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Abstract 

Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress 
is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation 
of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeosta-
sis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ 
(IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). How-
ever, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numer-
ous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects 
of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory 
conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we 
highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteo-
genesis and angiogenesis suggest novel therapeutic options for bone defects.
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Introduction
As the elderly population has increased globally, so has 
the number of patients with clinical bone defects [1,  2]. 
Patients with diabetes mellitus have a high incidence of 
bone defects [3]. Diabetes mellitus impairs bone regen-
eration and biomechanics in newly regenerated bone, 
which may be related to metabolic disorders and dys-
function of mitochondrial function and macrophage 
polarization induced by blood glucose fluctuations, lead-
ing to the production of reactive oxygen species (ROS), 

which creates an inflammatory microenvironment at the 
site of bone defect [4,  5]. At present, in the field of bone 
tissue engineering, increasing studies indicate that the 
functional polarization of macrophages can be adjusted 
by various modified hydrogels and 3D bioprinting of mul-
ticell-laden scaffolds, so as to promote the repair of dia-
betic bone defects [6,  7]. The latest research shows that 
stem cell therapy can also be a therapeutic target, bone 
marrow-derived macrophage (BMDM) -derived exoso-
mal miRNA can affect bone marrow mesenchymal stem 
cell (BMSCs) differentiation, providing effective methods 
and potential therapeutic targets for the treatment of dia-
betic bone defects [8]. However, the role of BMD-derived 
exosomal miRNA in diabetes and their communication 
with BMSCs remains unknown. The specific mechanisms 
underlying impaired bone repair and regeneration in dia-
betic conditions remain to be investigated.
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Bone regeneration requires both osteogenesis and 
angiogenesis [9]. The mechanisms of bone regeneration 
include membrane-internalized bone and cartilage-inter-
nalized bone [10]. Bone regeneration requires the par-
ticipation of osteoblasts, osteoclasts, and chondrocytes. 
Endothelial cells (ECs) promote angiogenesis, thereby 
contributing to bone regeneration [11]– [13]. Angiogen-
esis depends on the coordination of pro- and anti-angi-
ogenic factors [14]. Vascular endothelial growth factor 
(VEGF) and fibroblast growth factor (FGF) were the ear-
liest identified pro-angiogenic factors [15]. They drive EC 
proliferation, migration, and differentiation to promote 
angiogenesis [16].

The cellular and molecular mechanisms of angiogen-
esis and osteogenesis in bone regeneration have been 
investigated. However, ER stress pathway has received 
little attention. ER stress is related to many human dis-
eases [17]. Drugs targeting ER stress have been developed 
[18]. ER stress is a double-edged sword that determines 
whether cells survive or die [19]. Appropriate ER stress 
restores cellular homeostasis by activating adaptive cel-
lular adaptive programs, whereas excessive ER stress 
induces cell death by triggering apoptosis [20].

ER stress has dual roles in the regulation of osteogen-
esis and angiogenesis. Here, we review the effect of ER 
stress on osteogenesis and angiogenesis, including the 
link between HG, inflammation and ER stress signal-
ing pathways. As a subclass of extracellular vesicles, 
exosomes come from a wide range of sources, can be 
secreted by almost all kinds of cells, and exist in various 
body fluids [21]. ER stress can promote exosome forma-
tion and release [22–24]. We also reviewed that exosomes 
from different sources promote osteogenesis and angio-
genesis. Therefore, it is possible that ER stress serves as a 
downstream signaling pathway for exosomes to regulate 
osteogenesis and angiogenesis.

Working principle of ER stress
Occurrence of ER stress
The ER is the site of protein synthesis and processing 
[25], the largest intracellular organelle [26]. Proteins 
tend to enter the ER in an unfolded form, where they 
begin to fold. However, folding of proteins in the ER 
is inefficient (< 20%) [27], so protein quality control 
requires a balance between protein folding and deg-
radation [28]. ER quality control (ERQC) identifies 
and eliminates misfolded proteins to maintain cellular 
homeostasis [29]. However, suppression of ERQC by 
environmental and genetic factors leads to increased 
protein misfolding [30] and accumulation of misfolded 
or unfolded proteins in the ER, leading to ER stress 
[31,  32]. Therefore, ER stress is an important cellular 

defense mechanism and is vital for maintaining ER 
homeostasis.

ER stress signaling pathways
ER stress can be classified as the UPR, ER over-
load response, and sterol regulatory cascade [33]. 
UPR occurs when a signal of misfolded ER proteins 
is transmitted to the nucleus [34]. Ischemia [35,  36], 
HG [37], and other pathological states activate the ER 
stress signaling pathway. The UPR is a signal transduc-
tion pathway that transmits information about protein 
folding to the nucleus and cytoplasm to restore ER 
homeostasis [38] and relieve ER stress [39]. In 1977 
glucose-regulated protein (GPR) was discovered [40]. 
GPR promotes the correct folding of proteins in the ER 
[41,  42], linking glucose induction to protein misfold-
ing. In 1988, Kozutsumi et al. [42] proposed a signaling 
transduction pathway activated by ER stress. The mam-
malian UPR pathway was first identified in yeast [43,  
44] and is coordinated by three ER transmembrane sen-
sor proteins: protein kinase-R-like ER kinase (PERK), 
inositol-requiring enzyme 1ɑ (IRE1ɑ), and activating 
transcription factor 6 (ATF6). It dynamically regulates 
ER protein folding to maintain ER homeostasis (Fig. 1) 
[45,  46]. In a non-stressed state, the ER chaperone 
immunoglobulin heavy-chain binding protein (BiP)/G 
protein coupled receptor 78 (GPR78) binds to the ER 
domain to stabilize ATF6 disulfides [38,  47], and PERK 
and IRE1ɑ bind to BiP and are inactivated [30]. How-
ever, in ER stress, BiP dissociates and binds unfolded 
or misfolded proteins and perform protein folding [48], 
activating ER receptors [49]. The IRE1ɑ-X-box binding 
protein (XBP1), PERK-eukaryotic initiation factor 2ɑ 
(eIF2ɑ), and ATF6 signaling pathways induce the UPR 
and restore ER stability [50,  51]. IRE1ɑ is the most evo-
lutionarily conserved factor in the UPR [30,  38]. Acti-
vated PERK phosphorylates eIF2ɑ, attenuating protein 
translation to relieve the ER load under stress, and pro-
motes ATF4 translation [30,  45]. The PERK signaling 
pathway is associated with a series of immune meta-
bolic diseases [52,  53], including tumors [54–56]. ATF6 
disulfide is decreased by protein disulfide isomerase 
(PDI) activity [30], and full-length ATF6 (ATF6p90) 
monomer increases and is transferred to the Golgi 
apparatus, where it is cleaved by the site 1 protease 
(S1P) and site 2 protease (S2P) to release an N-terminal 
transcriptionally active 50  kDa fragment (ATF6p50) 
[38,  57]. ATF6p50 is transported to the nucleus to per-
form functions such as protein folding [38]. ATF6 also 
maintains the stability of viral proteins [57] and home-
ostasis in normally developing tissues and organs [58].
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Fig. 1 Major UPR pathways initiated in the ER [38]. RIDD: regulated IRE1ɑ-dependent decay; TRAF: tumor necrosis factor receptor associated factor; 
ERAD: ER-associated protein degradation; PP1: protein phosphatase 1; CreP: constitutive repressor of eIF2ɑ phosphorylation; DR5: death receptor 
5; TXNIP: thioredoxin-interacting protein; IP3R: inositol-1,4,5-triphosphate receptor; BI-1: Bax inhibitor-1; GADD34: growth arrest and DNA damage 
inducible gene 34. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation, and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 
2020;21(8):421–38. Copyright© The Authors 2020. Published by Springer Ltd
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ER stress pathways: a double‑edged sword
After the occurrence of ER stress, misfolded or unfolded 
proteins that accumulate in the ER are eliminated 
through two primary degradation pathways: ER-asso-
ciated degradation (ERAD) and autophagy [59]. ERAD 
is activated in response to ER stress, as it maintains ER 
homeostasis by eliminating misfolded proteins from the 
ER and preventing their accumulation [60]. The UPR 
controls cell fate [17,  19,  20,  61]. A prolonged UPR 
indicates non-recovery from ER stress, and adaptive out-
put cannot compensate for the pressure in the ER, and 
the UPR induces apoptosis [20]. Sustained activation of 
ATF4 in combination with CCAAT-enhancer-binding 
protein homologous protein (CHOP) induces apoptosis 
[34]. Thus, the dual role of the PERK-eIF2ɑ axis is vital 
for coordinating translation and protein balance. There 
are three main mechanisms (Fig.  1): the IRE1ɑ/ASK1 
(apoptosis signal regulating kinase 1)/JNK (c-jun kinase) 
pathway [62], caspase-12-dependent pathway [63], and 
growth arrest and DNA damage-inducible 153 (CHOP/
GADD153) pathway [64,  65]. CHOP, a key apoptotic fac-
tor, upregulates ROS, triggers calcium  (Ca2+) release, and 
promotes transcription, constituting a positive-feedback 
loop that triggers apoptosis [34]. It also downregulates 
the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) to 
induce apoptosis [66]. Despite advances in research on 
the mechanism of ER stress, the balance between pro-
survival and pro-death UPR signals remains unclear, and 
the full extent of ER stress’s role in different stages of dis-
ease is yet to be fully elucidated. Future research is neces-
sary to answer these key questions.

ER stress pathways in orthopedics
Osteoblasts play a critical role in bone formation and 
reconstruction by synthesizing new collagen. Because 
osteoblasts secrete a significant amount of extracellular 
matrix proteins, they are particularly vulnerable to ER 
stress-induced dysfunction. Targeted ER stress therapy 
can be used to treat orthopedic diseases. Liu et  al. [67] 
discovered that IL-1β can induce excessive ER stress in 
chondrocytes, leading to chondrocyte apoptosis and 
subsequent cartilage degradation, which accelerates the 
progression of osteoarthritis (OA). Inhibition of ER stress 
by the IRE1ɑ pathway suppresses chondrocyte apopto-
sis, thus mitigating the progression of OA [68]. Sim et al. 
[69] found that the function of ERAD, which is regulated 
by ER stress, was reduced in patients with OA, leading 
to the accumulation of misfolded proteins and cartilage 
loss. Enhanced ERAD activity is necessary for cartilage 
formation and maintenance. The activation of PERK 
and ATF4 is involved in the inducing the stress response 
protein sestrin2 under ER stress after spinal cord injury 
(SCI) [70]. Inhibiting ER stress through overexpression of 

sestrin2 promotes functional recovery and neuronal sur-
vival, indicating its potential as a therapeutic target for 
SCI repair. Huang et al. [71] found that inhibition of neu-
ronal apoptosis mediated by ER stress can reduce apop-
tosis and protects neurons. ER stress has potential to be 
a new target for treating SCI; Metastasis of osteosarcoma 
cells can be inhibited by knocking out secretion-associ-
ated Ras-related GTPase 1A (SAR1A), a key regulator 
of ER homeostasis [72]. Moreover, ER stress can induce 
hypertrophic chondrocyte dysfunction, which may be a 
potential cause of osteogenesis imperfecta (OI) [73]. Nev-
ertheless, studies have demonstrated that downstream 
ER stress is necessary to maintain Ol bone integrity to a 
certain extent. Reducing ER stress alone may not be suf-
ficient to rescue Ol phenotype and may even exacerbate 
it [74]. Although we have known that ER stress is part of 
the mechanism of OI disease, how to improve OI bone 
strength by regulating ER stress remains to be studied.

The repair and regeneration of bone defects caused 
by trauma, tumor, infection and other factors have been 
significant clinical challenges. If ER stress can be pre-
cisely regulated to an appropriate level through bone 
tissue engineering or stem cell therapy, it could help in 
the rapid regeneration of bone tissue. Xiang et  al. [75] 
modulated the expression of osteogenic proteins through 
the PERK-eIF2ɑ-ATF4 pathway of appropriate ER stress 
by  Ca2+ changes mediated by biphasic calcium phos-
phate, a classic bone void filler. Zheng et al. [76] used the 
osteogenesis-promoting drug HA15 to target HSPA5 to 
inhibit excessive ER stress and ultimately promote osteo-
genesis and angiogenesis in rabbit bone defect models. 
Future studies can use the involvement of the ER stress 
pathway in the regulation of osteogenesis and angiogen-
esis as a starting point through cell experiments, investi-
gate the precise mechanism by which ER stress regulates 
osteogenesis and angiogenesis, and seek more possible 
therapeutic targets and interventions in the pathogenesis 
of bone defect from the level of gene regulation, bringing 
good news to the majority of patients.

Effects of ER stress pathways on osteogenesis
Appropriate ER stress contributes to osteogenic 
differentiation
Bone morphogenetic proteins (BMPs) are implicated in 
osteogenic differentiation and ectopic bone formation 
[77]. BMP2 and BMP9 induce ER stress to promote the 
differentiation of BMSCs into osteoblasts [78–81]. UPR 
signaling is an essential regulator of bone development 
[82,  83].

The three UPR signaling pathways are linked to the 
promotion of osteogenic differentiation by ER stress. 
Kazuhisa et al. [84] discovered Osterix (Osx), a transcrip-
tion factor necessary for bone formation. Ten years later, 
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Stavroula [85] identified Osx as a target gene of XBP1, 
linking ER stress and osteogenesis. The IRE1ɑ-XBP1 
signaling pathway promotes not only osteoblast matura-
tion by promoting Osx transcription [86] but also bone 
regeneration via myostatin mRNA decay [87]. ATF4 is a 
key transcription factor for osteoblast differentiation and 
bone formation [88,  89]. Activation of the PERK-eIF2ɑ-
ATF4 pathway promotes the expression of genes required 
for osteogenesis [90] and induces osteogenic differen-
tiation [91,  92] and type I collagen secretion, which are 
essential for neonatal bone development and osteogenic 
differentiation [93]. Won-Gu et  al. [94] showed that 
BMP2 stimulates osteoblast differentiation by regulating 
osteocalcin gene expression via the ER stress-activated 
ATF6 pathway [58]. Although the three UPR signaling 
pathways are implicated in osteogenesis, the underlying 
mechanisms are unclear.

Excessive ER stress induces osteoblast apoptosis
Excessive ER stress inhibits osteogenic differentiation 
and induces their apoptosis [91,  95,  96], which is an 
important mechanism of osteoporosis [97]. The effect 
may be related to the overexpression of CHOP caused 
by excessive ER stress [98], and there are sex differences 
in sensitivity to CHOP [99]. Overexpression of CHOP 
reduces alkaline phosphatase activity and calcified bone 
nodule formation [100], and initiates osteoblast apopto-
sis, inhibits bone formation, and induces osteopenia [98,  
100].

ER stress-mediated osteoblast apoptosis is driven by an 
increase in the intracellular  Ca2+ concentration [101]. An 
increased intracellular  Ca2+ disrupts  Ca2+ homeostasis, 
leading to  Ca2+ overload [102] and excessive ER stress103 
and inducing osteoblast apoptosis [104,  105]. Further-
more, micronutrients such as cadmium [106], fluorine 
[107,  108], and iron [109] initiate the ER stress apoptosis 
pathway by increasing intracellular  Ca2+. Therefore, con-
trolling intracellular  Ca2+ has therapeutic potential for 
micronutrient-induced osteoporosis. We summarize the 
effects of ER stress inducers on osteogenic differentiation 
in Table 1.

Regulation of ER stress pathways to interfere 
with osteogenesis
GCs induce osteoblast apoptosis by activating ER stress 
pathways
A normal concentration of glucose does not activate ER 
stress [110], but chronic HG induces pancreatic β cells to 
continuously secrete  Ca2+ to activate ER stress [37], thus 
inhibiting osteogenic differentiation in a glucose concen-
tration-dependent manner [110].

Since 1984, glucocorticoids (GCs) have been used 
for variety of immune-related diseases [111]. However, 
long-term use of GCs increases the incidence of oste-
onecrosis, among which osteonecrosis of the femoral 
head (ONFH) is the most common [112]. Although the 
mechanism of GC-induced ONFH is unclear, GCs can 
activate ER stress and promote the production of ROS, 
thereby inducing apoptosis in osteoblasts [113,  114], 

Table 1 ER stress inducers used to modulate osteogenic differentiation

TNF-ɑ: tumor necrosis factor-ɑ; METTL3: methyltransferase-like 3; CDs: carbon dots; PI: proteasome inhibitor; AGE: advanced glycation end product; PDLSC: 
periodontal ligament stem cell; MNT: micro-/nano-topography; PA: palmitate; FTO: fat mass and obesity associated

ER stress inducer Pathway Stress degree Up/down Mechanism Refs.

TNF-ɑ JNK Excessive Down Inhibit osteogenic differentiation of BMSCs [128]

Curcumin ATF6 Appropriate Up Promote osteogenic differentiation of C3H10T1/2 cells [135]

METTL3 – Excessive Down induce osteoblast apoptosis [136]

CDs PERK-eIF2ɑ-ATF4 Appropriate Up promote pre-osteoblast differentiation in vitro and bone regenera-
tion in vivo

[137]

PIs IRE1ɑ-XBP1 Approriate Up promote osteogenic differentiation [138]

Melatonin PERK-eIF2ɑ-ATF4 Excessive Down induce apoptosis in hFOB 1.19 human osteoblastic cells [139]

AGEs IRE1ɑ Excessive Down induce apoptosis in osteoblastic MC3T3-E1 and human osteoblastic 
hFOB 1.9 cells

[140]

TNF-ɑ PERK Excessive Down inhibit osteogenic differentiation of PDLSCs [141]

HA15 PERK-eIF2ɑ-ATF4 Appropriate Up promote osteogenic differentiation in vitro, and attenuate estrogen 
deficiency-induced bone loss in vivo

[142]

MNT PERK-eIF2ɑ-ATF4 Appropriate Up Promote osteogenic differentiation of stem cells [143]

PA CHOP/Caspase-12 /JNK Excessive Down induce apoptosis in osteoblastic MC3T3-E1 cells [144]

FTO A positive feedback 
loop with p AMPK

Appropriate Up promote osteogenic differentiation of C3H10T1/2 cells [145]

Metallic wear debris – Excessive Down induce osteoblast apoptosis [146]
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particularly in the proximal femur [115]. This may be a 
mechanism of ONFH.

The PERK-eIF2ɑ-ATF4-CHOP pathway is implicated 
in GC-induced osteoblast apoptosis [116]. Therefore, 
controlling this pathway could ameliorate GC-induced 
osteoblast apoptosis. The plant compound geniposide 
(GEN) [117], 4-phenylbutyric acid (4-PBA) [117,  118], 
the PERK phosphorylation inhibitor GSK2656157 
[116], and melatonin [119] can block PERK down-
stream signaling and significantly inhibit ER stress, 
thereby attenuating GC-induced osteoblast apoptosis. 
GEN together with the plant compound paeoniflorin 
activate autophagy in vivo and in vitro, thus suppress-
ing GC-induced apoptosis [115,  120]. 4-PBA down-
regulates ATF4 and reduces mutant type I collagen 
[121], whereas salubrinal (inhibitor of eIF2ɑ dephos-
phorylation) upregulates ATF4 [35,  122]. Both regu-
late the eIF2ɑ pathway, thereby reducing ER stress to 
promote osteogenesis. Unfortunately, salubrinal has 
no effect on osteoblast apoptosis induced by high-dose 
GC [114].

Regulation of ER stress pathways on osteogenesis 
under inflammatory conditions
Long-term inflammatory responses can affect stem 
cells’ ability to repair [123]. Tumor necrosis factor ɑ 
(TNF-ɑ)-induced inflammation has been reported 
to inhibit osteogenic differentiation of BMSCs [124], 
possibly because ER stress-activated nuclear factor 
κB (NF-κB) translocates into the nucleus to promote 
the transcription of other pro-inflammatory cytokines 
[125] and osteolysis [126]. Xue et al. [96] found for the 
first time that long-term chronic inflammation reduces 
the expression of lysine acetyltransferase 6B (KAT6B, 
also known as MORF), which leads to continuous acti-
vation of PERK signaling pathway downstream of ER 
stress, and reduces the osteogenic differentiation abil-
ity of periodontal ligament stem cells (PDLSCs).

Subsequently, Li et al. [127] used low-intensity pulse 
ultrasound to up-regulate the osteogenic effect of 
PDLSCs under inflammatory conditions through UPR. 
Zhao et al. [128] demonstrated that JNK pathway acti-
vated by ER stress mediates TNF-ɑ-induced inflam-
mation in BMSCs. These studies have confirmed that 
inhibiting ER stress can effectively reduce inflamma-
tory response and enhance the osteogenic differen-
tiation ability of stem cells, which may provide new 
insights for improving stem cell osteogenic differen-
tiation and treating inflammatory bone diseases such 
as osteoporosis, so that inhibiting ER stress under 
inflammatory conditions to promote osteogenesis has 
great potential.

Exosomes regulate osteogenesis by activating ER stress 
pathways
Studies have shown that miRNA from exosomes of dif-
ferent cellular origins can enter recipient cells and then 
regulate the expression of genes associated with osteo-
genesis at the translational level to regulate osteogenesis 
[129]. We have also reviewed the use of exosome-derived 
non-coding RNAs for osteogenesis before [130]. How-
ever, whether exosomes promote osteogenesis by regu-
lating ER stress is unclear. Platelet-rich plasma (PRP) 
has been widely used in clinical repair of bone and soft 
tissue injuries. Recent studies have shown that PRP con-
tains a large number of extracellular vesicles [131]. Tao 
et al. [132] found that PRP-derived exosomes (PRP-Exos) 
binds to related receptors, promotes Akt phosphoryla-
tion, activates β-catenin to promote osteogenesis, and 
activates Bcl-2 to inhibit GC-induced apoptosis and ER 
stress (Fig.  2). Exosomes show great potential in PRP 
repair tissues, which is closely related to downstream 
ER stress pathways. Wang et al. [133] reported that miR-
485–5p modified exosomes inhibit ER stress and allevi-
ate chondrocyte apoptosis for the treatment of OA. Liao 
et al. [134] demonstrated that BMSCs-derived exosomes 
(BMSCs-Exos) can improve the apoptosis of nucleus 
pulposus cells induced by ER stress. Can BMSCs-Exos 
attenuate osteoblast apoptosis by inhibiting excessive ER 
stress? This may be a new mechanism of exosome pro-
moting osteogenesis, which needs to be verified by future 
experiments.

Effects of ER stress pathways on angiogenesis
Appropriate ER stress contributes to angiogenesis
ER stress promotes the differentiation of monocytes into 
ECs, leading to angiogenesis [147,  148], suggesting that 
ER stress can promote angiogenesis. The angiogenic 

Fig. 2 PRP-Exos rescued cells from GC-induced apoptosis via the Akt/
Bcl-2 pathway [132]. Tao SC, Yuan T, Rui BY, Zhu ZZ, Guo SC, Zhang 
CQ. Exosomes derived from human platelet-rich plasma prevent 
apoptosis induced by glucocorticoid-associated endoplasmic 
reticulum stress in rat osteonecrosis of the femoral head via the Akt/
Bad/Bcl-2 signal pathway. Theranostics. 2017;7(3):733–50. Copyright© 
The Authors 2017. Published by Ivyspring International Publisher
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effect of ER stress is mediated by regulation of angiogenic 
factors by the UPR. Appropriate ER stress triggers the 
production of angiogenic factors [149,  150]; however, the 
mechanism is unclear.

Three UPR signaling pathways bind to regulatory 
regions of VEGFA, and jointly drive VEGFA transcription 
[151,  152]. ER stress initiates angiogenesis signaling via 
UPR-mediated upregulation of VEGFA [153,  154]. The 
inducible ER chaperone oxygen-regulated protein 150 
(OPR150) promotes the expression of VEGFA in patho-
logical conditions and is a potential target for regulating 
angiogenesis [155]. Under ER stress, the IRE1ɑ-XBP1 
pathway promotes tumor angiogenesis [156]– [158], the 
PERK-ATF4 pathway promotes bone angiogenesis [153,  
159], and the ATF6 pathway promotes embryonic angio-
genesis [160], by upregulating VEGFA. Binet et al. [161] 
reported a pro-angiogenic role for the UPR in diseases 
characterized by pathological vascular abnormalities. 
Therefore, targeted regulation of angiogenesis through 
the UPR has therapeutic potential for vascular necrotiz-
ing diseases. VEGFA can spontaneously increase in 
acute myocardial ischemia, inducing intracellular  Ca2+ 
overload and activating ER stress in a positive-feedback 
loop [162]. Excessive ER stress induces BMSCs apopto-
sis [128], and VEGFA stimulates the differentiation of 
BMSCs into ECs, thus protecting BMSCs and promot-
ing angiogenesis [163]. Increased spontaneous VEGFA 
production also promotes compensatory angiogenesis 
through the ROS-ER stress-autophagy axis [162].

The UPR also regulates vascular growth factors. 
For example, ER stress promotes angiogenesis by 
upregulating interleukin 8 (IL-8) [164], FGF2 [36], 

placental growth factor (PIGF) [165], and granulocyte–
macrophage colony stimulating factor (GM-CSF) [166] 
via different transcriptional mechanisms. However, 
pentraxin 3 (PTX3) has a high affinity for FGF2 and can 
inhibit its angiogenesis [167,  168], but Ma et al. [169] 
found that the ATF4 pathway activates SMAD-specific 
E3 ubiquitin ligase 2 and leads to PTX3 degradation, 
thus promoting angiogenesis. Philippe et al. [36] dem-
onstrated that the PERK pathway activates the transla-
tion of dependent internal ribosome entry site (IRES), 
thereby promoting the expression of the angiogenic 
factors VEGFA and FGF2. These studies have suggested 
potential therapeutic targets for ischemia in vascular 
necrotizing diseases.

Excessive ER stress impairs angiogenesis
Excessive ER stress impairs angiogenesis not only by 
reducing the transcription of pro-angiogenetic growth 
factors such as VEGFA [170– 172] and PIGF [173] but 
also by activating negative angiogenic regulators such 
as delta-like 4 (DLL4) IRES [174]. Excessive ER stress 
can induce apoptosis of ECs [175–178], thus suppress-
ing their angiogenesis [171]. Maamoun et  al. [179] 
showed that ER stress causes EC dysfunction, suggest-
ing that targeting ER stress could promote angiogenesis 
(Table 2). The ER stress-mediated decreased expression 
of angiogenic genes is related to age [180].

The anti-angiogenic effect of ER stress also has ben-
efits, such as inhibiting cancer progression [181]. ER 
stress can induce the expression of miR-153, which 
inhibits angiogenesis by two mechanisms, suggesting a 
novel therapeutic strategy for breast cancer [182].

Table 2 ER stress inhibitors used to promote angiogenesis

GB: Ginkgolide B; N/A: no animal; HBMECs: human brain microvascular endothelial cells; HUVECs: human umbilical endothelial cells; PTP1B: protein tyrosine 
phosphatase 1B; eNOS: endothelial nitric oxide synthase; SFN: sulforaphane; Cyt.c: cytochrome c; VECs: vascular endothelial cells; HO-1: Hemeoxygenase-1; PCB2: 
procyanidin B2; APCs: angiogenic progenitor cells

ER stress inhibitor Pathway Animal model Mechanism Refs.

GB CHOP, GPR78, caspase-12 Rat Promote perforator flap angiogenesis [210]

Quercetin ATF6/GPR78 N/A Protect HBMECs and promote angiogenesis [211]

Vitamin D GPR78, JNK1, eIF2ɑ, XBP-1 N/A Protect HUVECs and promote angiogenesis [212]

PTP1B inhibition PI3K/Akt N/A Protect HUVECs, activate eNOS and promote angiogenesis [171]

SFN ATF6/GPR78 Chick Promote embryo angiogenesis [213]

Naringin GPR78, CHOP, caspase-12, Cyt.c Rat Protect VECs and promote angiogenesis [214]

Salubrinal eIF2ɑ-ATF4-GPR78 Rat Promote HUVESs, upregulate VEGFA and promote angiogenesis [35]

HO-1 BiP, PERK-eIF2ɑ-ATF4 N/A Alleviate HG-induced HUVECs apoptosis and promote angiogenesis [172]

PCB2 PERK, IRE1ɑ and ATF6 Mouse Alleviate HG-induced ECs dysfunction and promote angiogenesis [192]

streptozotocin CHOP Mouse Alleviate HG-induced APCs dysfunction and promote vascular repair [193]

GSK2656157 PERK Mouse Alleviate GCs-induced ECs apoptosis and promote angiogenesis [116]
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Regulation of ER stress pathways to interfere 
with angiogenesis
HG impairs angiogenesis by activating ER stress pathways
In diabetic retinopathy (DR), HG damages normal 
blood vessels and causes abnormal neovascularization 
[183,  184]. ER stress is closely related to retinal angio-
genesis [185]. Wang et al. [186] showed that regulation 
of ER stress can inhibit abnormal neovascularization. 
However, whether damaged normal blood vessels can 
be restored by regulating ER stress is unknown.

HG rapidly activates ER stress in ECs [187] and 
angiogenic progenitor cells (APCs) [188], leading to 
microvascular EC dysfunction and impair angiogen-
esis [189]. ECs have a greater apoptotic effect under 
GC induction than do other cells [190,  191]. Gao et al. 
[116] demonstrated that GCs induce EC apoptosis by 
activating ER stress, leading to microvascular damage. 
Alleviating the ER stress induced by HG can coun-
teract HG-induced EC apoptosis [172], thus restor-
ing angiogenesis [192] and enhancing vascular repair 
by circulating angiogenic cells (CACs) [193] (Table 2). 
Inhibition of ER stress can prevent vascular damage 
by upregulating pro-angiogenic factors and down-
regulating anti-angiogenic factors [194]. Wang et  al. 
[195] found that an atypical UPR pathway mediated by 
IRE1ɑ regulates miRs, thereby protecting the pro-angi-
ogenic growth factor angiopoietin 1 (ANGPT1) from 
miR attack under HG conditions and promoting bone 
marrow–derived progenitor cell (BMPC) angiogenesis. 
Therefore, targeting ER stress is the key to reversing 
HG-induced vascular injury.

Regulation of ER stress pathways on angiogenesis 
under inflammatory conditions
In recent years, ER stress pathways secondary to 
inflammation have become new targets for intracel-
lular therapy. ER stress can induce nucleotide-binding 
domain and leucine-rich repeat containing (NLRP3) 
inflammasome through PERK and IRElα pathways, 
regulate the release of inflammatory cytokines, and 
trigger inflammatory response [196]. Wang et al. [197] 
demonstrated that there is a positive feedback loop 
between interleukin-17A (IL-17A) and ER stress, and 
that inhibition of ER stress or IL-17A can reduce the 
neovascularization area of DR. At present, inhibition 
of ER stress can alleviate inflammation and inhibit 
angiogenesis, which has been proved in both cell and 
animal experiments [186,  198]. Although ER stress 
pathway shows great potential in anti-inflammatory 
and anti-vascular therapy, more in-depth mechanism 
studies are needed before clinical trials.

Exosomes regulate angiogenesis by activating ER stress 
pathways
Exosomes promote angiogenesis by inducing the regen-
eration of damaged blood vessels by inhibiting EC apop-
tosis and promoting their angiogenic activity [199–202]. 
Tumor cell-derived exosomes deliver miR-25-3p to ECs, 
thereby disrupting ECs integrity, increasing vascular per-
meability, and promoting angiogenesis, thereby promot-
ing tumor metastasis [203]. Based on the role of ER stress 
in numerous pathological conditions, whether exosomes 
promote angiogenesis by regulating ER stress is a topic of 
interest. Tao et al. [132] have found that PRP-Exos acti-
vates the Akt pathway under ER stress, releasing multiple 
growth factors and promoting angiogenesis (Fig. 2).

Exosomes have a dual regulatory effect on angiogenesis. 
Angiogenesis can be inhibited by exosomes. For example, 
exosomal circular RNAs (circRNAs) act as signal carriers 
to trigger EC dysfunction [204], exosomes can enhance 
the inhibitory effect of the anti-angiogenic peptide KV11 
on pathological retinal angiogenesis [205], and circulat-
ing exosomal miR-20b-5p is transferred to vascular ECs 
to inhibit the regeneration of diabetic damaged blood 
vessels [206]. Wang et al. showed that ER-stressed HN4 
cell-derived exosomes modified by miR-424–5p inhibit 
angiogenesis by HUVECs [207].

Exosomes from different sources have different regula-
tory effects on angiogenesis under ER stress. Until now, 
studies on exosomes promoting angiogenesis by activat-
ing ER stress have focused on exosomes of tumor cell 
origin. Lin et al. [208] demonstrated that after knocking 
down PERK in HUVEC, HeLa cell-derived exosomes can 
significantly improve HUVEC proliferation. We know 
that BMSCs-Exos have great potential in promoting angi-
ogenesis [209], but whether ER stress may be a down-
stream pathway and whether we can enhance the ability 
of BMSCs-Exos to promote angiogenesis by regulating 
ER stress needs to be demonstrated in future studies.

Potential interventions related to ER stress 
pathways
Because the ER controls protein synthesis and degrada-
tion, ER stress is used clinically to restore myogenic dif-
ferentiation to treat uremic sarcopenia [215]. Moreover, 
clinical trials by Bella et al.  [216] suggested that ER stress 
may play a key role in the pathogenesis of amyotrophic 
lateral sclerosis by altering the regulation of protein bal-
ance, and that molecules acting on functional control of 
the UPR pathway may be beneficial in slowing disease 
progression, but subgroup analyses were not performed 
in this study. Therefore, this effect on targeting ER stress 
is considered exploratory. Besides, drugs targeting the 
IRE1ɑ-XBP1 pathway can inhibit vascular smooth muscle 
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apoptosis, thereby alleviating aortic dissection [217]. 
Dexmedetomidine pretreatment can effectively protect 
myocardial ischemia–reperfusion-induced acute kidney 
injury by inhibiting ER stress [218].

Regulation of ER-related signaling pathways is most 
commonly used in the treatment of tumor diseases. ER 
stress is an essential intermediate targeting pathway in 
tumor therapy. Activation of ER stress can increase the 
cytotoxicity of photodynamic therapy to tumor cells 
[219]. Chemotherapy can increase tumor (sarcoma and 
gastric cancer) sensitivity by activating ER stress [220,  
221]. Use of some chemotherapy drugs is limited by 
their toxicity. However, drugs that inhibit ER stress have 
reduced toxicity, and can be used in chemotherapy for 
cancer [222,  223]. Basic research by Varone et al. [224] 
showed that ISRIB (a small molecule that inhibits the 
action of phosphorylated eIF2ɑ) increases ER protein 
load, reactivates protein synthesis in damaged protein 
homeostasis, and ultimately promotes tumor cytotoxic-
ity. ISRIB offers a new treatment option that can effec-
tively inhibit tumor progression in conditions with 
impaired protein balance.

Although the mechanism of ER stress has been rela-
tively clear, the current research on the intervention 
effect of ER stress in many diseases such as different types 
of diabetes and its complications is far from enough. 
Regulating a key signaling pathway node in the complex 
process of ER stress to affect the occurrence and develop-
ment of diseases is an important target for drug therapy 
exploration, which has important clinical guiding value 
and practical significance. Further large-scale and long-
term studies are needed to confirm the clinical benefits 
of this new pharmacological protocol, which may provide 
a promising therapeutic approach for targeted therapies 
for a number of diseases in the clinic.

Conclusion and perspective
In regenerative medicine, bone defects can be improved 
by promoting angiogenesis and osteogenesis. Our 
research has focused on inducing the regeneration of 
dead blood vessels and bone. ER stress is involved in 
many diseases. ER stress is a double-edged sword; its 
activation can promote cell generation, but excessive 
activation can induce apoptosis. ER stress plays a dual 
role in osteogenesis and angiogenesis, and thereby deter-
mines cell fate. Here we systematically reviewed the 
effect of ER stress on osteogenesis and angiogenesis. ER 
stress can be activated in pathological conditions such 
as HG and inflammation, or by inducers, and is inacti-
vated by inhibitors. Therefore, regulation of ER stress has 
potential as a therapeutic target to promote osteogenesis 
and angiogenesis. Although regulating ER stress stimu-
lates osteogenesis and angiogenesis, the mechanism is 

unclear. Efforts should focus on unraveling the mecha-
nisms underlying the roles of ER stress in osteogenesis 
and angiogenesis.

Acellular therapy, such as exosome-mediated regula-
tion of ER stress, is a focus of research. BMSCs-Exos have 
great potential for osteogenesis and angiogenesis, and we 
propose to hypothesize that ER stress can act as a down-
stream pathway for their regulation. Our future studies 
will further clarify the mechanism by which BMSCs-Exos 
promote angiogenesis and bone regeneration by regulat-
ing ER stress. Further research on the mechanism of ER 
stress regulating osteogenesis and angiogenesis will be 
helpful for the repair of bone defects.
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