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Abstract 

Background  Blood biomarkers for multiple pathways, such as inflammatory response, lipid metabolism, and hor-
monal regulation, have been suggested to influence the risk of mortality. However, few studies have systematically 
evaluated the combined predictive ability of blood biomarkers for mortality risk.

Methods  We included 267,239 participants from the UK Biobank who had measurements of 28 blood biomark-
ers and were free of cardiovascular disease (CVD) and cancer at baseline (2006–2010). We developed sex-specific 
blood biomarker scores for predicting all-cause mortality risk in a training set of 247,503 participants from England 
and Wales, and validated the results in 19,736 participants from Scotland. Cox and LASSO regression analyses were 
performed to identify independent predictors for men and women separately. Discrimination and calibration were 
evaluated by C-index and calibration plots, respectively. We also assessed mediating effects of the biomarkers 
on the association between traditional risk factors (current smoking, obesity, physical inactivity, hypertension, diabe-
tes) and mortality.

Results  A total of 13 independent predictive biomarkers for men and 17 for women were identified and included 
in the score development. Compared to the lowest tertile of the score, the highest tertile showed a hazard ratio 
of 5.36 (95% confidence interval [CI] 5.04–5.71) in men and 4.23 (95% CI 3.87–4.62) in women for all-cause mortality. In 
the validation set, the score yielded a C-index of 0.73 (95% CI 0.72–0.75) in men and 0.70 (95% CI 0.68–0.73) in women 
for all-cause mortality; it was also predictive of CVD (C-index of 0.76 in men and 0.79 in women) and cancer (C-index 
of 0.70 in men and 0.67 in women) mortality. Moreover, the association between traditional risk factors and all-cause 
mortality was largely mediated by cystatin C, C-reactive protein, 25-hydroxyvitamin D, and hemoglobin A1c.

Conclusions  We established sex-specific blood biomarker scores for predicting all-cause and cause-specific mortality 
in the general population, which hold the potential to identify high-risk individuals and improve targeted prevention 
of premature death.
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Background
Non-communicable diseases, particularly cardiovascu-
lar disease (CVD) and cancer, represent a major threat 
to public health, accounting for about 73% of all deaths 
worldwide [1]. Modifiable behaviors, such as tobacco 
smoking, obesity, and physical inactivity are established 
risk factors for early death risk [2]. These factors poten-
tially affect multiple pathways, such as inflammatory 
response, lipid metabolism, liver dysfunction, and hor-
monal regulation, thereby increasing the risk of morbid-
ity and mortality [3].

Many efforts have been made to identify blood bio-
markers associated with mortality, which might be use-
ful to predict the risk of early death. Although the results 
are not always consistent, several blood biomarkers have 
been suggested to influence all-cause mortality. For exam-
ple, C-reactive protein (CRP) [4] and triglycerides (TG) 
[5] were positively associated, while alanine aminotrans-
ferase (ALT) [6] and 25-hydroxyvitamin D (25(OH)D) 
[7] were inversely associated with all-cause mortality. 
In addition, sex-specific associations were observed for 
testosterone in our previous work, showing an inverse 
association with all-cause mortality in men and a positive 
association in women [8]. However, the combined per-
formance of these biomarkers to predict death risk in the 
general population remains largely unknown. Moreover, 
less is studied for potential mediating effects of these bio-
markers on the association between modifiable factors 
and mortality. An improved understanding of the predic-
tive ability and mediating effects of biomarkers would be 
useful to identify individuals at high risk of early death 
and provide tailored prevention strategies.

Therefore, leveraging data from the UK Biobank, a large 
prospective cohort, we aimed to identify independent 
predictors of mortality from blood biomarkers involved 
in multiple pathways, including inflammatory response, 
lipid metabolism, hormonal regulation, liver and renal 
function, glucose homeostasis, and bone health. We 
then developed sex-specific blood biomarker scores and 
assessed their predictive ability for all-cause and cause-
specific mortality. Finally, we performed mediation anal-
ysis to quantify the contribution of predictive biomarkers 
in explaining the associations of traditional risk factors 
with all-cause mortality.

Methods
Study population
UK Biobank is a prospective cohort study recruiting over 
500,000 individuals aged 37–73 years from 22 assessment 
centers across England, Scotland, and Wales between 
2006 and 2010 [9]. At recruitment, participants were 
asked to complete touchscreen questionnaires, have 
physical measurements taken, and provide biological 

samples. UK Biobank received ethical approval from 
North West Multi-Centre Research Ethics Committee 
(REC reference: 11/NW/03820). All participants signed 
written informed consent before enrolment.

In the present study, we excluded participants who 
withdraw from UK Biobank (n = 11), those with preva-
lent CVD or cancer at baseline (n = 51,323), and those 
with incomplete data of blood biomarkers (n = 183,931, 
Additional file 1: Table S1), leaving 267,239 participants 
in the final analysis. The sample was divided into two 
sets, a training set including 247,503 participants from 
England and Wales, and a validation set including 19,736 
participants from Scotland (see flowchart in Additional 
file 7: Fig. S1). The distribution of baseline characteristics 
between the included and excluded participants did not 
show significant differences (Additional file 2: Table S2).

Laboratory tests
Blood samples were collected with standardized pro-
cedures and stored at − 80  °C until analysis [10]. A total 
of 28 biomarkers were assayed, which were implicated 
in inflammatory response (CRP), lipid and lipid trans-
port (total cholesterol, TG, low-density lipoprotein cho-
lesterol [LDL-C], high-density lipoprotein cholesterol 
[HDL-C], apolipoprotein A1 [ApoA1], apolipoprotein B), 
developmental and growth factor (insulin-like growth 
factor-1 [IGF-1]), sex hormone (testosterone, free tes-
tosterone [FT], sex hormone-binding globulin [SHBG]), 
liver function (ALT, aspartate aminotransferase [AST], 
gamma-glutamyltransferase [GGT], alkaline phosphatase 
[ALP], total bilirubin, direct bilirubin, total protein, albu-
min [ALB]), renal function (cystatin C [CysC], creati-
nine, urea, urate), glucose homeostasis (hemoglobin A1c 
[HbA1c], glucose), and bone health (calcium, phosphate, 
25(OH)D). All assays were run using internal controls 
and an external quality assurance scheme. Details about 
assay methods and quality control procedures are avail-
able online (https://​bioba​nk.​ctsu.​ox.​ac.​uk/​cryst​al/​cryst​
al/​docs/​serum_​bioch​emist​ry.​pdf ). The assays were per-
formed on serum samples except that the HbA1c test was 
performed on packed red blood cells. FT was computed 
by the validated mass action equation based on SHBG, 
ALB, and total testosterone concentrations [11, 12]. 
In addition, serum 25(OH)D concentrations were cor-
rected for seasonal effects by fitting a cosinor model [13]. 
Because total calcium concentrations vary with the level 
of ALB [14], ALB-corrected calcium concentrations were 
calculated [15].

Assessment of traditional risk factors and other covariates
Information on demographic characteristics, lifestyle fac-
tors, and medical history was derived from baseline ques-
tionnaires. Traditional risk factors were those previously 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf


Page 3 of 12Yang et al. Journal of Translational Medicine          (2023) 21:471 	

associated with death risk and confirmed in the UK 
Biobank, which included tobacco smoking, body mass 
index (BMI), physical activity, prevalent hypertension, 
and prevalent diabetes. Current smoking was determined 
by self-reported smoking status which was categorized 
into never, previous, or current. BMI was calculated as 
weight in kilograms divided by height in meters squared. 
Physical activity was assessed by the total metabolic 
equivalent of task hours per week. Townsend deprivation 
index, an indicator of socioeconomic status, was esti-
mated by combining data on housing, employment, and 
social class based on the postal code of participants [16].

Ascertainment of outcomes
The date and cause of death were obtained through link-
age to national death registries, including the National 
Health Service (NHS) Digital for participants in England 
and Wales, and the NHS Central Register for participants 
in Scotland. Outcomes of interest were classified accord-
ing to International Classification of Disease edition 10, 
including mortality due to all-cause, CVD (I00–I79), can-
cer (C00–D48), respiratory disease (J09–J98), neurologi-
cal disease (G00–G98), and digestive disease (K20–K93). 
Detailed information about the linkage procedure and 
data cleaning is available at https://​bioba​nk.​ctsu.​ox.​ac.​
uk/​cryst​al/​refer.​cgi?​id=​115559.

Statistical analysis
Follow-up time was calculated from the date of recruit-
ment to either the date of death, loss to follow-up, or the 
end of follow-up (28 February 2021), whichever came 
first. To improve data normality, biomarker concentra-
tions were natural log-transformed. For the missingness 
in covariates, we imputed sex-specific median values 
for continuous variables (all < 22% missing) and used 
a missing-indicator approach for categorical variables 
(all < 1% missing). As a sensitivity analysis, we also used 
the multiple imputation based on chained equations 
[17] to impute missing covariates for men and women 
separately. Relevant mediation results remained basically 
unchanged (data not shown).

We first identified biomarkers that were statistically 
significantly associated with all-cause mortality in age-
adjusted Cox regression models (P < 0.05). Then we 
performed the least absolute shrinkage and selection 
operator (LASSO) regression analysis with the penalty 
parameter lambda determined by tenfold cross-valida-
tion to select biomarkers of independent predictivity 
[18]. Sex-specific blood biomarker scores were con-
structed by a weighted sum of the selected biomarkers, 
with weights determined by LASSO regression coef-
ficients [19]. To confirm the robustness of the LASSO 

selection, we also applied random survival forest to 
select predictors based on variable importance [20] 
and refitted LASSO regression after excluding partici-
pants who died within two years of follow-up or those 
with abnormal renal function at baseline (creatinine-
based estimated glomerular filtration rate < 90  mL/
min/1.73 m2) [21]. The analyses for biomarker selection 
and development of the blood biomarker score were 
conducted exclusively on the training set. We applied 
the same scoring algorithm in the validation set to 
assess the accuracy of the score in predicting mortality.

We classified participants into low, intermediate, and 
high-risk groups according to tertiles of the score and 
estimated the corresponding 5-, 10-year cumulative 
probability of death using the Kaplan–Meier method. 
We also generated a traditional risk score, includ-
ing tobacco smoking, BMI, physical activity, prevalent 
hypertension, and prevalent diabetes. For each factor, 
a low risk level was assigned 1 point and otherwise 0 
points. The traditional risk score was constructed as 
the sum of all five factors, ranging from 0 to 5, with a 
higher score indicating healthier. Participants were 
then divided into three groups based on the traditional 
risk score, i.e., favorable (4–5 points), intermediate 
(2–3 points), and unfavorable (0–1 points). Calibration 
was assessed by comparing the deciles of the predicted 
probability at 10 years with the corresponding observed 
Kaplan–Meier estimates. Discrimination was assessed 
by Harrell’s C-index with 95% confidence interval (CI) 
[22]. We also calculated the C-index when stratifying 
participants by median follow-up years. In a secondary 
analysis, we assessed the predictive ability of the blood 
biomarker score for CVD, cancer, and other causes of 
death. We also fitted competing risk regression with 
Fine and Gray subdistribution hazard models as a sen-
sitivity analysis [23].

Furthermore, we conducted mediation analysis in 
men and women separately to quantify how much of 
the associations between traditional risk factors and 
all-cause mortality were mediated through predictive 
biomarkers by fitting Cox proportional-hazards models 
both with and without biomarkers [24]. The total effect 
of traditional risk factors on all-cause mortality were 
divided into the indirect effect (effect explained by bio-
marker) and direct effect (effect not explained by bio-
marker). Each of the traditional risk factors was treated 
as a dichotomous variable and the lowest risk category 
was treated as the reference [25].

The risk model development and validation were per-
formed following the TRIPOD guidelines (Additional 
file 3: Table S3) [26]. All statistical tests were two-sided 
and performed using SAS (version 9.4) and R (version 
4.1.0). P < 0.05 was considered as statistical significance.

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=115559
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Results
During a median follow-up of 12  years, 15,091 deaths 
occurred, including 7645 from cancer, 2831 from CVD, 
and 4,615 from other causes. Table 1 shows the baseline 
demographics characteristics and blood biomarker lev-
els for men and women separately. In the training and 
validation datasets, men were more likely to be current 
smokers, physically active, and have a higher prevalence 
of hypertension and diabetes than women. For blood 
biomarkers, the median levels of most biomarkers were 
similar between genders, except that testosterone levels 
were higher and SHBG levels were lower in men than in 
women.

In the age-adjusted Cox regression models (Addi-
tional file 4: Table S4), 23 biomarkers for men and 24 for 
women were found to be associated with all-cause mor-
tality (P < 0.05) in the training set. Based on the LASSO 
analysis, 13 biomarkers for men and 17 for women were 
selected as independent predictors for all-cause mortal-
ity (Additional file  8: Fig. S2 and Additional file  9: Fig. 
S3). There were 11 common predictors between genders, 
including CRP, LDL-C, IGF-1, FT, HbA1c, glucose, GGT, 
ALP, ALB, CysC, and 25(OH)D. SHBG and creatinine 
were selected only for men, while TG, ApoA1, testoster-
one, ALT, AST, and calcium were only for women. The 
predictors identified by random survival forest were gen-
erally consistent with those selected by LASSO (Addi-
tional file  10: Fig. S4). When excluding the participants 
who died within the first two years or those with abnor-
mal renal function, the selected variables were essentially 
consistent with the main analysis (Additional file 11: Fig. 
S5 and Additional file 12: Fig. S6). The sex-specific blood 
biomarker scores ranged from − 11.4 to − 2.1 in men and 
− 1.2 to 6.6 in women. The score distribution was higher 
in participants who died than in those alive during the 
follow-up (Additional file 13: Fig. S7).

Figure  1 shows the cumulative probability of death 
according to tertiles of the blood biomarker score. The 
observed 10-year mortality was 1.84%, 3.57%, 9.41% for 
men and 1.17%, 2.16%, 4.40% for women correspond-
ingly in low-, intermediate-, and high-risk groups. Using 
the same cut-offs in the training set, we found that par-
ticipants in the validation set also showed differentiated 
all-cause mortality across the risk categories, with the 
corresponding mortality of 2.17%, 6.64%, 15.40% in men 
and 1.32%, 2.82%, 5.72% in women, respectively. Com-
pared to the lowest tertile of the score, the highest tertile 
had a hazard ratio of 5.36 (95% CI 5.04–5.71) in men and 
4.23 (95% CI 3.87–4.62) in women for all-cause mortal-
ity. The calibration plots for men and women were both 
well matched with the ideal 45-degree line, indicating 
good consistency between the predicted and observed 
estimation of 10-year mortality (Fig.  2). The cumulative 

probability of death by the three groups of the traditional 
risk score was plotted in Additional file 14: Fig. S8.

In the training set, the blood biomarker score yielded 
a C-index of 0.71 (95% CI 0.70–0.71) in men and 0.68 
(95% CI 0.67–0.68) in women (Table  2). The traditional 
risk score had a C-index of 0.59 (95% CI 0.58–0.60) in 
men and 0.60 (95% CI 0.59–0.61) in women. The pre-
dictive performance of the blood biomarker score plus 
baseline age (C-index of 0.74 in men and 0.72 in women) 
was also better than that of the traditional risk score plus 
baseline age (C-index of 0.72 in men and 0.71 in women) 
(P < 0.001). The top 3 biomarkers with high C-index were 
CysC (0.63), CRP (0.60), and FT (0.60) in men, and CysC 
(0.65), CRP (0.60), and HbA1c (0.60) in women (Addi-
tional file 15: Fig. S9). In the validation set, similar results 
were observed (C-index of 0.73 [95% CI 0.72–0.75] in 
men and 0.70 [95% CI 0.68–0.73] in women for the blood 
biomarker score).

We also tested the predictive ability of the score for 
mortality from CVD, cancer, and other causes (Fig.  3). 
In the training set, the C-index of the score for predict-
ing CVD mortality was 0.73 (95% CI 0.72–0.74) for total 
CVD, 0.70 (95% CI 0.68–0.72) for myocardial infarction, 
0.73 (95% CI 0.71–0.75) for coronary heart disease, and 
0.73 (95% CI 0.69–0.76) for stroke in men. Correspond-
ing values were 0.75 (95% CI 0.73–0.77), 0.76 (95% CI 
0.71–0.81), 0.82 (95% CI 0.77–0.86), and 0.71 (95% CI 
0.68–0.75) in women, respectively. For cancer mortality, 
the C-index in men was 0.68 (95% CI 0.67–0.69) for total 
cancer, ranging from 0.55 (95% CI 0.52–0.59) for brain 
cancer to 0.74 (95% CI 0.72–0.76) for lung cancer, and 
in women was 0.64 (95% CI 0.63–0.65) for total cancer, 
ranging from 0.57 (95% CI 0.53–0.61) for breast cancer 
to 0.69 (95% CI 0.67–0.71) for lung cancer. In addition, 
the C-index was 0.74 (95% CI 0.73–0.75) for total other 
causes, 0.84 (95% CI 0.82–0.85) for respiratory disease, 
0.65 (95% CI 0.63–0.67) for neurological disease, and 0.82 
(95% CI 0.79–0.84) for digestive disease in men. Corre-
sponding values was 0.72 (95% CI 0.71–0.74), 0.79 (95% 
CI 0.76–0.82), 0.62 (95% CI 0.59–0.65), and 0.86 (95% 
CI 0.83–0.89) in women. Similar results were observed 
in the validation set. The sensitivity analysis using com-
peting risk models showed that the C-indices were only 
mildly decreased (Additional file 16: Fig. S10).

In the mediation analysis (Fig.  4, Additional file  5: 
Table S5, and Additional file 6: Table S6), the blood bio-
marker score showed significant mediating effects on 
the associations between traditional risk factors and all-
cause mortality, with a maximum proportion of 99.1% 
in men and 100% in women both for obesity. In men, 
CysC was the strongest mediator for the associations of 
current smoking (10.8%) and hypertension (32.1%) with 
all-cause mortality; CRP, 25(OH)D, and HbA1c mediated 
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Table 1  Baseline characteristics of participants stratified by sex in the training and validation sets from the UK Biobank study

Training set (n = 247,503) Validation set (n = 19,736)

Men (n = 133,834) Women (n = 113,669) Men (n = 10,355) Women (n = 9381)

Age in years, mean ± SD 56.2 ± 8.2 55.3 ± 8.2 55.9 ± 8.1 55.1 ± 8.1

White race, n (%) 126,299 (94) 107,456 (95) 10,171 (98) 9,241 (99)

Townsend deprivation index, mean ± SD − 1.40 ± 3.04 − 1.44 ± 2.95 − 1.21 ± 3.47 − 1.23 ± 3.39

BMI in kg/m2, mean ± SD 27.7 ± 4.2 26.9 ± 5.2 27.6 ± 4.1 26.8 ± 5.1

Physical activity in MET-hours/week, mean ± SD 45.0 ± 45.8 39.3 ± 36.8 42.4 ± 43.4 38.3 ± 35.0

Smoking status, n (%)a

 Never 68,076 (51) 69,391 (61) 5606 (54) 5,707 (61)

 Previous 49,870 (37) 34,776 (31) 3364 (32) 2785 (30)

 Current 15,235 (11) 8991 (8) 1344 (13) 861 (9)

Prevalent hypertension, n (%) 38,188 (29) 26278 (23) 2867 (28) 2087 (22)

Prevalent diabetes, n (%) 7946 (6) 3825 (3) 536 (5) 263 (3)

Blood biomarkers, median (IQR)

 Inflammatory factor

  CRP, mg/L 1.23 (0.64–2.42) 1.23 (0.59–2.63) 1.25 (0.63–2.50) 1.18 (0.56–2.68)

 Lipid and lipid transport

  TC, mmol/L 5.48 (4.79–6.18) 5.68 (5.01–6.37) 5.56 (4.87–6.23) 5.72 (5.05–6.40)

  TG, mmol/L 1.64 (1.15–2.33) 1.21 (0.89–1.68) 1.63 (1.15–2.35) 1.18 (0.88–1.64)

  LDL-C, mmol/L 3.49 (2.95–4.03) 3.47 (2.95–4.02) 3.55 (3.00–4.08) 3.52 (2.99–4.06)

  HDL-C, mmol/L 1.25 (1.08–1.46) 1.57 (1.34–1.83) 1.25 (1.08–1.46) 1.57 (1.34–1.83)

  ApoA1, g/L 1.41 (1.28–1.57) 1.61 (1.45–1.79) 1.41 (1.28–1.56) 1.61 (1.45–1.79)

  ApoB, g/L 1.02 (0.87–1.17) 0.99 (0.85–1.14) 1.03 (0.88–1.19) 1.00 (0.86–1.15)

 Developmental and growth factor

  IGF-1, nmol/L 21.9 (18.4–25.3) 21.2 (17.5–24.9) 21.7 (18.3–25.1) 21.0 (17.2–24.7)

 Sex hormone

  Testosterone, nmol/L 11.8 (9.6–14.3) 1.03 (0.74–1.40) 12.1 (9.86–14.6) 1.04 (0.75–1.40)

  FT, nmol/L 0.15 (0.13–0.19) 0.009 (0.006–0.013) 0.16 (0.13–0.19) 0.009 (0.006–0.013)

  SHBG, nmol/L 37.1 (28.1–48.3) 57.6 (41.2–77.9) 37.4 (28.4–48.4) 59.3 (42.8–80.0)

 Glucose homeostasis

  HbA1c, mmol/mol 35.0 (32.5–37.6) 34.7 (32.3–37.2) 34.8 (32.4–37.4) 34.4 (32.1–37.0)

  Glucose, mmol/L 4.95 (4.61–5.34) 4.90 (4.59–5.25) 4.87 (4.53–5.26) 4.81 (4.50–5.15)

 Liver function

  ALT, U/L 23.7 (18.3–31.7) 17.1 (13.6–22.5) 24.8 (19.2–33.2) 17.7 (14.2–23.3)

  AST, U/L 26.1 (22.6–30.8) 22.8 (19.8–26.6) 26.2 (22.6–30.8) 22.8 (19.8–26.7)

  GGT, U/L 32.4 (23.4–48.8) 20.8 (15.7–30.6) 33.2 (23.5–51.0) 20.8 (15.7–31.2)

  ALP, U/L 78.3 (66.7–92.1) 79.6 (65.4–95.8) 79.1 (66.9–93.1) 79.5 (65.5–95.7)

  TBIL, μmol/L 9.37 (7.66–11.90) 7.97 (6.72–9.93) 9.37 (7.65–11.84) 7.92 (6.66–9.76)

  DBIL, μmol/L 1.79 (1.43–2.28) 1.48 (1.22–1.87) 1.79 (1.43–2.29) 1.48 (1.22–1.86)

  TP, g/L 72.5 (69.9–75.2) 72.4 (69.9–75.1) 72.1 (69.7–74.7) 71.8 (69.4–74.4)

  ALB, g/L 45.6 (43.9–47.3) 45.1 (43.5–46.8) 45.5 (43.8–47.1) 45.0 (43.3–46.6)

 Renal function

  CysC, mg/L 0.91 (0.84–1.00) 0.85 (0.77–0.94) 0.91 (0.83–0.99) 0.85 (0.77–0.94)

  Creatinine, μmol/L 80.0 (72.7–88.1) 63.2 (57.3–69.8) 78.9 (71.7–86.5) 62.3 (56.4–68.5)

  Urea, mmol/L 5.43 (4.67–6.29) 5.01 (4.27–5.83) 5.41 (4.66–6.26) 4.96 (4.23–5.80)

  Urate, μmol/L 348.9 (305.4–396.9) 261.8 (223.6–306.1) 345.3 (300.7–393.3) 257.4 (221.0–302.7)

 Bone health

  Calcium, mmol/Lb 2.36 (2.32–2.41) 2.38 (2.34–2.44) 2.35 (2.30–2.40) 2.37 (2.32–2.42)

  Phosphate, mmol/L 1.12 (1.01–1.22) 1.19 (1.09–1.29) 1.08 (0.97–1.19) 1.16 (1.06–1.26)

  25(OH)D, nmol/Lb 47.3 (35.2–61.1) 47.2 (34.7–62.0) 41.1 (31.0–55.1) 41.5 (30.3–56.7)
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the largest effect on obesity (46.2%), physical inactivity 
(54.1%), and prevalent diabetes (50.9%), respectively. In 
women, CysC was the strongest mediator for the asso-
ciations with current smoking (11.4%), obesity (60.1%), 
physical inactivity (32.6%), and hypertension (36.3%).

Discussion
In this large-scale prospective study, we identified 13 
blood biomarkers in men and 17 biomarkers in women 
for creating sex-specific biomarker scores that could 
predict the risk of all-cause and cause-specific deaths. 

Moreover, we found that the biomarkers, particularly 
CysC, CRP, 25(OH)D, and HbA1c, exerted significant 
mediating effects on the associations between traditional 
risk factors and all-cause mortality. Therefore, our find-
ings provide a panel of biomarkers for improved identifi-
cation of individuals at high risk of premature death and 
potential high-priority targets for early prevention.

Predictive value of blood biomarker score
Up to date, only a small number of studies have assessed 
the performance of blood biomarkers for predicting 

Table 1  (continued)
SD, standard deviation; BMI, body mass index; MET, metabolic equivalent; IQR, interquartile range; CRP, C-reactive protein; TC, total cholesterol; TG, triglycerides; 
LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B; IGF-1, insulin-like growth 
factor-1; FT, free testosterone; SHBG, sex hormone-binding globulin; HbA1c, hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
GGT, gamma-glutamyltransferase; ALP, alkaline phosphatase; TBIL, total bilirubin; DBIL, direct bilirubin; TP, total protein; ALB, albumin; CysC, cystatin C; 25(OH)D, 
25-hydroxyvitamin D
a The totals did not sum to 100% due to small proportions of participants choosing “prefer not to answer”
b 25(OH)D was adjusted for seasonality and calcium was adjusted for albumin

Fig. 1  Cumulative probability of death by tertiles of the blood biomarker score in the training and validation sets for men and women
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Fig. 2  Calibration plots of 10-year all-cause mortality risk

Table 2  The C-indices of different risk models for the all-cause mortality prediction

CI confidence interval
a Combined model included baseline age, blood biomarker score, and traditional risk score
b The P value from a likelihood ratio test comparing the C-indices between blood biomarker score plus baseline age and traditional risk score plus baseline age
c For men, the median follow-up years is 11.9 in the training set and 13.1 in the validation set, while for women is 12.0 in the training set and 13.1 in the validation set

Training set Validation set

Men Women Men Women

C-index (95% CI)

 Overall

  Blood biomarker score 0.71 (0.70–0.71) 0.68 (0.67–0.68) 0.73 (0.72–0.75) 0.70 (0.68–0.73)

  Blood biomarker score plus baseline age 0.74 (0.74–0.75) 0.72 (0.71–0.73) 0.76 (0.75–0.77) 0.76 (0.74–0.78)

  Traditional risk score 0.59 (0.58–0.60) 0.60 (0.59–0.61) 0.60 (0.58–0.62) 0.63 (0.60–0.65)

  Traditional risk score plus baseline age 0.72 (0.71–0.72) 0.71 (0.70–0.72) 0.73 (0.71–0.74) 0.75 (0.73–0.77)

  Combined modela 0.75 (0.74–0.75) 0.72 (0.72–0.73) 0.76 (0.75–0.78) 0.77 (0.75–0.79)

  P valueb  < 0.001  < 0.001  < 0.001  < 0.001

Follow-up yearsc

  ≤ Median

   Blood biomarker score 0.70 (0.69–0.71) 0.67 (0.66–0.68) 0.72 (0.70–0.74) 0.70 (0.67–0.72)

   Blood biomarker score plus baseline age 0.73 (0.72–0.73) 0.71 (0.70–0.72) 0.75 (0.73–0.76) 0.75 (0.73–0.77)

   Traditional risk score 0.59 (0.58–0.59) 0.60 (0.59–0.61) 0.60 (0.58–0.62) 0.62 (0.60–0.65)

   Traditional risk score plus baseline age 0.69 (0.69–0.70) 0.70 (0.69–0.71) 0.71 (0.70–0.73) 0.74 (0.72–0.76)

  Combined modela 0.73 (0.72–0.73) 0.71 (0.71–0.72) 0.75 (0.73–0.76) 0.75 (0.73–0.77)

   > Median

   Blood biomarker score 0.72 (0.69–0.74) 0.66 (0.63–0.69) 0.81 (0.73–0.88) 0.70 (0.59–0.81)

   Blood biomarker score plus baseline age 0.75 (0.73–0.77) 0.74 (0.72–0.78) 0.80 (0.71–0.89) 0.73 (0.63–0.84)

   Traditional risk score 0.60 (0.57–0.62) 0.62 (0.58–0.65) 0.58 (0.47–0.69) 0.66 (0.53–0.79)

   Traditional risk score plus baseline age 0.73 (0.71–0.75) 0.75 (0.72–0.78) 0.70 (0.58–0.83) 0.75 (0.67–0.83)

   Combined modela 0.75 (0.74–0.77) 0.75 (0.72–0.78) 0.80 (0.71–0.89) 0.75 (0.67–0.84)
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death risk. Among 3321 participants from the Cardiovas-
cular Health Study, Sanders et  al. derived and validated 
a biomarker index of five aging-related biomarkers (IGF-
1, IGFBP-3, IL-6, DHEAS, and NT-proBNP), showing a 
C statistic of 0.66 for all-cause mortality [27]. Leveraging 
data from 3,209 participants in the Framingham Heart 
Study, Wang et  al. constructed a score comprising five 
biomarkers (CRP, N-terminal pro-atrial natriuretic pep-
tide, homocysteine, renin, and D-dimer) to predict all-
cause mortality, with a C statistic of 0.79 for the model 
including age, sex, and the score [28]. In another study 
examining the predictivity of 11 blood biomarkers (cal-
cium, BUN, bilirubin, ALB, hematocrit, leukocyte count, 
uric acid, iron, GGT, ALP, and lactate dehydrogenase) for 
all-cause mortality in two cohorts, adding the biomark-
ers into a model of traditional risk factors yielded a vali-
dated C statistic of 0.76 [29]. In our study, we excluded 
participants with prevalent CVD or cancer at baseline to 
reduce confounding by preexisting diseases. Beyond CRP, 
calcium, ALB, GGT, ALP, and CysC which have been 

commonly assessed in previous studies, we additionally 
included biomarkers from other biological pathways, 
including lipid metabolism, hormonal regulation, and 
glucose homeostasis, which probably better reflect the 
complex and multifactorial nature of death. The results 
showed that the blood biomarker score had good discri-
minant power with a C-index of 0.73 for men and 0.70 
for women in the validation set. Moreover, our findings 
indicate that the blood biomarker score has the potential 
to enhance predictive ability of the traditional risk score 
for mortality. Of note, although traditional risk factors 
are easier to be measured, individuals are more likely 
to modify their unhealthy lifestyles when they become 
aware of abnormal biochemistry indices. This suggests 
that the blood biomarker score is a valuable tool in moti-
vating lifestyle changes.

Because of the differences in blood biomarker con-
centrations across genders, we initially performed sex-
specific analyses and revealed that the associations for 
the majority of biomarkers were consistent between 

Fig. 3  The C-index of blood biomarker scores for cause-specific mortality in the training and validation sets for men and women
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genders, except for total testosterone, FT, SHBG, TG, 
ALT, creatinine, urea, urate, and phosphate. Our find-
ings confirmed the results from previous studies [30, 
31], showing that testosterone was inversely associated, 
while SHBG was positively associated with all-cause 
mortality in men. For women, the positive associa-
tion between testosterone and mortality was also pre-
viously reported [32]. In addition, we found that TG, 
ALT, and urate were positively associated with mortal-
ity only in women; creatinine and urea were negatively, 
while phosphate was positively, associated with mor-
tality only in men. In support of our findings, a meta-
analysis reported that women had a stronger positive 
association between TG and all-cause mortality than 
men [33]. Another study observed that serum urate was 
positively associated with all-cause mortality in women 
[34]. Additionally, a meta-analysis showed that the 
positive association between serum phosphorus and 
all-cause mortality existed in men only [35]. The mech-
anism underlying the sex-specific associations remains 
unknown and warrants further investigation.

Furthermore, the current study extends the applica-
bility of the score to predict mortality risk from CVD, 
cancer, and other chronic diseases, since the included 
biomarkers were derived from multiple key pathways 
that could contribute to the development of these dis-
eases. To the best of our knowledge, current data are 
scarce on the prediction of disease-specific mortality 
in the general population. Only one study investigated 
a combination of 4 biomarkers (troponin I, N-terminal 

pro-brain natriuretic peptide, CysC, and CRP) among 
1135 elderly Swedish men and reported a C statistic of 
0.77 for CVD mortality for the model incorporating the 
biomarkers and established CVD risk factors [36]. By 
contrast, our blood biomarker score showed acceptable 
performances in predicting various cause-specific mor-
tality for middle-aged adults. Thus, previous data and 
ours support that a panel of specific blood biomark-
ers is useful to improve risk prediction for deaths from 
common chronic diseases.

Mediation effects of blood biomarkers
Interrogating biological mediators of the associations 
between traditional risk factors and mortality is critical 
to identifying high-priority targets for developing effec-
tive prevention strategies. For the first time, the current 
study revealed that the created biomarker score was a 
strong mediator for the associations of smoking, obesity, 
physical inactivity, hypertension, and diabetes with all-
cause mortality. Specifically, CysC, CRP, 25(OH)D, and 
HbA1c accounted for the highest mediation proportions, 
suggesting that the biomarkers or pathways represented 
by these biomarkers could explain most of the associa-
tion between traditional risk factors and early death risk. 
CysC is commonly used to measure glomerular filtration 
rate as an index of renal function [37]. In addition, emerg-
ing biological evidence suggests that CysC plays a regu-
latory role in immune response, apoptosis, autophagy, 
and tumor metastasis [38]. In support of our findings, 

Fig. 4  Mediation effects of predictive biomarkers for the associations between traditional risk factors and all-cause mortality among men 
and women. Mediation analyses were adjusted for age, ethnicity, and Townsend deprivation index. Traditional risk factors were entered 
as dichotomous variables. The reference group was non-current smoking, non-obesity (BMI < 30 kg/m2), physically active (MET-hours/
week > median value), non-prevalent hypertension, and non-prevalent diabetes, respectively
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previous studies revealed CRP as an important media-
tor for obesity [39], 25(OH)D as a mediator for physical 
inactivity [40], and HbA1c for diabetes [41], in relation to 
the risk of common chronic disease. These data suggest 
that CysC, CRP, 25(OH)D, and HbA1c might represent 
potential targets for mitigating premature death risk.

Strengths and limitations
Our study has several strengths, including a large sample 
size with a training and validation design, a long-term 
follow-up, inclusion of various biomarkers from multiple 
pathways, strict control for potential confounding, and 
detailed sensitivity analysis. However, several limitations 
need to be noted as well. First, a single measurement of 
blood biomarkers at baseline may not reflect long-term 
exposures. However, previous evidence suggests that 
one-time measurement of the included biomarkers (e.g., 
CysC, testosterone, and 25[OH]D) could reliably catego-
rize average levels over at least a 4-year period [8, 42, 43]. 
Second, we were unable to evaluate the potential effect of 
estrogens on mortality because the assay used in the UK 
Biobank to assess estradiol levels was not sufficiently sen-
sitive to measure the typically low concentrations in post-
menopausal women and men. Third, due to the relatively 
small numbers of cause-specific deaths in the validation 
set, the predictive estimates by C-indices with wide CIs 
should be interpreted with caution. Finally, most of the 
UK Biobank participants were of European ancestry. The 
predictive power remains to be validated in other ethnici-
ties from external datasets.

Conclusions
In conclusion, we developed sex-specific biomarker 
scores that have the potential to increase prediction 
accuracy for all-cause and cause-specific mortality. In 
addition, the biomarkers had significant mediating effects 
on the associations between traditional risk factors and 
mortality, which might be potential high-priority targets 
for early prevention. Further research is required to vali-
date these findings and uncover underlying mechanisms 
for translating the evidence into practice.
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