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Abstract 

Background and Aims We sought to identify novel molecular subtypes of ulcerative colitis (UC) based on large-
scale cohorts and establish a clinically applicable subtyping system for the precision treatment of the disease.

Methods Eight microarray profiles containing colon samples from 357 patients were utilized. Expression hetero-
geneity was screened out and stable subtypes were identified among UC patients. Immune infiltration pattern 
and biological agent response were compared among subtypes to assess the value in guiding treatment. The 
relationship between PRLR and TNFSF13B genes with the highest predictive value was further validated by functional 
experiments.

Results Three stable molecular subtypes were successfully identified. Immune cell infiltration analysis defined three 
subtypes as innate immune activated UC (IIA), whole immune activated UC (WIA), and immune homeostasis like UC 
(IHL). Notably, the response rate towards biological agents (infliximab/vedolizumab) in WIA patients was the lowest 
(less than 10%), while the response rate in IHL patients was the highest, ranging from 42 to 60%. Among the featured 
genes of subtypes, the ratio of PRLR to TNFSF13B could effectively screen for IHL UC subtype suitable for biological 
agent therapies (Area under curve: 0.961–0.986). Furthermore, we demonstrated that PRLR expressed in epithelial 
cells could inhibit the expression of TNFSF13B in monocyte-derived macrophages through the CXCL1-NF-κB pathway.

Conclusions We identified three stable UC subtypes with a heterogeneous immune pattern and different response 
rates towards biological agents for the first time. We also established a precise molecular subtyping system and classi-
fier to predict clinical drug response and provide individualized treatment strategies for UC patients.
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Introduction
Ulcerative colitis (UC) is one of the two types of inflam-
matory bowel diseases (IBD), characterized by chronic 
inflammation from the rectum to the proximal colon [1]. 
UC is a huge economic burden worldwide, which gener-
ates an estimated total expenditure of nearly US$10 bil-
lion per year in the USA and €30 billion in Europe [2].

Five-aminosalicylic acid, corticosteroids, thiopurines, 
anti-tumor necrosis factor (TNF) agents, anti-adhesion 
therapy/anti-integrins, calcineurin Inhibitors, and Janus 
Kinase Inhibitor therapy all contribute to the clinical 
remission of UC [3, 4]. However, drug resistance, dis-
ease recurrence, and adverse effects of the medication 
are major factors that lead to poor clinical outcomes in 
patients. For biological agents such as Infliximab and 
Vedolizumab, the total response rate of patients was less 
than 40% [5–7], which indicates possible heterogene-
ity among patients. Herein, it is urgent to elucidate the 
subclassing of UC to avoid confounding therapies. How-
ever, only limited studies concentrated on the molecular 
subtyping of UC. Intriguingly, it has been discovered that 
the mucosa of Crohn’s disease (CD) in adults could be 
divided into normal-like and ileum-like subtypes, which 
differed in surgical treatment incidence, suggesting the 
significance of IBD subtyping [8]. In contrast, molecular 
sub-classifications of UC have not been reported yet.

To establish a molecular subtyping system for UC, 
we first identified the heterogeneity via consensus clus-
tering based on training UC colon samples from public 
datasets. Three stable subtypes of UC: Innate Immune 
Activated (IIA), whole Immune Activation (WIA), and 
Immune Homeostasis Like (IHL) were defined using 
CrossICC algorithm and immune cell infiltration evalua-
tion. IHL was identified to have the best response rate to 
biological agents among the three subtypes. We further 
discovered that the expression ratio of prolactin recep-
tor (PRLR) to tumor necrosis factor superfamily member 
13b (TNFSF13B) could facilitate IHL identification. The 
underlying mechanism was that PRLR in epithelial cells 
inhibited CXCL1 secretion and the NF-κB-TNFSF13B 
axis in macrophages to attenuate inflammatory reactivity. 
Collectively, this is the first molecular classification sys-
tem established for UC to optimize the selection of bio-
logical agent therapy, which is potentially translatable to 
clinical practice.

Materials and methods
Data resources and clinical samples
In the current study (Fig.  1), datasets of UC were 
obtained from Gene Expression Omnibus (GEO). After 
selection, GSE87466, GSE107499, and GSE75214 were 
adopted as training cohorts. GSE83687 and GSE126124 

were used as validation cohorts while GSE114527, 
GSE73661, and GSE16879 were used to compare the 
drug responses, in which samples were collected prior to 
treatment [9–15]. For the included datasets, only colon 
tissue samples were included for analysis. The expression 
profiles all underwent log2 transformation. Two single-
cell RNA-sequencing (scRNA-Seq) datasets, GSE182270 
and GSE150115 were applied to determine cell types in 
which feature genes were predominantly expressed [16, 
17], which underwent Seurat standard pipeline. Informa-
tion of the included datasets is listed in detail (Additional 
file 1: Table S1).

Twelve UC patients with active disease were enrolled 
in Huashan Hospital, Fudan University, Shanghai from 
September 2021 to Feburary 2023. Prior to biological 
agent treatment, the mucosal samples were collected 
and stored at -80  °C protected by RNA-later for RNA 
sequencing or underwent formalin fixation and paraffin 
embedding for immunofluorescence analysis. Patients 
received repeat colonoscopy after 8  weeks of biological 
agent treatment. Treatment response was defined as a 
total Mayo score less than or equal to 2, with no subscore 
larger than 1 and a rectal bleeding subscore equal to 0 at 
8  weeks (Table  1, Additional file  1: Table  S2). Informed 
consent was obtained from all the patients included in 
the present study. The detection of the human tissues 
involved in the study was received ethical approval of the 
Ethical Committee of Medical Research, Huashan Hospi-
tal of Fudan University (No 2013-005).

Principal component analysis (PCA) consensus clustering
PCA was employed for sample selection via prcomp 
function. For the sample selection, only pathological tis-
sues from patients with active disease which were dis-
tanced from the normal mucosa in PCA were included. 
Consensus clustering was used to preliminarily discover 
the heterogeneity of UC with ConsensusClusterPlus 
package [18]. Common genes were intersected and batch 
effect was removed with Combat function for samples 
prepared for consensus clustering. Clusters were yielded 
by k-means and Euclidean distance. Consensus score was 
then calculated. The optimal number of clusters was con-
sidered to have a score higher than 0.8 for each cluster. To 
generate a precise classification, the number of clusters 
should be as many as possible. Differentially expressed 
genes (DEGs) were partitioned into DEGs for each sub-
type compared with normal samples and DEGs for each 
subtype compared with other subtypes. Genes with log2 
mean difference which was larger than 0.2 and FDR less 
than 0.05 were considered as DEGs [19].

Stable subtypes were finally identified by CrossICC, 
which is a novel subtyping algorithm that avoids the con-
founding effect in the process of removing batch effect 
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[20]. Subtypes of external validation datasets could be 
predicted with the predictor function of CrossICC.

Functional enrichment and WGCNA
Biological process of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analy-
sis was applied for the functional annotation via clus-
terProfiler package [21]. The feature genes identified by 
consensus clustering underwent WGCNA [22]. Hier-
archical clustering was conducted on the samples to 
remove abnormal ones. Soft threshold (power value) 
was determined when the scale-free fit index (signed R2) 
reached 0.85 to ensure that the relationship of the genes 

reached a scale-free network. The feature genes were 
ultimately clustered into different gene modules for the 
downstream analysis.

Evaluation of immune cell infiltration and gene signature
CIBERSORT (R version 1.03) was utilized to evaluate 
the infiltration of 22 types of immune cells of each UC 
sample [23]. Subsequently, samples with P value larger 
than 0.05 were removed to ensure a reliable evaluation. 
In order to calculate the absolute infiltration score of the 
immune cells, single sample gene set enrichment analysis 
(ssGSEA) was applied with the gene sets extracted from 

Fig. 1 Workflow of the study
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a recent study via GSVA package with gene sets obtained 
from a past research [24, 25].

Gene sets to evaluate the epithelial functions and thera-
peutic targets of UC were obtained from GSEA-MSigDB 
(http:// www. gsea- msigdb. org/). GSVA package was also 
employed to calculate the enrichment score of each sam-
ple. For therapeutic targets, classic targets leukotriene 
and thrombin, prostaglandin and platelet were included. 
TNF, integrin and Janus kinase pathway inhibitors were 
included as advanced targets (Additional file 1: Table S3).

Dimensional reduction and identification of dependent 
biomarkers
Boruta package was employed for the dimension reduc-
tion which applied the random forest algorithm to 
extract features and the order of them was scrambled 
to calculate the importance of features [26]. Setting the 
maximal number of importance source runs to 100 and 
the tree numbers to 500, confirmed variates were left for 
tenfold cross-validated Least Absolute Shrinkage and 
Selection Operator (LASSO) regression. The expres-
sions of included genes were scaled in each sample. Ten-
fold cross-validated Support Vector Machine (SVM) was 
applied to verify the significance of the 16 genes with best 
cost and gamma value set using e1071 package. To iden-
tify the smallest number and concise crucial biomarkers 
which could accurately distinguish the subtypes, genes 
with the absolute value of the coefficient larger than 1 
were selected to calculate the expression ratio.

RNA‑sequencing (RNA‑seq)
The total RNA of the clinical UC tissues and cell lines 
was extracted by TRIzol Reagent (Invitrogen, Califor-
nia, USA). The total amount of RNA was quantified by 

NanoDrop ND2000 (Thermo Fisher Scientific, Mas-
sachusetts, USA). cDNA library was built by TruSeq 
RNA sample preparation Kit (Illumina, San Diego, CA, 
USA) and the fragment sequencing was conducted on 
Illumina hiseq3000. Quality control of the sequencing 
results was done by fastQC and the data was filtered 
via trim_galore, after which the sequencing was aligned 
into Homo sapiens GRCh38 with Hisat2, quantified by 
featureCounts. The RNA-sequencing was performed in 
Neo Bio-technology (Shanghai, China).

Immunofluorescence
Paraffin-embedded colonic mucosa sections first 
underwent deparaffinization and antigen retrieval 
and was then blocked with 5% BSA for 30  min. Then, 
the section was incubated with anti-PRLR (Abcam, 
ab170935, Cambridge, UK, 1: 250) and anti-TNFSF13B 
(Abcam, ab203791, 1: 100), and anti-CD11b (Abcam, 
ab52478, Cambridge, UK, 1: 250) at 4  °C overnight, 
with antibodies diluted in primary antibody dilution 
buffer (Servicebio, Wuhan, China). Subsequently, the 
tissues were washed by PBS for 3 times and incubated 
with fluorescent-labeled secondary antibody diluted 
in PBS at room temperature for 45  min (Servicebio, 
GB21303, 1:300; GB25303, 1: 400). Finally, DAPI stain-
ing was conducted at room temperature for 20  min. 
Fluorescence microscope (Olympus IX73, Tokyo, 
Japan) was used to observe the fluorescent images.

Cell line
Human intestinal epithelial cell line Caco-2 and human 
monocyte cell line THP-1 were purchased from ATCC 
(Manassas, Virginia, USA). Caco-2 was cultured in 
Dulnecco’s Modified Eagle’s Medium (DMEM), sup-
plemented with 20% fetal bovine serum (FBS; Gibco, 
New York, USA) and penicillin (100  U/mL)-strepto-
mycin (100  U/mL). THP-1 was cultured in Roswell 
Park Memorial Institute (RPMI) 1640 medium sup-
plemented with 10% FBS. For the induction of THP-1 
monocytes to macrophages, cells were treated by phor-
bol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, 
Missouri, USA) for 48 h. To mimic the in vivo inflam-
matory status of colon, Caco-2 was stimulated with 
1  μg/mL Lipopolysaccharide (LPS) for 48  h. Then, the 
culture supernatant was collected and added to THP-1 
macrophages [27]. To antagonize CXCR2 of THP-1, the 
sole receptor of CXCL1, THP-1 cells were pretreated 
with CXCR2 antagonist SB225002 for 30  min (Sell-
eck, Texas, USA, 10  μM). To inhibit NF-κB of THP-1, 
we used NF-κB inhibitory Bay 11-7082 to pretreated 
THP-1 cells for 30 min (Sigma-Aldrich, 1 μM).

Table 1 Information of the patients in FDUHS cohort

Patients Gender Age Treatment Response Subtype

P1 Male 24 Vedolizumab NR IIA

P2 Male 59 Vedolizumab NR IHL

P3 Female 49 Vedolizumab NR WIA

P4 Male 31 Vedolizumab R IHL

P5 Female 39 Vedolizumab NR WIA

P6 Female 42 Infliximab NR WIA

P7 Female 54 Infliximab R IHL

P8 Female 34 Infliximab R IHL

P9 Male 40 Vedolizumab NR WIA

P10 Male 43 Vedolizumab NR WIA

P11 Male 63 Vedolizumab R IHL

P12 Male 62 Vedolizumab NR IHL

http://www.gsea-msigdb.org/
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Plasmid construction, lentivirus production and cell 
infection
To construct cell line that overexpressed PRLR, the whole 
length cDNA of PRLR (NM_000949) was cloned into 
GV492 (Ubi-MCS-3FLAG-CBh-gcGFP-IRES-puromy-
cin) (Genechem, Shanghai, China). Primers for PRLR 
were used as following:

Forward primer (5′ − 3′): AGG TCG ACT CTA GAG 
GAT CCC GCC ACC ATG AAG GAA AAT GTG GCATC, 
Reverse primer (5′ − 3′): TCC TTG TAG TCC ATA CCG 
TGA AAG GAG TGT GTA AAA CATG.

GV492 containing PRLR cDNA (20  μg), packag-
ing plasmid pHelper 1.0 (15 μg) along with pHelper 2.0 
(10 μg) were co-transfected into 293 T. After 6 h, medium 
was discarded and fresh medium was added. The super-
natant of 293 T cells was collected 48 h after transfection 
and underwent ultracentrifuged and resuspend. Sub-
sequently, Caco-2 cell line was transfected by the lenti-
virus containing PRLR (Titer = 1E + 9 TU/ml, MOI = 10, 
HitransG P Infection Enhancer (Genechem)), and then 
further selected by puromycin. Empty GV492 was used 
as negative control lentivirus.

Quantitative real‑time PCR (qRT‑PCR)
Total RNA of cell lines was extracted by TRIzol (Invitro-
gen). Complementary DNA was acquired using Hifair III 
1st Strand cDNA Synthesis SuperMix for qPCR (gDNA 
digester plus) (Yeasen, Shanghai, China). qRT-PCR was 
conducted with the Hieff qPCR SYBR Green Master Mix 
(Yeasen) according to the manufacturer’s instructions. 
Subsequently, relative transcript expression was calcu-
lated by the ΔΔCt method, with ACTB (β-actin) applied 
as the endogenous reference. The primer sequences used 
in the qRT-PCR are as following:

PRLR Forward primer (5′ − 3′): TCT CCA CCT ACC 
CTG ATT GAC, PRLR Reverse primer (5′ − 3′): CGA 
ACC TGG ACA AGG TAT TTCTG.

BAFF Forward primer (5′ − 3′): GGG AGC AGT CAC 
GCC TTA C, BAFF Reverse primer (5′ − 3′): GAT CGG 
ACA GAG GGG CTT T.

Western blotting
Total protein was lysed in RIPA (Thermo Fisher Sci-
entific) along with protease and phosphatase inhibi-
tor cocktail, quantified by BCA Assay. Protein samples 
were separated on non-reducing SDS-PAGE 12% Tris–
HCl gels (Beyotime, Shanghai, China) and then trans-
ferred onto PVDF membranes. The membrane was 
then blocked in 5% skimmed milk for 1  h, after which 
the membrane was incubated with primary antibodies 
diluted in primary antibody dilution buffer (Beyotime, 
Shanghai, China) overnight at 4  °C followed by incuba-
tion with horseradish peroxidase-conjugated secondary 

antibodies. Blots were developed with chemiluminescent 
detection reagent and imaged with a Chemiluminescent 
Imaging System (Tanon, Shanghai, China). Western blot 
quantification was conducted using ImageJ. The west-
ern blot antibodies, were listed as follows: anti-PRLR 
(Abcam, ab170935, 1: 1,000), anti-TNFSF13B (Abcam, 
ab224710, 1: 1,000), anti-GAPDH (Cell Signaling Tech-
nology, 5174, Massachusetts, USA, 1: 1,000), anti-NF-κB 
p65 (Cell Signaling Technology, 8242, 1: 1,000), anti-
Phospho-NF-κB p65 (Ser536) (Cell Signaling Technology, 
3033, 1: 1,000), anti-rabbit IgG (Cell Signaling Technol-
ogy, 7074, 1: 5,000 in Tris Buffered Saline-Tween).

Statistical analysis
Wilcoxon test was used for the comparison of continu-
ous variables between the two subtypes. Kruskal–Wallis 
test was used for comparisons among multiple subtypes. 
Chi-square test and Fisher test were applied for categori-
cal variable. All the statistical analysis was done in R (ver-
sion 4.0.3).

Results
Identification of the heterogeneity of UC
As shown in the study workflow (Fig. 1, panel 2), samples 
were carefully screened before inclusion to ensure sam-
ple quality. PCA was applied to reveal the distribution of 
the samples in each dataset. For GSE87466, 87 diseased 
tissues were included (Additional file 1: Figure S1a). For 
GSE107499, only pathological samples were included 
(Additional file 1: Figure S1b). For GSE75214, tissues in 
the active disease state were enrolled (Additional file  1: 
Figure S1c). Subsequently, batch effect among 3 datasets 
was removed (Additional file 1: Figure S1d, e). We further 
demonstrated that the samples (n = 208) included were 
indeed distinguished from excluded samples (Additional 
file 1: Figure S1f ). Collectively, the samples we included 
were comparable and evenly distributed in three datasets.

Then, we sought to identify whether there was dis-
tinct heterogeneity amongst the included UC samples. 
Consensus clustering was applied to the 208 enrolled 
UC mucosal tissues, which subdivided the samples into 
3 clusters. (Fig.  2a, Additional file  1: Figure S2). Addi-
tionally, there were no differences in gender, age, or dis-
ease severity among the 3 UC clusters (Additional file 1: 
Table S4), which indicated that the clinical characteristics 
could not reflect molecular heterogeneity.

The feature genes of each sample were identified for 
preliminary exploration of the UC clusters. In Cluster 
I, 95 genes were identified as significantly up-regulated 
DEGs compared with other clusters, 2619 genes were 
considered as up-regulated DEGs for Cluster II and 2704 
DEGs were up-regulated in Cluster III. Additionally, the 
biological process of GO enrichment demonstrated that 
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DEGs in Cluster I were enriched in inflammatory and 
anti-bacterial response, DEGs in Cluster II were mainly 
involved in metabolic pathways, while DEGs in Cluster 
III were enriched in the immune and extracellular matrix 
organization (Fig. 2b).

To obtain a more profound understanding of the DEGs 
that were identified, WGCNA was employed to analyze 
the total 5418 genes and 208 included UC samples. Three 
samples regarded as outliers were removed (Additional 
file 1: Figure S3a). With soft power set to 13, thirteen gene 
modules were identified (Additional file  1: Figure S3b, 

c). The expressions of up-regulated DEGs, data sources, 
and clinical traits of each cluster along with the WGCNA 
modules were presented (Fig. 2c, d). There were no sta-
tistical differences for various clinical phenotypes among 
these three clusters, including lesion location and endo-
scopic severity (Fig.  2c). GO analysis further identified 
the biological process involvement of the genes in each 
module, those with statistical significance were marked 
with a triangle (Additional file  1: Figure S3d). Modules 
such as black, pink, and green participated in cytokine-
cytokine receptor interaction and were closely related to 

Fig. 2 Identification of the heterogeneity of UC. a Consensus clustering assigned the samples into 3 clusters. b Gene Ontology (GO) enrichment 
of the DEGs of each cluster. c Heatmap of Gene expression classified by modules identified by WGCNA. d The module-trait relationship heatmap. e 
Dot plot of the GO enrichment of the genes in each WGCNA module
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Cluster III, while modules such as red, turquoise, and tan 
were mainly involved in metabolic pathways and were 
associated with Cluster II (Additional file 1: Figure S3d, 
Table  S5). Collectively, there were distinct crucial gene 
modules within Cluster II and III, indicating the hetero-
geneity of UC mucosa.

Three stable subtypes in UC were determined by CrossICC
From the aforementioned data, the heterogeneity of UC 
mucosa at a transcription level had been initially identi-
fied. But as shown in WGCNA, the uniqueness of Clus-
ter I has yet to be revealed, which may be attributed to 
the confounding effect accompanied by the removal 
of the batch effect. Thus, we leveraged CrossICC as the 
main subtyping strategy, which provided a novel pipeline 
that did not rely on eliminating batch effects. Given the 
3 datasets, a variety of subtypes along with their marker 
genes were identified, in which Subtypes 1, 2, and 3 
existed steadily in each dataset, while Subtypes 4 and 5 
were unreliably missing in individual cohorts (Fig. 3a–c). 
Additionally, the detailed subtyping results and marker 
genes of each subtype were recorded (Additional file  1: 
Tables S6, S7).

Next, CrossICC was validated on two external data-
sets GSE83687 and GSE126124, with all the feature 
genes (n = 540) derived from CrossICC applied. It was 
confirmed that the Subtype 1, 2, and 3 could be distin-
guished in external cohorts (Fig. 3d, e). Furthermore, to 
demonstrate the clinical applicability of the subtypes, we 
imposed CrossICC on the RNA-seq results of 12 patients 
enrolled from Huashan Hospital, Fudan Univerisity 
(FDUHS). We discovered that CrossICC could also iden-
tify distinct subtypes in the FDUHS cohort, including the 
stable Subtypes 1, 2, and 3 (Fig. 3f, Table 1).

Moreover, Biological process enrichment for the exem-
plar genes in each subtype revealed that neutrophils were 
activated in Subtype 1 (Fig. 3g). Marker genes in Subtype 
2 were involved in the activation pathways of multiple 
immune cells (Fig.  3h). Also, marker genes in Subtype 
3 no longer participated in immune-related pathways 
(Fig.  3i). Taken together, we demonstrated that the 3 
subtypes appear steady in UC patients with distinctive 
features.

Three subtypes of UC exhibit heterogeneous patterns 
in immune cell infiltration
Considering that UC is a disease highly associated with 
the immune response, we wondered whether immune 
cell infiltration could recapitulate the difference among 
the 3 subtypes. CIBERSORT was applied to evaluate the 
infiltration proportion of different immune cells in each 
subtype of UC. A remarkable elevation of neutrophils 
and mast cells was observed in Subtype 1 compared to 

normal tissues, which was labeled as IIA UC (Fig. 4a). On 
the other hand, we noticed a fierce activation of multiple 
immune cells but a smaller proportion of mast cells in 
Subtype 2, which we labeled as WIA UC (Fig. 4b). Inter-
estingly, the distribution of immune cells in Subtype 3 
exhibited similarity with normal mucosa (Fig. 4c). Thus, 
Subtype 3 was termed IHL UC. Furthermore, the enrich-
ment of 28 immune cell gene sets via ssGSEA robustly 
verified the different infiltration patterns in the 3 sub-
types of UC (Fig. 4d).

Subsequently, to integrate the relationships among 
clusters identified by consensus clustering and the IIA, 
WIA and IHL of CrossICC, Sankey diagrams were plot-
ted in each dataset. Notably, Cluster III was projected 
to IHL as expected, and Cluster II was stably projected 
to WIA. For Cluster I, projection to IIA, WIA, and IHL, 
as well as some undetermined subtypes were derived 
(Fig.  4e). Hence, the heterogeneity identified by con-
sensus clustering could be demonstrated in CrossICC, 
which identified IHL to be a subtype with a normal-like 
immune microenvironment, while the clinical impact of 
IHL requires further exploration.

IHL owns the best response to anti‑TNF or anti‑integrin 
therapy
To ensure the subtyping of UC possesses clinical signifi-
cance, we focused on the differences in the clinical out-
comes and drug responses among subtypes, especially 
the IHL subtype and other immune-activated subtypes. 
First, we compared the disease severity between IHL and 
other subtypes. Interestingly, the distribution of limited 
and extensive diseases showed no significant differences 
between the two groups (P = 0.3774) (Fig. 5a), which indi-
cated that the two groups cannot be differentiated by 
colonoscopy. In addition, with the subtype prediction of 
GSE114527, we also demonstrated that the response to 
glucocorticoids of IHL and other subtypes showed no 
significant difference (Fig. 5b).

Hence, with regard to the immune heterogeneity, 
GSE73661 and GSE16879, which contained the treat-
ment outcomes of biological agents, were used to 
evaluate the response rate of IIA, WIA, and IHL sub-
types to biological agents. Notably, Infliximab and 
Vedolizumab yielded the highest response rate in IHL 
(P = 0.044) (Fig.  5c, d). Besides, the enrichment of the 
key therapeutic targets further exhibited that multiple 
treatment targets were activated in IIA and WIA, which 
could explain the poor treatment response of these two 
subtypes (Additional file 1: Figure S4a). For GSE16879, 
it was also explicit that WIA showed the worst Inf-
liximab treatment response rate (100% non-response), 
while the response rate of IHL was the best (P = 0.024) 
(Fig.  5e, f ). Moreover, the enrichment of therapeutic 
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targets also exhibited similar results (Additional file 1: 
Figure S4b). Remarkably, the patient who responded to 
biological agents in the FDUHS cohort also belonged 

to IHL, while IIA and WIA subtypes had no respond-
ers (Fig. 5g, Table 1, Additional file 1: Table S2). Addi-
tionally, 25–29% of IIA patients in GSE73661 and 

Fig. 3 CrossICC assigned UC into three stable subtypes. a–c CrossICC identified subtypes in training cohorts a GSE87466, b GSE107499 and c 
GSE75214. d–e CrossICC validated the stability of subtypes in validation cohorts d GSE83687 and e GSE126124. f The application of CrossICC 
on a small FDUHS cohort quantified by RNA-seq. g–i GO analysis of the feature genes of g Subtype 1, h Subtype 2 and i Subtype 3
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GSE16879 presented a drug response, which molecu-
larly showed the activation of the tryptophan meta-
bolic pathway but possessed the same immune patterns 
with IIA non-responders (Fig.  4c, d). Collectively, we 

demonstrated that UC patients with the IHL subtype 
should benefit from biological agents in clinical therapy.

Fig. 4 Immune cell infiltration of the 3 subtypes in CrossICC. a–c Immune cell infiltration proportion of (a) Subtype 1 (IIA), b Subtype 2 (WIA) and c 
Subtype 3 (IHL) by CIBERSORT. d ssGSEA evaluated the immune cell infiltration abundance in three subtypes. e Sankey Diagram of the correlation 
between consensus clustering and CrossICC
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The ratio of PRLR to TNFSF13B predicts IHL accurately
Since patients with the IHL subtype showed promise in 
benefiting from biological agent therapy, the identifica-
tion of IHL patients to optimize the choice of treatment 
is needed. As shown in the workflow diagram (Fig.  1), 
random forest from the Boruta package was first applied 
to the 208 samples as a training cohort, filtering the 

total 460 non-repetitive marker genes to 108. Secondly, 
LASSO regression was applied to further reduce the vari-
ates to 16 (Table 2). Furthermore, the public scRNA-Seq 
dataset GSE182270 indicated the location of each of the 
16 genes (Additional file  1: Figure S5a). Subsequently, 
SVM was built based on the scaled 16 genes, with the best 
gamma value set to 0.1 and cost set to 1. SVM exhibited 

Fig. 5 IHL owned the best response to anti-TNF or anti-integrin therapy a Severity of IHL under endoscopy was not statistically different from other 
subtypes. b There was no difference in the treatment of glucocorticoids for each subtype. c–d Three subtypes exhibited different response rate 
to Infliximab or Vedolizumab therapy in GSE73661. e–f Three subtypes exhibited different response rate to Infliximab therapy in GSE16879. g Three 
subtypes exhibited different response rate to Infliximab or Vedolizumab therapy in FDUHS cohort (IIA n = 1, WIA n = 5, IHL n = 6)
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an accuracy of 97.6% in the training cohort and reached 
an accuracy of 89.3% in the validation set GSE83687, 
as well as 94.4% in GSE126124 (Fig.  6a, left panel). The 
true positive rate, false positive rate, true negative rate, 
and false negative rate were also exhibited (Fig. 6a, right 
panel), which demonstrated that the 16 genes left were 
indeed important distinguishing factors.

Considering that the detection of 16 genes is still 
cumbersome, we sought to determine the least num-
ber of genes that could provide a concise approach to 
identify the IHL subtype. Since the crucial issue was 
to find a uniform prediction threshold among samples 
from different batches, we predicted that the expres-
sion ratio of two genes might be an ideal predictive 
signature. First, PRLR, SLC39A5, FGR, and TNFSF13B 
were selected because their LASSO coefficient (coef ) 
was greater than 1 or less than -1 (Table 1). Among the 
four genes, higher expression of PRLR or SLC39A5 rep-
resented a greater possibility of IHL (LASSO coef > 1). 
Conversely, higher expression of TNFSF13B and 
FGR represented a smaller possibility of IHL (LASSO 
coef < −1). Different ratio combinations of two genes 

with coefficients greater than 1 and less than −1 were 
tested, respectively, including PRLR/FGR, PRLR/
TNFSF13B, SLC39A5/FGR, and SLC39A5/TNFSF13B. 
Among the 4 combinations, only PRLR/TNFSF13B 
showed comparable predictive performance to the 
16-gene SVM model in both the training and validation 
sets (training cohort AUC = 0.961, validation cohort 
GSE83687 AUC = 0.967 and GSE126124 AUC = 0.986) 
(Additional file 1: Table S8, Fig. 6b). With the best cut-
off ratio set to 0.85 obtained from the training set, the 
sensitivity and specificity of the two-gene ratio was 
also exhibited, which indicated that the ratio of PRLR/
TNFSF13B might be a powerful index to determine the 
subtype (Fig. 6b).

To investigate the potential mechanism for how PRLR 
and TNFSF13B became reliable markers for subtyping, 
we referred to the scRNA-seq data. The data suggested 
that PRLR was expressed by epithelial cells, while 
TNFSF13B was mainly expressed in monocyte-derived 
myeloid cells, especially macrophages in both data-
sets GSE182270 and GSE150115 (Fig.  6c, Additional 
file 1: Figure S5b, c). Immunofluorescence analysis also 
showed the location of the two genes. (Fig. 6d, e). Fur-
thermore, GSE150115 demonstrated that TNFSF13B 
was indeed expressed in macrophages with a highly 
heterogeneous pattern in UC patients (Additional 
file 1: Figure S5d). To illustrate the clinical usability of 
PRLR to TNFSF13B ratio, we applied pathological sec-
tions from FDUHS cohort, containing IIA, WIA, IHL 
subtypes of UC patients and 2 normal colonic mucosa 
specimens. We co-stained PRLR and TNFSF13B and 
observed using immunofluorescence (Fig.  6f, upper 
panel: WIA, lower panel: IHL). Then, the positive sig-
nal rates of the two genes were counted under three 
random fields of view per section and obtained a total 
of 18 calculated results, which showed a contradict-
ing trend between the IHL and IIA types between 
IHL/normal and IIA/WIA subtypes (Additional file  1: 
Table  S9, Fig.  6g). Critically, co-stained immunofluo-
rescence-based PRLR and TNFSF13B ratios could still 
effectively identify IHL subtype at the aforementioned 
cut-off value of 0.85 (AUC = 0.951, Sensitivity = 88.9%, 
Specificity = 77.8%) (Fig.  6h). Thus, there might be 

Table 2 Sixteen genes and their coefficients obtained by Lasso 
regression

Gene Coefficient

TLR1 −0.3344

C1orf162 −0.0740

TNFSF13B −1.1931

CHI3L2 −0.7513

FAM126A −0.5278

LAMP3 −0.0165

SERPINB9 −0.1704

FGR −2.4344

SLC16A6 −0.8533

ELMO1 −0.2578

TFEC −0.0731

PRLR 1.2814

NEDD4L 0.3394

SLC39A5 1.0169

PCSK6 0.9738

TRAF1 −0.8707

Fig. 6 Clinically applicable panels and biomarkers for the subtyping. a Confusion matrixes and tables of true positive rate, false positive rate, 
true negative rate and false negative rate of the 16-gene SVM model. b Receiver operating characteristic curve evaluated the predictive potent 
of the ratio of PRLR and TNFSF13B and the sensitivity and specificity with the cutoff ratio set to 0.85. c Single-cell RNA sequencing (GSE182270) 
presented the location of PRLR and TNFSF13B. d Immunofluorescence confirmed the location of PRLR (Green: PRLR). e Immunofluorescence 
confirmed the location of TNFSF13B (Green: TNFSF13B, red: CD11b). f Immunofluorescence co-staining of PRLR and TNFSF13B in representative WIA 
(upper panel) and IHL subtype patients (lower panel). g Heatmap of immunofluorescence positivity signal rates of PRLR and TNFSF13B for patients 
(PT) and normal controls (CT). h Predictive ability of the ratio between immunofluorence signals of PRLR and TNFSF13B for determining IHL 
subtypes/normal and IIA/WIA subtypes

(See figure on next page.)
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an interaction between PRLR in epithelial cells and 
TNFSF13B in macrophages, which can affect the 
immune status and treatment outcome of UC patients.

Epithelial PRLR inhibited TNFSF13B through CXCL1‑NF‑κB 
signaling in macrophages
Finally, we sought to explore the interaction between 

Fig. 6 (See legend on previous page.)
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PRLR in epithelial cells and TNFSF13B in macrophages, 
and uncover the underlying reason why the ratio of 
PRLR/TNFSF13B could identify the molecular sub-clas-
sification and predict the outcome of UC patients. First 
of all, Caco-2 cells, divided into overexpressed or wild-
type PRLR (PRLR-OE or PRLR-WT, Additional file  1: 
Figure S6a), were stimulated with 1  μg/mL of LPS for 
48 h respectively. Then, the cultural supernatant of these 
Caco-2 cells was collected to stimulate PMA-pretreated 
THP-1 cells (Fig.  1), which was widely used as human 
macrophages [28]. As expected, TNFSF13B expression 
in THP-1 cells upon PRLR-OE Caco-2-derived cultural 
supernatant was much lower than that of PRLR-WT 
Caco-2-derived cultural supernatant, verified in both 
mRNA and protein levels (Fig.  7a, b). Results indicated 
that PRLR in epithelial cells was negatively correlated 
with TNFSF13B in macrophages. Meanwhile, we per-
formed RNA-sequencing for the PRLR-WT (n = 3) and 
PRLR-OE (n = 3) Caco-2 cells after LPS stimulation for 
48  h. Interestingly, KEGG enrichment for the signifi-
cantly down-regulated DEGs (Log2(Fold change) < −0.2, 
P < 0.05) revealed that cytokine-cytokine receptor inter-
action was downregulated in the PRLR-OE Caco-2 group 
compared with that of the PRLR-WT Caco-2 group 
(Fig.  7c). Among the down-regulated genes participat-
ing in cytokine-cytokine receptor interaction pathways, 
CXCL1 was selected for the largest fold change when 
comparing the PRLR-OE Caco-2 group with the PRLR-
WT Caco-2 group (Fig.  7d). Also, scRNA-seq from 
GSE182270 offered evidence that epithelial cells were one 
of the two main sources of CXCL1, while other cytokines 
were rarely expressed in epithelial cells (Fig.  7e, Addi-
tional file 1: Figure S6b). Consistently, an additional sup-
plement of CXCL1, especially at 100 nM, would recover 
the expression level of TNFSF13B in THP-1 cells stimu-
lated by the supernatant of PRLR-OE Caco-2 (Fig.  7f ). 
Furthermore, the above phenomenon could be abolished 
using CXCR2 inhibitory SB225002 (Fig.  7g), indicating 
that the PRLR-mediated TNFSF13B down-regulation 
in THP-1 cells depended on the decreased secretion of 
CXCL1 in Caco-2 cells. Since previous studies showed 
that CXCL1 could activate NF-κB signaling [29], we 

detected the NF-κB signaling in CXCL1-treated THP-1 
cells. Compared with THP-1 cells without CXCL1 back-
complementation, the phosphorylated NF-κB p65 was 
elevated in CXCL1-treated THP-1 cells (Fig.  7h). As 
expected, the CXCL1-induced TNFSF13B up-regulation 
was abrogated by the NF-KB inhibitor Bay 11–7082 
(Fig. 7i). Alternations of protein levels of TNFSF13B and 
NF-κB p65 after the use of SB225002 and Bay 11–7082 
were also confirmed (Additional file 1: Figure S6c). Lastly, 
we observed a negative correlation between PRLR and 
CXCL1 expression, but a positive correlation between 
CXCL1 and TNFSF13B expression in a cohort of UC 
patients (Fig.  7j). Moreover, IIA/WIA patients owned 
higher expression of CXCL1 than IHL, and CXCL1 
had a predictive value in distinguishing IIA/WIA and 
IHL (AUC = 0.774), implying the bridge role of CXCL1 
(Fig.  7k). Taken together, PRLR-mediated the decreased 
secretion of CXCL1 in epithelial cells suppresses 
TNFSF13B expression through CXCR2-NF-KB pathway 
in macrophages, which subsequently attenuates inflam-
mation. This may provide a rational explanation for why 
the ratio of PRLR/TNFSF13B can act as a reliable predic-
tion for the molecular sub-classification and outcome of 
UC patients.

Discussion
UC has imposed an increasing financial burden on the 
global healthcare system. The adverse effects caused by 
long-term treatment have received increasing attention 
[30, 31]. Thus, understanding the heterogeneity of UC to 
construct individualized treatment is urgently needed. 
In this study, based on 357 UC colon samples obtained 
from datasets, we first identified heterogeneity of UC 
with consensus clustering and WGCNA. Then, Cros-
sICC classified the UC patients into three stable sub-
types termed IIA, WIA, and IHL. Notably, IHL exhibited 
a normal intestinal mucosa-like immune cell infiltration 
pattern and presented the best response towards bio-
logical agents such as Infliximab and Vedolizumab, while 
WIA subtype had the worst response. Additionally, we 
demonstrated that the ratio of PRLR to TNFSF13B could 
be an effective biomarker to facilitate subtype screening 

(See figure on next page.)
Fig. 7 Epithelial PRLR inhibited TNFSF13B of macrophages through attenuated CXCL1-NF-κB signaling. THP-1 cells were pretreated with PMA 
for 48 h to induce the differentiation of macrophage. Then, these cells were stimulated with cultural supernatant of PRLR-overexpressed (OE) 
Caco-2 or PRLR-wide type (WT) Caco-2 for 24 h. a, b The mRNA and protein levels of TNFSF13B were detected by qRT-PCR and western blot, 
respectively. c RNA-sequencing was performed for the PRLR-WT (n = 3) and PRLR-OE (n = 3) Caco-2 cells after LPS stimulation for 48 h. KEGG 
enrichment for the significant down-regulated DEGs (Log2(Fold change) < -0.2, P value < 0.05) of PRLR-OE Caco-2 compared with PRLR-WT Caco-2 
cells. d Heatmap of the significantly down-regulated genes in cytokine-cytokine interaction pathway. e scRNA-seq from GSE182270 exhibited 
the expression levels of CXCL1 in different cell types. f, h THP-1-derived macrophages were stimulated with the supernatant of PRLR-OE Caco-2, 
and supplemented with different doses of CXCL1 for 24 h. TNFSF13B levels and phosphorylated NF-κB p65 were detected by western blot. g, i 
CXCR2 inhibitory SB225002 (10 μM) and NF-KB pathway inhibitor Bay 11–7082 (1 μM) were used to block the CXCL1-induced effect. The TNFSF13B 
levels were detected by qRT-PCR. j The correlation of PRLR or TNFSF13B with CXCL1 expression in the UC tissues (n = 208). k The CXCL1 expression 
in IIA/WIA and IHL, and the sensitivity of CXCL1 expression in IHL to distinguish from IIA/WIA
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Fig. 7 (See legend on previous page.)
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for precise treatment in UC. The underlying mechanism 
may be that PRLR impaired CXCL1 secretion in epi-
thelial cells, leading to the blockade of CXCR2-NF-κB-
TNFSF13B pathway in macrophages.

Notably, among our newly-identified three UC sub-
types, the main differences were the type and number 
of infiltrated immune cells, which have not been a point 
of interest in a previous study on CD patients, although 
the presence of molecular subtypes has been mentioned 
[8]. In the IIA subtype of UC, the most prominent char-
acteristic is the elevation of the innate immune response, 
especially neutrophils. Studies have revealed that neutro-
phils in UC patients (not in CD patients) formed neutro-
phil extracellular traps (NETs) [32], which strengthened 
the production of TNF-α and IL-1β in mononuclear cells 
and the expression of DDIT4/REDD1 protein, leading to 
epithelial damage [32, 33]. In addition, the neutrophil-
to-lymphocyte ratio was proposed to be a protective 
predictor of clinical relapse of UC [33], which showed 
concordance with the treatment outcome comparison 
in our study (Fig. 5). On the other hand, WIA identified 
in the study was characterized by the activation of both 
innate and adaptive immune, especially B cells and T fol-
licular helper cells (Tfh). Tfh cells which express CXCR5, 
ICOS, and PD-1 are crucial for the stimulation of B cells 
[34]. Activated B cells secrete antibodies of high affinity 
and cytokines to exacerbate UC [35, 36]. Additionally, 
the elevation of activated dendritic cells was observed in 
WIA, which was regarded as a crucial cell in the crosstalk 
of innate and adaptive immune in UC [37, 38].

Intriguingly, we discovered that the IHL subtype of UC 
exhibited a normal-like immune landscape and the best 
response rate towards biological agents, while the IIA, 
especially WIA subtypes showed poor response rates. 
These data suggested that the over-activation of innate as 
well as adaptive immune both contributed to the resist-
ance towards Infliximab and Vedolizumab. Similarly, 
recent studies revealed that CD patients with high infil-
tration of IgG plasma cells, inflammatory monocytes, 
T cells, and stromal cells exhibited resistance toward 
anti-TNF therapy [39]. So far, few studies elucidated the 
impact of the immune microenvironment on therapeutic 
outcomes in UC patients. Thus, one possible explana-
tion for the limited efficacy of biological agents in clinical 
practice is that single pathway-target therapy tends to be 
insufficient to handle multiple activated immunopatho-
logical signaling [39, 40]. In addition, nearly a quarter of 
patients with IIA might experience remission of biologic 
agents, not due to alterations in immune cells, but pos-
sibly due to activation of specific anti-metabolic path-
ways such as tryptophan metabolism [41–43]. However, 
the sample size (n = 3) of IIA responders is currently not 
sufficient to build predictive models to identify these 

patients. Therefore, more large cohorts containing treat-
ment outcomes are needed in the future to develop effec-
tive panels to predict the likely response of IIA patients.

Genes left by LASSO regression facilitate the under-
standing of the mechanisms of the heterogeneity of the 
immune microenvironment. In general, we noticed that 
the 16 genes reflected the balance between the inhibi-
tory effect of epithelium and the activation of myeloid 
cells. TNFSF13B, also named as the B-cell-activating fac-
tor of the TNF family [44, 45], was considered a nega-
tive factor for the anti-TNF or anti-integrin therapy in 
this study, reflected by a significant upregulation in the 
WIA and IIA subtypes and a large LASSO coefficient 
(Table  1). Integrating scRNA-seq and Immunofluores-
cence co-localization, our study showed that TNFSF13B 
was predominantly expressed in monocyte-derived 
myeloid cells, especially macrophages, which might be 
the crucial immunopathological factors in UC. Interest-
ingly, it was reported that there was a stratification of 
high and low plasma TNFSF13B in melanoma patients 
treated with anti-PD1/PDL1 therapy, which again hinted 
that TNFSF13B shared extensive heterogeneity between 
patients [46]. As a TNF ligand superfamily, TNFSF13B 
cannot be inhibited by conventional anti-TNFα agents 
such as infliximab [47]. Hence, we speculate that anti-
TNF therapy only targets the TNF signaling, while the 
impact of bypass and associated factors cannot be sup-
pressed, leading to drug resistance. Also, the TNF ligand 
superfamily and TNF receptor-associated factor might be 
potential targets for future treatment for the WIA or IIA 
subtypes [48–50].

Next, we attempted to elucidate the reason why patients 
(IHL) with higher expression of PRLR tend to be more 
sensitive to biological agents. Previous studies have dem-
onstrated that prolactin could act on short-form PRLR to 
impede the TRAF-dependent innate immune response 
induced by IL-1β, which also restricts the signaling of 
TNF-α and TLR4 [51]. Anti-PRLR could recruit T cells 
and promote IFN-γ and TNF-α produced by Th1 cells, 
indicating that PRLR expressed in epithelial cells can 
suppress T cells [52]. Moreover, prolactin can also upreg-
ulate the expression of IL-10 and downregulate IL-1β, 
TNF-α, and IL-12 to suppress the inflammatory mono-
cytes [53]. In this study, we suggested the novel role of 
PRLR expressed in intestinal epithelial cells, which inhib-
ited the CXCL1-NF-κB-TNFSF13B pathway to attenuate 
inflammation. As a classical chemokine, CXCL1 has been 
reported to be up-regulated in the inflammatory mucosa 
of UC [54, 55]. However, the potential role of epithelial 
cell-derived CXCL1 in response to biological agents in 
UC has not been reported. Currently, only a few existing 
drugs targeting the CXCL1-CXCR2 interaction between 
epithelial cells and macrophages are available. The 
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present study provided insight to the interplay between 
immune subtypes and inflammatory pathways in UC 
treatment.

Furthermore, our work emphasized the importance of 
human hormones and their receptors for immunopheno-
typing. Patients’ endogenous hormone and receptor lev-
els have a great impact on immune homeostasis, which 
was partially revealed by previous studies [56, 57]. For 
instance, the estrogen receptor (ER) has been of criti-
cal value for subtyping in the field of breast cancer, and 
androgen receptors (AR) also suppressed CD8 + T cells 
function [58, 59]. We discovered that the prolactin recep-
tor has the potential to inhibit TNF-associated factors as 
well as multiple cytokine-related pathways, while anti-
TNF or anti-integrin therapy can have a synergistic effect 
with PRLR. Thus, the future of biological therapy for UC 
should focus more on monitoring the patient’s endog-
enous hormones and their receptors, leveraging them for 
immunomodulation.

Conclusion
Collectively, our study revealed the molecular and 
immune heterogeneity of UC and classified patients 
into three subtypes: IIA, WIA, and IHL. In addition, we 
established a concise subtyping approach and explored 
the potential immunomodulatory mechanisms, which 
may facilitate precision medicine for UC patients.
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Additional file 1: Figure S1. Principal component analysis (PCA) 
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removing batch effect, annotated by (e) data resources and (f ) types 
of mucosal lesions (UC included = 208). Figure S2. Consensus score of 
different clustering numbers. Figure S3. WGCNA of the samples. (a) Three 
samples were removed for the outliers. (b) Power selection based on the 
R^2. (c) Clusters of the gene module. (d) Detailed GO enrichment result 
for each cluster. Figure S4. Enrichment of the key therapeutic targets. 
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(Log2FC > 1, Pvalue < 0.05). Figure S5. scRNA-sequencing of GSE182270 
and GSE150115. (a) The localization of 16 genes in GSE182270. (b) The 
UMAP plot of the cells in GSE150115. (c) The localization of TNFSF13B 
and PRLR in GSE150115. (d) The expression of TNFSF13B on monocytes 
derived from different patients. Figure S6. Epithelial PRLR inhibited 
TNFSF13B of macrophages through attenuated CXCL1-NF-κB signaling (a) 
PRLR-overexpressed Caco-2 cells were constructed. (b) Cellular localization 
of differentially expressed cytokine related genes (c) CXCR2 inhibitory 
SB225002 (10 μM) and NF-KB pathway inhibitor Bay 11–7082 (1 μM) 

were used to block the CXCL1-induced effect. The TNFSF13B levels were 
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