efficacy estimation of instrumental variables
The regression  R2 value is often used in MR studies as 
a measure of how much the variance in the exposure 
outcome can be explained by the IVs. It is calculated as 
 R2 = 2 × EAF × (1 − EAF) ×  beta2/(2 × EAF × (1 − EAF) ×  b
eta2) + 2 × EAF × (1 − EAF) × se × N ×  beta2 [17, 18]. Weak 
IVs in MR studies can cause bias in the causal association 

Table 1 Detailed information of studies and datasets used for analyses

Data source Phenotype Sample size Cases Population Adjustment

MiBioGen consortium Gut microbial 18,340 – The United States, Canada, Israel, South Korea, Ger-
many, Denmark, the Netherlands, Belgium, Sweden, 
Finland and the United Kingdom

Age, sex, technical covari-
ates, and genetic principal 
components

AGWAS CRC 33,970 6692 Asian Age, sex

FinnGen CRC 33,027 7427 European Age, sex

Fig. 1 Overview of study design
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Fig. 2 Schematic diagram of the present Mendelian randomization study

Fig. 3 The whole workflow of MR analysis
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between exposure factors and outcome events. The F-sta-
tistic, derived from the regression of exposure outcomes 
on instrumental variables, can respond to the degree of 
correlation between exposure factors and outcomes and 
detect weak IVs. It is used to represent the degree of 
bias when estimating causal associations and is calcu-
lated using the formula F =  R2 × (N − 2)/(1 −  R2), where N 
represents the sample size of the exposed data [19]. An 
F-statistic less than 10 indicates the presence of weakly 
predictive instruments. This is derived from the observa-
tion that when F < 10, the bias of the IV estimate is more 
than 10% of the bias in the observational association esti-
mate (relative bias > 1/10).

Statistical analysis
We first obtained eligible SNPs as IVs using the process 
outlined above. For bacterial taxa containing only one IV, 
we used the Wald ratio for MR analysis. For bacterial taxa 
containing multiple IVs, we used the inverse-variance-
weighted (IVW) approach as the main analysis method to 
examine the correlation between bacterial taxa and CRC. 
The IVW method is commonly used for obtaining vari-
ant-specific causal estimates, and can combine the effect 
values of multiple IVs into one estimate and provide a 
more accurate analysis of the causal relationships among 
variables. We also used the weighted median method, 
MR-Egger, simple median method, and MR-PRESSO as 
complementary analysis methods. The weighted median 
method is characterized by consistent results even when 
the weight of invalid IVs reach 50% (or < 50%) [20]. The 
MR-Egger method has relatively low statistical power 
[21], similar to the IVW method, except that the regres-
sion model contains an intercept term θ0 and the p-value 
of this intercept term can help identify horizontal pleiot-
ropy [22]. We also applied the MR-PRESSO global test 
to detect horizontal pleiotropy, which is implemented 
using a weighted regression of all the genetic variants and 
then computing a residual sum of squares (RSS). Each IV 
would be removed in turn and the corresponding RSS 
value would be calculated. If the RSS value decreased sig-
nificantly from the previous iteration and reached statis-
tical significance (p < 0.05), it would suggest that the SNP 
exhibited horizontal pleiotropy. We tested for outlier 
SNPs using the MR-PRESSO outlier test and recalculated 
the estimates after removing any outliers, thus avoiding 
pleiotropic effects on our MR analysis [23].

We detected potential reverse causal associations 
between SNPs associated with the gut microbiota and 
CRC using the MR Steiger Filtering Test [24]. We used 
a series of sensitivity analyses to test the robustness of 
the results. We quantified heterogeneity by calculat-
ing Cochran’s Q statistic, which considers a result to be 
heterogeneous if the p-value is less than 0.05 [25]. The  I2 

statistic can also be used to quantify the degree of hetero-
geneity, and is calculated as  I2 = (Q − Q_df)/Q. It can be 
assumed that there is heterogeneity if  I2 is greater than 
25% [25, 26]. The results of the analysis, based on the 
random effects model of the IVW method, may be more 
reliable if there is a high degree of heterogeneity among 
SNPs [27]. We assessed the heterogeneity between var-
iant-specific causal estimates using meta-analysis tech-
niques and identified outliers using scatter and funnel 
plots. In addition, we performed Leave-one-out analysis 
on IVs, in which all IVs of bacterial taxa were removed 
one by one, and recalculated MR estimates using all 
remaining SNPs to examine the correlation between the 
gut microbiota and CRC.

We performed MR analysis with the FinnGen consor-
tium dataset to verify the accuracy of our results and 
meta-analyzed the MR estimates from the FinnGen and 
MiBioGen datasets. We used the mRnd online tool to 
calculate statistical power [28], which represents the abil-
ity to detect a particular magnitude of causal effect in a 
given sample size and should generally be greater than 
80% to have confidence in the results. All statistical anal-
yses were performed using the TwoSampleMR [29] and 
MR-PRESSO packages [23] in R4.2.0 [30].

SNP annotation
The online network tool was used for SNP annotation 
[31]. g:SNPense maps a list of human SNP rs-codes to 
gene names, receives chromosomal coordinates and 
predicted variant effects. Mapping is enabled only for 
variants that overlap with at least one protein coding 
Ensembl gene. All underlying data are retrieved from the 
Ensembl Variation data.

Results
Instrumental variables selection
11,237 SNPs at the locus-wide significance level 
(P < 1 ×  10–5) and 1035 SNPs at the genome-wide sig-
nificance level (P < 5 ×  10–8) were selected based on 166 
bacterial features in the MiBioGen consortium. After 
identifying and removing SNPs in LD, the remaining 
2271 SNPs at the locus-wide significance level and 12 
SNPs at the genome-wide significance level were used as 
IVs. We extracted the effect allele, other allele, beta, SE, 
and p-value of these SNPs for MR analysis.

Mendelian randomization analysis
Locus‑wide significance level
The results of the IVW analysis showed that the fam-
ily Porphyromonadaceae (OR = 1.26, 95% CI 1.03–1.55, 
P = 0.0267), genera Anaerotruncus (OR = 1.17, 95% CI 
1.01–1.36, P = 0.0390), Intestinibacter (OR = 1.31, 95% 
CI 1.09–1.57, P = 0.0038), Slackia (OR = 1.24, 95% CI 
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1.06–1.45, P = 0.0071), and Ruminococcaceae UCG004 
(OR = 1.27, 95% CI 1.03–1.57, P = 0.0232), and species 
Eubacterium coprostanoligenes group (OR = 1.25, 95% CI 
1.00–1.56, P = 0.0467) exhibited significant causal asso-
ciations with CRC risk. The results of weighted median 
method showed that the genus Intestinibacter (OR = 1.28, 
95% CI 1.00–1.64, P = 0.0520) significantly increased 
the risk of CRC. According to the results of the sim-
ple median method, genus Intestinibacter (OR = 1.39, 
95% CI 1.08–1.78, P = 0.0093) and species Eubacterium 
coprostanoligenes group (OR = 1.62, 95% CI 1.14–2.30, 
P = 0.0073) were positively associated with CRC risk, 
which was consistent with the results of the IVW anal-
ysis. The MR estimates from supplementary analysis all 
supported their negative effect on CRC (Table 2). Details 
on the SNPs used as bacterial features are shown in Addi-
tional file 2: Table S2. The F-statistics of the SNPs were 
all greater than 10, indicating no weak IVs were included. 
MR analysis based on the FinnGen database showed that 
family Porphyromonadaceae (OR = 1.50, 95% CI 1.11–
2.03, P = 0.0079) and genus Slackia (OR = 1.17, 95% CI 
1.02–1.36, P = 0.0298) were risk factors for CRC (Table 2). 
We combined MR estimates from both the AGWAS 
and FinnGen databases by meta-analysis and found that 
genus Anaerotruncus (OR = 1.16, 95% CI 1.01–1.33, 
P = 0.0303) and genus Intestinibacter (OR = 1.31, 95% CI 
1.12–1.52, P = 0.0005) were positively associated with 
CRC. However, we found no associations between genus 
Ruminococcaceae UCG004 (OR = 1.13, 95% CI 0.96–1.32, 
P = 0.1560) and species Eubacterium coprostanoligenes 
group (OR = 1.09, 95% CI 0.94–1.28, P = 0.2656) with 
CRC. In summary, we found that family Porphyromona-
daceae, genus Slackia, genus Anaerotruncus, and genus 
Intestinibacter all exhibited a significant causal associa-
tion with CRC risk (Fig. 4).

The results of the MR steiger filtering test (Additional 
file 2: Table S3) did not reveal an inverse causal associa-
tion between the bacterial taxa mentioned previously 
and CRC. There was no significant heterogeneity among 
SNPs for gut microbiome-CRC association, with low het-
erogeneity among all SNPs that served as IVs in all bac-
terial taxa  (I2 < 25%, p Cochran’s Q > 0.01) except genus 
Slackia  (I2 = 39%, p Cochran’s Q = 0.11) and genus Anaer-
otruncus  (I2 = 45%, p Cochran’s Q = 0.06) (Table 3). Visu-
alized scatter and funnel plots are shown in Additional 
file 1: Figs. S1–S12. Neither the Egger Intercept test nor 
the MR-PRESSO Global test detected significant hori-
zontal pleiotropy. Similarly, the MR-PRESSO outlier test 
did not find any outlier SNPs that could lead to horizon-
tal pleiotropy. The results of the Leave-one-out analyses 
showed no significant effect of individual SNPs on gut 
microbiome-CRC association. We had 97%, 99%, 72%, 
and 100% statistical power to detect ORs of 1.26, 1.24, 

1.17, and 1.31 for associations of family Porphyromona-
daceae, genus Slackia, genus Anaerotruncus, and genus 
Intestinibacter with CRC in the MiBioGen consortium, 
respectively. We had 100%, 99%, 60%, and 97% statisti-
cal power to detect the corresponding ORs of 1.41, 1.23, 
1.07, and 1.24 in FinnGen.

Genome‑wide statistical significance level
We first performed MR analysis of the 12 eligible SNPs 
in aggregate using IVW (OR = 1.01, 95% CI 0.88–1.15, 
P = 0.9062), the weighted median method (OR = 0.96, 
95% CI 0.79–1.16, P = 0.6493), MR Egger (OR = 0.79, 95% 
CI 0.46–1.35, P = 0.4124), and the simple median method 
(OR = 1.12, 95% CI 0.93–1.35, P = 0.2284), none of which 
suggested that gut microbes were associated with CRC 
risk. Heterogeneity among IVs was low (p Cochran’s 
Q = 0.5720,  I2 = 0), and the Egger intercept test and the 
MR-PRESSO Global Test results showed no significant 
levels of pleiotropy (Egger intercept p = 0.3820, MR-
PRESOO global test p = 0.604). We did not find any bac-
terial taxa associated with CRC risk (Table 4.), We could 
not perform further tests for heterogeneity and pleiot-
ropy because the number of IVs in each bacterial feature 
was less than 2.

SNP annotation
We annotated the SNPs at a locus-wide significance level 
of the four intestinal flora and identified 24 host genes 
that may be related to pathogenic intestinal microflora in 
CRC patients (Table 5).

Discussion
The human intestine is a diverse and nutrient-rich 
micro-ecological system, consisting of 100 trillion 
microbes mixed with digestive secretions, epithelial 
cells, and food-borne abiotic components. The intesti-
nal flora regulates itself in healthy individuals to main-
tain the balance among the intestinal micro-ecological 
system while providing energy for the body through 
the digestion and absorption of food. The results from 
studies on intestinal flora in recent years have shown 
that changes in the structure, abundance, and func-
tion of intestinal flora are closely associated with many 
diseases including CRC [32]. There are significant dif-
ferences in the number and species of intestinal flora 
between CRC patients and healthy people [33]. The 
degree of intestinal flora imbalance is positively cor-
related with the progression rate of CRC [34]. Several 
observational studies have found significant differences 
in gut flora composition between healthy patients and 
CRC patients at different stages of the disease from 
proliferative polyps and early cancer to metastatic 
malignancies, supporting the role of gut flora in the 
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Table 2 MR results of causal links between gut microbiome and CRC risk (P < 1 ×  10–5)

Data source Classification Nsnp Methods OR (95% CI) P-value

MiBioGen consortium Family Porphyromonadaceae.id.943 11 Inverse variance weighted (fixed 
effects)

1.26 (1.03, 1.55) 0.0267

Inverse variance weighted (multiplica-
tive random effects)

1.26 (1.02, 1.56) 0.0337

Weighted median 1.25 (0.93, 1.67) 0.1337

MR Egger 1.28 (0.83, 1.96) 0.2923

Simple median 1.4 (0.94, 2.08) 0.1003

MiBioGen consortium Genus Anaerotruncus.id.2054 10 Inverse variance weighted (fixed 
effects)

1.17 (0.96, 1.42) 0.1121

Inverse variance weighted (multiplica-
tive random effects)

1.17 (1.01, 1.36) 0.0390

Weighted median 1.14 (0.88, 1.49) 0.3184

MR Egger 1.08 (0.63, 1.85) 0.7807

Simple median 1.15 (0.87, 1.51) 0.3265

MiBioGen consortium Intestinibacter.id.11345 10 Inverse variance weighted (fixed 
effects)

1.31 (1.09, 1.57) 0.0038

Inverse variance weighted (multiplica-
tive random effects)

1.31 (1.14, 1.5) 0.0001

Weighted median 1.28 (1, 1.64) 0.0520

MR Egger 1.06 (0.5, 2.26) 0.8849

Simple median 1.39 (1.08, 1.78) 0.0093

MiBioGen consortium Slackia.id.825 9 Inverse variance weighted (fixed 
effects)

1.24 (1.06, 1.45) 0.0071

Inverse variance weighted (multiplica-
tive random effects)

1.24 (1.01, 1.51) 0.0357

Weighted median 1.15 (0.91, 1.44) 0.2363

MR Egger 0.62 (0.24, 1.64) 0.3692

Simple median 1.14 (0.88, 1.48) 0.3161

MiBioGen consortium RuminococcaceaeUCG004.id.11362 9 Inverse variance weighted (fixed 
effects)

1.27 (1.03, 1.57) 0.0232

Inverse variance weighted (multiplica-
tive random effects)

1.27 (1.07, 1.51) 0.0053

Weighted median 1.30 (0.99, 1.71) 0.0580

MR Egger 2.09 (0.62, 7.13) 0.2754

Simple median 1.32 (0.99, 1.74) 0.0563

MiBioGen consortium Eubacteriumcoprostanoligenesgroup.
id.11375

12 Inverse variance weighted (fixed 
effects)

1.25 (0.99, 1.58) 0.0583

Inverse variance weighted (multiplica-
tive random effects)

1.25 (1.00, 1.56) 0.0467

Weighted median 1.28 (0.92, 1.79) 0.1387

MR Egger 0.86 (0.31, 2.38) 0.7746

Simple median 1.62 (1.14, 2.30) 0.0073

FinnGen Family Porphyromonadaceae.id.943 11 Inverse variance weighted (fixed 
effects)

1.50 (1.11, 2.03) 0.0079

Inverse variance weighted (multiplica-
tive random effects)

1.50 (1.18, 1.92) 0.0011

Weighted median 1.44 (0.95, 2.2) 0.0892

MR Egger 1.51 (0.7, 3.23) 0.3177

Simple median 1.42 (0.93, 2.17) 0.1062

FinnGen Genus Anaerotruncus.id.2054 10 Inverse variance weighted (fixed 
effects)

1.12 (0.81, 1.55) 0.4987

Inverse variance weighted (multiplica-
tive random effects)

1.12 (0.72, 1.73) 0.6149
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development of CRC [35]. However, other risk factors 
for CRC such as obesity, diet, lifestyle, and geography 
can also influence the composition of the gut microbi-
ome. We thus do not know whether the alterations in 
the gut microbiome in CRC patients is secondary to the 
tumor or an active process that contributes to tumori-
genesis. This potential reverse causal association pre-
vents us from determining the direction of effect of the 
gut microbiome on CRC. In addition, previous studies 
have shown that microbiota can influence gene expres-
sion and that gene expression correlates with the abun-
dance of gut microbiota, but studies on the association 
between broad gut microbiota and genes in CRC are 
limited [36, 37].We conducted this study to explore the 
causal association of the gut microbiome on CRC and 
identify possible associations between pathogenic bac-
teria and host genes in CRC. The results of the meta-
analysis based on combining the MR estimates from the 
AGWAS and FinnGen datasets showed that the family 

Porphyromonadaceae and genera Slackia, Anaerotrun-
cus, and Intestinibacter have a direct causal association 
on CRC.

The family Porphyromonadaceae contains a variety of 
genera such as Parabacteroides, Odoribacter and Porphy-
romonas that are rarely seen in healthy populations [38]. 
Zackular et  al. constructed a mouse model that repli-
cated the progression of CRC from chronic inflammation 
to heterogeneous hyperplasia to adenocarcinoma [39]. 
Their analysis of the gut microbiome composition of the 
mouse model showed a significantly elevated abundance 
of genus Odoribacter (belonging to family Porphyromon-
adaceae) [40]. Baxter et  al. analyzed the gut microbial 
composition of the feces of several CRC patients (serving 
as the experimental group) and that of healthy individu-
als (serving as the control group), and then transplanted 
the feces into healthy mice to observe the differences in 
the number of tumors in the mice. The results showed a 
positive correlation between the genus Parabacteroides 

Table 2 (continued)

Data source Classification Nsnp Methods OR (95% CI) P-value

Weighted median 0.91 (0.56, 1.49) 0.7151

MR Egger 1.64 (0.38, 7.03) 0.5247

Simple median 0.89 (0.55, 1.45) 0.6506

FinnGen Intestinibacter.id.11345 10 Inverse variance weighted (fixed 
effects)

1.30 (0.99, 1.71) 0.0610

Inverse variance weighted (multiplica-
tive random effects)

1.30 (0.98, 1.72) 0.0641

Weighted median 1.27 (0.86, 1.88) 0.2207

MR Egger 2.12 (0.6, 7.54) 0.2790

Simple median 1.35 (0.93, 1.97) 0.1110

FinnGen Slackia.id.825 9 Inverse variance weighted (fixed 
effects)

1.17 (0.94, 1.46) 0.1557

Inverse variance weighted (multiplica-
tive random effects)

1.17 (1.02, 1.36) 0.0298

Weighted median 1.24 (0.94, 1.64) 0.1302

MR Egger 0.56 (0.16, 1.98) 0.4003

Simple median 1.24 (0.92, 1.67) 0.1514

FinnGen RuminococcaceaeUCG004.id.11362 9 Inverse variance weighted (fixed 
effects)

0.94 (0.73, 1.22) 0.6549

Inverse variance weighted (multiplica-
tive random effects)

0.94 (0.72, 1.23) 0.6687

Weighted median 0.79 (0.56, 1.12) 0.1839

MR Egger 0.86 (0.21, 3.5) 0.8353

Simple median 0.79 (0.55, 1.14) 0.2153

FinnGen Species Eubacteriumcoprostanoligenesgroup.
id.11375

12 Inverse variance weighted (fixed 
effects)

0.96 (0.71, 1.30) 0.7951

Inverse variance weighted (multiplica-
tive random effects)

0.96 (0.77, 1.19) 0.7138

Weighted median 0.86 (0.57, 1.28) 0.4482

MR Egger 1.05 (0.25, 4.35) 0.9509

Simple median 0.90 (0.61, 1.34) 0.6130
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Fig. 4 Association of genetically predicted Gut Microbiome with risk of CRC and combined MR estimates from both AGWAS and FinnGen 
databases by meta-analysis A genus Anaerotruncus, B genus Intestinibacter, C family Porphyromonadaceae, D genus RuminococcaceaeUCG004, E 
genus Slackia, F species Eubacterium coprostanoligenes group
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(belonging to family Porphyromonadaceae) and the inci-
dence of CRC in the experimental group in contrast to 
the control group [41]. These studies suggest a patho-
genic role of family Porphyromonadaceae in CRC, on 
the basis of which our study further revealed its causal 
association to CRC. However, because the family Porphy-
romonadaceae is relatively rare, research on its patho-
genic mechanisms is limited and further studies on its 
role in the development of CRC are needed in the future.

For the genus Anaerotruncus, Loke et  al. compared 
intestinal microbial composition and metabolomic dif-
ferences between paired tumor tissue and normal tis-
sue in 17 Asian CRC patients and found that the relative 
abundance of genus Anaerotruncus could influence ster-
oid and terpene biosynthesis as well as bile metabolism, 
resulting in increased tumor-associated metabolites 
such as S-Adenosylmethionine (SAM) and S-Adenosyl-
Homocysteine (SAH) [42]. Similarly, Satoh et  al. identi-
fied significantly higher levels of SAM in tumor tissues 
of CRC patients compared to normal tissues [43]. Loke 
et al. revealed that gut microbiota dysbiosis caused local 
metabolic abnormalities at the primary tumor site, lead-
ing to significant upregulation of SAH levels [42]. Sibani 
et al. found that SAM and SAH levels were positively cor-
related with tumor number in animal models and could 
be used as a measure of abnormal cell transformation 
[44]. In addition, Anaerotruncus stimulates an increase in 
lipopolysaccharides (LPS) in humans which can disrupt 
the integrity of gastrointestinal epithelial cells and lead 

to impaired intestinal mucosal barrier function. Upreg-
ulated LPS promotes the release of pro-inflammatory 
cytokines and inhibits tight junction proteins, increasing 
oxidative stress and abnormal differentiation of colorec-
tal epithelial cells [45, 46]. Enterotoxigenic Bacteroides 
fragilis (ETBF) is a Gram-negative anaerobic bacterium 
and Liu et  al. [47] found that increased abundance of 
ETBF was closely associated with colorectal cancer. ETBF 
can produce B. fragilis toxin (BFT), which when bound 
to intestinal mucosal epithelial receptors, can promote 
the activation of Wnt and NF-KB signaling pathways, 
facilitating cell proliferation and DNA damage, leading 
to abnormal cell transformation [48–51]. ETBF can also 
cause the release of reactive oxygen species from inflam-
matory cells and promote the expression of cytokines and 
chemokines, leading to DNA damage which in turn pro-
motes the development of CRC. These findings suggest 
that the genus Anaerotruncus plays an important role 
in the pathogenesis of CRC and can influence host gene 
expression, which is consistent with our results. There-
fore, we speculate that the altered relative abundance of 
the genus Anaerotruncus affects local metabolism, lead-
ing to increased levels of metabolites such as SAM and 
SAH, which in turn cause host gene damage and results 
in the transformation of normal cells to tumors. Simi-
larly, previous studies have found that genera Slackia 
and Intestinibacter are associated with CRC. Huo et  al. 
compared the gut microbial composition of tissue sam-
ples from patients with and without CRC recurrence and 

Table 3 Evaluation of heterogeneity and directional pleiotropy using different methods

Data source Classification Bacterial taxas Heterogeneity Horizontal pleiotropy

I2 (%) Cochran’s Q P-value Egger intercept SE P-value MR-PRESSO 
global test p

MiBioGen consortium Family Porphyromonadaceae.
id.943

8 10.89 0.37 0.00 0.02 0.94 0.5

MiBioGen consortium Genus Anaerotruncus.id.2054 0 5.33 0.80 0.01 0.02 0.76 0.797

MiBioGen consortium Genus Intestinibacter.id.11345 0 5.17 0.82 0.02 0.03 0.59 0.844

MiBioGen consortium Genus RuminococcaceaeUCG004.
id.11362

0 5.31 0.72 − 0.04 0.05 0.44 0.779

MiBioGen consortium Genus Slackia.id.825 39 13.13 0.11 0.07 0.05 0.20 0.134

MiBioGen consortium Species Eubacteriumcoprostanoli-
genesgroup.id.11375

0 10.88 0.54 0.03 0.03 0.47 0.571

FinnGen Family Porphyromonadaceae.
id.943

0 6.64 0.76 0.00 0.03 0.99 0.80

FinnGen Genus Anaerotruncus.id.2054 45 16.28 0.06 − 0.03 0.05 0.60 0.07

FinnGen Genus Intestinibacter.id.11345 2 9.22 0.42 − 0.04 0.05 0.46 0.45

FinnGen Genus RuminococcaceaeUCG004.
id.11362

8 8.73 0.37 0.01 0.06 0.89 0.40

FinnGen Genus Slackia.id.825 0 3.41 0.91 0.07 0.06 0.28 0.92

FinnGen Species Eubacteriumcoprostanoli-
genesgroup.id.11375

0 5.51 0.90 − 0.01 0.04 0.91 0.90
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found that the relative abundance of genus Slackia was 
significantly higher in patients with CRC recurrence 
than in patients without recurrence, suggesting that it 

is a potential biomarker for prognosis in CRC patients 
[52]. For genus Intestinibacter, many studies have found 
a significant increase in the abundance of this bacterium 

Table 5 SNP annotation of intestinal flora IVs

id chr Start End Strand Gene_ids Gene_names

Family Porphyromonadaceae rs10119172 − 1 − 1 ENSG00000264615 RN7SL592P

rs1029811 − 1 − 1 – –

rs10762312 10 69,812,107 69,812,107 + ENSG00000197467
ENSG00000289193

COL13A1
–

rs10858364 − 1 − 1 – –

rs12700163 7 2,609,042 2,609,042 + ENSG00000106012 IQCE

rs17065783 3 62,049,912 62,049,912 + ENSG00000144724 PTPRG

rs2066088 1 1.65E+08 1.65E+08 + ENSG00000185630 PBX1

rs2401072 − 1 − 1 – –

rs35233670 17 65,754,785 65,754,785 + ENSG00000154240 CEP112

rs35961441 1 2.41E+08 2.41E+08 + ENSG00000226919
ENSG00000182901

–
RGS7

rs7330827 − 1 − 1 – –

Genus Slackia rs1006200 − 1 − 1 – –

rs10409783 19 4,555,774 4,555,774 + ENSG00000167680 SEMA6B

rs11957560 5 31,268,861 31,268,861 + ENSG00000113361
ENSG00000254138

CDH6
–

rs12440440 15 33,749,695 33,749,695 + ENSG00000198838 RYR3

rs16894137 − 1 − 1 – –

rs35156985 7 99,854,092 99,854,092 + ENSG00000021461 CYP3A43

rs4492265 7 13,484,058 13,484,058 + ENSG00000229618 –

rs7710333 5 1.78E+08 1.78E+08 + ENSG00000246596
ENSG00000290968

–
–

rs8901 17 76,270,929 76,270,929 + ENSG00000185262 UBALD2

Anaerotruncus rs10150232 14 29,948,802 29,948,802 + ENSG00000184304,
ENSG00000257904

PRKD1
–

rs11018566 − 1 − 1 – –

rs12056802 8 73,800,865 73,800,865 + ENSG00000104343
ENSG00000258677

UBE2W
–

rs1272208 9 76,015,978 76,015,978 + ENSG00000099139 PCSK5

rs1431492 3 1.51E+08 1.51E+08 + ENSG00000144893 MED12L

rs4669806 2 12,060,626 12,060,626 + ENSG00000224184 MIR3681HG

rs6563550 13 37,484,276 37,484,276 + ENSG00000230390 LINC01048

rs7675045 4 1.72E+08 1.72E+08 + ENSG00000174473 GALNTL6

rs7963258 12 1.13E+08 1.13E+08 + ENSG00000089169 RPH3A

rs9347879 − 1 − 1 – –

Intestinibacter rs10805326 − 1 − 1 – –

rs11109097 12 97,534,659 97,534,659 + ENSG00000255794 RMST

rs112879476 − 1 − 1 – –

rs16938435 9 21,502,924 21,502,924 + ENSG00000171889 MIR31HG

rs2098844 − 1 − 1 – –

rs2702387 − 1 − 1 – –

rs4327025 15 91,903,453 91,903,453 + ENSG00000176463 SLCO3A1

rs447950 − 1 − 1 – –

rs6875660 5 1.6E+08 1.6E+08 + ENSG00000135083 CCNJL

rs9348442 − 1 − 1 – –
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both in animal models with CRC and in the fecal and 
mucosal tissues of CRC patients [40, 41, 53]. For exam-
ple, Fusobacterium nucleatum (FN) (belonging to genus 
Intestinibacter) can be involved in the development and 
metastasis of CRC through multiple mechanisms. Kostic 
et al. found that Clostridium perfringens suppressed anti-
tumor immune responses by recruiting myeloid suppres-
sor cells, tumor-associated macrophages, and regulatory 
T cells [54].

Previous observational studies have found an associa-
tion between the gut microbiota and CRC, but the results 
cannot be used as evidence to support a direct causal 
association due to the influence of certain confounding 
factors such as the environment, diet. The significant 
advantage of our MR study is the selection of genetic 
variants significantly associated with the composition of 
the gut microbiota as IVs, which do not directly contrib-
ute to CRC and are not influenced by other risk factors 
for CRC. This means that any association between IVs 
with CRC must arise via the variant’s association with the 
gut microbiota, thus implying a causal effect of the gut 
microbiota on CRC.

Studies have shown that gut microbes can influence 
gene expression to regulate host physiology and even 
cause disease [36, 55, 56]. Similarly, related cellular 
experiments have found that certain gut microbes can 
affect gene expression in colonic epithelial cells [37], and 
that the relative abundance of certain pathogenic gut 
microbes correlates with the expression of known CRC 
pathogenic genes [7, 8], all of which reveal the impor-
tant role of gut microbe-host gene interactions in the 
development of CRC. We identified 24 host genes that 
may be associated with the abundance of gut microbes 
in CRC-specific populations by SNP annotation, includ-
ing the PCSK5 gene, which was consistent with the find-
ings of Sambhawa Priya et  al. [57], who identified CRC 
disease-specific host gene-microbiome associations using 
a multi-omics integration model approach different from 
ours, on the basis of which we found that this gene may 
be associated with the abundance of the genus Anaer-
otruncus. Liao et  al. used weighted gene co-expression 
network analysis to reveal that MIR22HG may regulate 
PCSK5 and RP11-61I13.3 may act on CRC progression 
by regulating PCSK5 through sponge-like miRNAs [58].

However, there are still unavoidable limitations of 
the present MR study. First, our MR analysis based on 
IVs at the genome-wide statistical significance level 
(P < 5 ×  10–8) do not identify any causal association of the 
gut microbiome on CRC. All causal associations revealed 
by our MR study were obtained based on IVs at the locus-
wide significance level (P < 1 ×  10–5), which may have an 
impact on the accuracy of the results. Second, the causal 
association of genus Anaerotruncus on CRC do not reach 

the desired statistical power threshold of 80%, so the cor-
relation needs to be further clarified. Third, since detailed 
baseline characteristics of study subjects (e.g., age, tumor 
markers, tumor stage, etc.) were not provided in the 
GWAS study of CRC, we could not further investigate 
the effect of gut microbiome on different subgroups of 
the population. Fourth, although we identified possible 
gene-gut microbiome associations through SNP annota-
tion, the diagnostic and prognostic value of the CRC-spe-
cific gut microbiome-host gene associations we identified 
remains to be validated by further clinical studies due to 
the limited number of available studies.

In conclusion, this MR study demonstrates that several 
gut microbes are positively associated with CRC risk and 
can serve as potential biomarkers, on the basis of which 
this study also identified possible gene-gut microbiome 
associations in CRC. We call for in vivo or in vitro experi-
ments to investigate CRC-specific host gene-gut micro-
bial abundance and metabolomic correlations based on 
multi-omics, thus revealing the pathogenic mechanisms 
of gut flora and exploring potential biomarkers, which 
are important to optimize the diagnosis and treatment of 
CRC in the future.
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