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Abstract 

Outcomes for patients with melanoma have improved over the past decade with the clinical development 
and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), 
programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint 
therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treat-
ment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, 
such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted 
therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immu-
notherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies 
and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new 
combinations treatment under development for melanoma provides options for the number of patients to achieve 
a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing 
additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- 
and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, 
the Melanoma Bridge Congress (Dec  1st–3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, 
focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included ses-
sions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, 
and combination treatment strategies.
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Introduction
Outcomes for patients with melanoma have improved 
over the past decade because of the clinical development 
and Food and Drug Administration (FDA) approval of 
immunotherapies targeting checkpoint receptors such as 
programmed death-1 (PD-1), programmed death ligand 
1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-
4). However, combinations of checkpoint therapies with 
other checkpoint inhibitors and other agents are being 
explored to improve outcomes and enhance benefit-risk 
profiles of treatment.

PD-1 and CTLA-4 targeting therapies increase average 
life expectancy for cancer patients. The benefit of dual 
checkpoint blockade with anti CTLA-4 and anti PD-1 
inhibitor over monotherapy with a CTLA-4 inhibitor has 
been shown, with durable disease control and improved 
overall survival (OS). However, PD-1 and CTLA-4 block-
ing agents are not effective in all patients, and even those 
patients who do respond initially can relapse, highlight-
ing the need for improved treatment regimens. Alterna-
tive inhibitory receptors have been identified that may 
also be targeted for anti-tumor immune therapy. These 
include the T cell immunoglobulin and mucin-domain 
containing-3 (TIM-3), lymphocyte-activation gene-3 
(LAG-3), TIGIT, and B-and T-lymphocyte-associated 
protein (BTLA) receptors associated with T cell exhaus-
tion and V-domain immunoglobulin suppressor of T cell 
activation (VISTA), a receptor found on tumor-infiltrat-
ing myeloid cells.

The inhibition of two immune checkpoints, LAG-3 
using relatlimab and PD-1, improved progression-free 
survival (PFS) to a greater extent than inhibition of PD-1 
alone in patients with previously untreated metastatic or 
unresectable melanoma. These results support the syner-
gistic effect of dual checkpoint inhibition over monother-
apy and identify relatlimab–nivolumab as a potential new 
treatment option for patients with previously untreated 
metastatic or unresectable melanoma.

Several oncogenes have been identified as potential tar-
gets for molecularly targeted melanoma therapy, such as 
tyrosine kinase inhibitors (TKIs). The therapeutic effec-
tiveness and combinatory effects were shown for agents 
targeting BRAF, MEK, NRAS, KRAS, HRAS, c-Kit, 
c-MET, VEGFR, and PI3K/AKT. Several of these thera-
pies are already FDA-approved for treating metastatic 
melanoma.

Unfortunately, many patients still progress and acquires 
resistance to the immunotherapy and molecularly tar-
geted therapies. To bypass resistance, combination treat-
ment with immunotherapies and single or multiple TKIs 
have been shown to improve the prognosis of melanoma 
patients compared to monotherapy. The combination of 
ipilimumab and nivolumab and the combination of BRAF 

and MEK inhibitors have improved survival of patients 
and are current standards for combination therapies in 
immunotherapy and targeted therapy of melanoma.

For certain patients with inoperable metastatic mel-
anoma, a triplet combination therapy may improve 
survival outcome. Recently a phase II study of the com-
bination of nivolumab and dabrafenib and trametinib 
shows promise in treating patients with metastatic mela-
noma who did not respond to immunotherapy as well as 
melanoma patients with brain metastases.

Many diagnostic and prognostic assays have begun to 
show clinical applicability providing additional tools to 
optimize and individualize treatments. Multiple immu-
nohistochemical biomarkers associated with the prog-
nosis of malignant melanomas, including PD-L1, show 
association with clinical outcomes. Transcriptomics 
based assays also become technologically feasible. The 
example of such assay is DecisionDx (Castle Biosciences; 
Friendswood, Texas), that is a commercially available 
31-gene expression platform, which uses 28 genes sig-
nature to be used on formalin-fixed paraffin-embedded 
(FFPE) tumor specimen. Panels screening multiple mela-
noma microRNAs or epigenetic markers in malignant 
melanoma have also been developed. The identification 
of new metabolites, antigens, and enzymes in blood that 
could be used as a marker of disease progression and pre-
dictors of patient outcomes is being explored.

In summary, the number of new combinations treat-
ment under development for melanoma provides options 
for the number of patients to achieve a therapeutic ben-
efit. However, the question on the optimal algorithm of 
first-and later-line therapies and the search for biomark-
ers to guide these decisions are still under investigation.

This year, the Melanoma Bridge Congress (Dec  1st–3rd, 
2022, Naples, Italy) addressed the latest advances in 
melanoma research, focusing on themes of paramount 
importance for melanoma prevention, diagnosis and 
treatment. This included sessions dedicated to systems 
biology on immunotherapy, immunogenicity and gene 
expression profiling, biomarkers, and combination treat-
ment strategies.

Melanoma is a model for cancer research
Combining 10 × scRNA‑seq and 100 plex mIF: too much 
data or complimentary technologies to examine what 
works
Although cancer cell immunity research has been pri-
marily T cell-centric, there is increasing evidence that B 
cells effector mechanisms exist and have a critical role in 
tumour control. These include complement-dependent 
cytotoxicity, antibody-dependent cellular cytotoxic-
ity, antibody mediated apoptosis or receptor blockade, 
and killer B cells (Fas-FasL). The B cell response reveals 
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antigens recognized by cytotoxic T lymphocytes (CTLs) 
and is part of a coordinated synergistic T and B cell 
immune response to cancer.

Complex vaccines in combination with costimulatory 
agents, e.g., anti-OX40 or anti-glucocorticoid-induced 
tumour necrosis factor receptor-related protein (GITR) 
plus anti-PD-1, can augment therapeutic efficacy. In an 
ongoing trial of triplet immunotherapy with vaccine plus 
anti-GITR and delayed anti-PD-1, tumor biopsy monitor-
ing strategy using multiplex immunohistochemistry plat-
form based on an exploratory 98-plex panel, single-cell 
T cell receptor/B cell receptor sequencing after sorting 
for CD45+, and RNA-sequencing are being employed to 
help improve understanding of the T and B cell response.

Previously, multispectral imaging revealed that the 
number of FoxP3 + or PD-L1+ cells within close proxim-
ity (30 μm) of CD8+ T cells to tumor cells was associated 
with a high level of CD8+ T cell suppressive elements and 
reduced OS in patients with oral squamous cell cancer, 
[1]. Ultrahigh-plex spatial phenotyping of proteins in 
FFPE tissues could be used to characterize the poten-
tial immune escape mechanisms. However, the utility of 
such an approach is unclear given the lack of validation. 
One attempt at validation could be through comparison 
with CITE-seq (cellular indexing of transcriptomes and 
epitopes), a sequencing-based method that simultane-
ously quantifies cell surface protein and transcriptomic 
data within a single cell readout. Comparison of ultra-
high-plex and single-cell RNA-sequencing plus CITE-
Seq is being done in an attempt to identify gene clusters 
that impact on response to immunotherapy.

Can proteomics predict both immune‑related adverse 
events and recurrence in melanoma patients treated 
with immune checkpoint inhibitors?
Immune-related adverse events (irAEs) can limit the suc-
cess of checkpoint inhibitor therapies. There is a critical 
need to identify patients at risk for severe irAEs to guide 
treatment selection but pre-treatment biomarkers to help 
predict irAEs are lacking.

Baseline serum autoantibody signatures may be able to 
predict recurrence and severe toxicity in patients treated 
with adjuvant nivolumab, ipilimumab, or nivolumab 
plus ipilimumab. Proteomic profiling of 300 patients 
using > 16,000 autoantibody-based protein array (dis-
covery cohort) identified proteomic irAE signature. 
The signature was then validated in 950 patients from 
the CheckMate 238 and CheckMate 915 trials [2]. High 
recurrence score signatures predicted significantly worse 
recurrence-free survival (RFS) in separate nivolumab, 
ipilumumab, and nivolumab plus ipilimumab treated 
cohorts. Similarly, severe toxicity score signature was 
a significant predictor of severe irAEs. Predicting 

both, recurrence and irAEs simultaneously should bet-
ter inform decision-making, and to identify patients 
who achieve high treatment efficacy and low irAEs. For 
patients predicted to have low treatment efficacy and 
high irAES alternative therapy options should be consid-
ered. Several autoantibody profiling platforms are avail-
able and clinical assay inter-platform robustness needs 
to be assessed. Development of CLIA-certified assays 
requires more investigation of the best technology adapt-
able to real world clinical care. More research is also 
needed to determine which autoantibodies-antigen pairs 
are predictive of specific irAEs, and whether autoan-
tibody signatures are predictive of recurrence in the 
adjuvant setting and accurately predict response in the 
metastatic setting.

Another important question is whether autoantibody 
signatures can predict irAEs in minority populations 
with melanoma. Progress in melanoma treatments in the 
last decade has not improved outcomes for patients with 
melanoma from minority populations to the same extent 
that it has for non-Hispanic White patients. Minority 
populations have higher rate of autoimmune disease and 
may be more susceptible to developing severe irAEs after 
immune checkpoint inhibition. Subtypes of anti-PD-1 
therapy-related irAEs in advanced melanoma vary by 
ethnicity, with higher rates of endocrine, liver, and other 
rare types of irAEs in non-White patients [3]. As such, 
minority melanoma patients unlike White population 
may have a different baseline autoimmune predisposition 
for developing irAEs after immune checkpoint inhibi-
tor treatment with the irAE signature race-dependent 
and cancer site-agnostic. In summary, there is a need to 
develop a predictive signature for development of irAEs 
using baseline autoantibodies in minority patients with 
melanoma. The signatures in minority patients need to be 
compared to the melanoma signature in White patients 
as well as develop signatures for other solid tumors, such 
as lung or bladder cancer.

Survivorship challenges in the immune checkpoint 
inhibitor era
Survivorship is becoming an important consideration 
among patients treated with immune checkpoint inhibi-
tors (ICIs). Around half of all patients with metastatic 
cancer are potential candidates for treatment with ICIs, 
which can be associated with prolonged survival and 
a potential curative impact. There is also an increasing 
use of adjuvant and neoadjuvant ICI therapy for high-
risk primary cancers. The extent and magnitude of ICI 
sequelae and chronic toxicities which impact long-term 
quality of life are relatively unknown. As such, there is 
inadequate guidance for follow-up care and management 
for the medical and patient communities.
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Long-term OS has been observed in clinical trials with 
immuno-oncology agents in patients with advanced 
melanoma, with patients who are alive at 3  years likely 
to achieve prolonged cancer remission [4]. Patients with 
other cancers have also shown long-term survival with 
anti-PD-1 therapy [5, 6]. Although ICIs are generally well 
tolerated but have unpredictable development of mod-
erate and severe irAEs. These can occur across multiple 
organ types and time to resolution can be longer than 
one year [7]. In patients with advanced or recurrent non-
small-cell lung cancer (NSCLC) treated with nivolumab, 
occurrence of irAEs was positively associated with PFS 
and OS [8]. Potential consequences of a relationship 
between irAEs and response to immune checkpoint inhi-
bition include related pathways of cancer control and 
pre-existing autoimmune response (acute, chronic and/
or delayed toxicity) and parallel pathways with T cell 
populations in organ-specific toxicity, e.g., CD8 resident 
T cells in colitis, cytotoxic memory CD4 in encephalitis.

Long-term survivors of advanced melanoma treated 
with ipilimumab had overall worse health-related qual-
ity of life with more physical symptoms than matched 
controls [9]. Immune checkpoints help maintain health 
by limiting the extent of autoimmune disease generation, 
maintaining foetal tolerance, and limiting the inflam-
matory response to injury and infection. PD-1 knock-
out mice experience spontaneous autoimmune disease, 
cardiomyopathy, lupus-like glomerulonephritis, and 
increased mortality from graft-versus-host-like disease. 
These data suggest anti-PD-1 therapy can have a detri-
mental long-term effect on health.

In patients with metastatic renal cell carcinoma treated 
with interleukin (IL)-2, interferon (IFN)-α and dendritic 
cell (DC) vaccine, pre-treatment peripheral blood lym-
phocytes exhibited gene expression and serum cytokine 
profiles consistent with inflammation and prolifera-
tion not found in healthy donors [10]. However, there 
was less difference in inflammatory gene expression 
between patients and healthy donors after treatment. 
Early changes in circulating T cell repertoire are associ-
ated with increased survival in patients with advanced 
NSCLC after PD-L1 blockade [11].

The pathophysiology of irAEs involves the development 
of autoimmunity, including the release of auto-reactive T 
cells and generation of pre-existing auto-reactive anti-
bodies, the on-target attack of shared tumor antigens on 
normal tissue, target tissue expression of immune check-
points (e.g., CTLA-4 on normal pituitary), and inflam-
matory cytokine release (e.g., IL-17 and colitis). Organs 
at risk are those with pre-existing exposure to environ-
mental insult (e.g., skin, lung), pre-existing autoimmun-
ity, pre-existing genetic polymorphism associated with 
risks for immune-related illnesses, and microbiota, e.g., 

autoantibodies to Subdoligranulum didolesgii activated 
T cells in rheumatoid arthritis. The challenges in defin-
ing chronic or delayed toxicity, the correct attribution 
of delayed irAEs, a lack of understanding of the risk for 
late complications from immune checkpoint blockade, 
and the rarity of events. The Society of Immunotherapy 
for Cancer (SITC) has taken the important first steps in 
harmonizing and defining irAE terms and clarify the defi-
nition of chronic and re-emergent adverse events [12]. A 
chronic toxicity grading system, identification of toxicity 
modifiable pathways and risk categories, incorporation of 
patient-reported outcomes, development of appropriate 
surveillance and treatments, and providing survivorship 
guidelines still need to be developed. The expanding use 
of ICI treatments in cancer patients and their impact on 
prolonging overall survival is accompanied by the need 
to address the survivor-specific concerns by the medical 
community.

Neoadjuvant trial design and clinical update in melanoma
A major challenge with the use of adjuvant therapy in 
melanoma is that many patients will not have disease 
recurrence even without treatment, others will relapse 
even with therapy, and only a small proportion, approxi-
mately 20%, benefit from therapy. However, all these 
patients are exposed to therapy that is associated with 
toxicity, the treatment itself, and high cost. Neoadju-
vant therapy may provide an alternative option for many 
of these patients. The OpACIN study first showed that 
neoadjuvant therapy with ipilimumab and nivolumab 
resulted in increased T cell expansion and greater acti-
vation of anti-tumor activity than an adjuvant approach 
[13]. In a pooled analysis of six clinical trials with 
192 patients, a pathological complete response (pCR) 
occurred in 40% of patients, 33% with immunotherapy 
and 47% with targeted therapy [14]. pCR correlated with 
recurrence-free survival (RFS), that differed between 
therapy. In patients receiving targeted therapy, pCR was 
required for a survival benefit, and even then around 20% 
had recurrence. In contrast, any response, including a 
pathological partial response (pPR), seemed to confer an 
excellent survival benefit in patients who received immu-
notherapy. Both high tumor mutation burden (TMB) and 
high IFN-γ signature score were shown associate with 
pathologic response and low risk of relapse [15].

In the more recent PRADO trial, therapeutic lymph 
node dissection (TLND) and adjuvant therapy were 
omitted in patients achieving major pathologic response 
(MPR) in their index (largest baseline) lymph node after 
neoadjuvant immunotherapy, whereas patients with pPR 
underwent TLND only, and nonresponding patients 
underwent TLND, adjuvant systemic therapy (nivolumab 
or dabrafenib/trametinib) and radiotherapy [16]. Nearly 
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two-thirds of patients had a MPR and avoided TLND. 
Two-year RFS rate was 93% in patients with MPR. There 
was an indication of higher recurrence in patients with 
pPR (64%) than previously observed, and that adjuvant 
therapy appeared to benefit patients with no response 
(pNR). In another trial (DONIMI), a biomarker-driven 
approach showed that a high IFN-γ signature ade-
quately identified patients who are likely to benefit from 
nivolumab alone compared to those with a low IFN-γ sig-
nature, for whom different treatment approaches should 
be considered [17]. In a subsequent trial, neoadjuvant 
nivolumab plus relatlimab followed by surgery and adju-
vant combination therapy, resulted in a 57% pCR rate and 
70% overall pathologic response rate among 30 patients 
[18]. The 1- and 2-year RFS rates were 100% and 92% for 
patients with any pathologic response.

In the first randomized phase II trial, neoadjuvant 
pembrolizumab led to a practice changing improvement 
in event-free survival (EFS) in patients with stage III–IV 
melanoma after a median follow-up of 14.7 months, with 
a a 2-year EFS of 72% compared with 49% with adju-
vant pembrolizumab [19]. There is also a suggestion of 
improved OS although data are not mature. Several other 
trials are ongoing in the neoadjuvant setting, such as 
the phase III NADINA trial, as well as trials with intral-
esional agents.

Neoadjuvant immunotherapy is also being investigated 
in stage II disease. In the INTRIM trial, patients with 
stage II pT3-4/cN0 melanoma had significantly reduced 
tumour positive sentinel lymph node rates after presur-
gical single-dose treatment with the toll-like receptor-9 
(TLR9) agonist IMO-2125 compared with placebo [20]. 
However, more patients in the placebo group had ulcer-
ated melanoma, a known factor influencing sentinel node 
involvement, which precludes any firm conclusions.

The MD Anderson Melanoma Moon Shot: a model 
for high‑risk, high‑reward research
The University of Texas MD Anderson Moon Shots 
 Program® launched in 2012 with the intent of laying a 
framework for a visionary new approach to research 
that could be applied to all cancers, and involving com-
prehensive, multidisciplinary teams, the identification of 
unmet needs and gaps in knowledge and capabilities to 
set project priorities, and accountability for measurable 
progress through goals dependent upon go/no-go mile-
stones. In advanced melanoma, opportunities include 
improved understanding of mechanisms of response/
resistance, novel treatment combinations for patients not 
responding to standard therapies, better outcomes for 
patients with surgically resectable disease and patients 
with CNS metastases, as well as prevention and early 
detection. At MD Anderson, the Melanoma Moon Shot 

goals are to reduce melanoma incidence and mortality 
through integrated research efforts spanning the mela-
noma continuum. This includes developing and deliver-
ing personalized treatment options to reduce melanoma 
mortality and to reduce incidence and ultimately deaths 
from melanoma through public policy initiatives, educa-
tion, and early detection.

Melanoma prevention remains a major challenge, with 
integrated nationwide interventions to promote UV pro-
tection lacking in the USA. It has been established that 
overexposure to ultraviolet radiation increases melanoma 
risk. Empowering public policymakers to make informed 
evidence-based decisions regarding the dangers of indoor 
tanning has led to increased legislation in the USA; 
multiple states have indoor tanning bed restrictions for 
minors under 18  years old and there has been a reduc-
tion in the numbers of high school students using indoor 
tanning devices. This has provided a unique opportunity 
to share lessons learned and provide resources to others, 
including the partnering of experts from the MD Ander-
son Cancer Center with stakeholders in Poland leading 
to the prohibition of solaria use for persons < 18 years old 
across Poland.

Another Melanoma Moon Shot project focusses on the 
microbiome and host factors across the melanoma con-
tinuum. Higher diversity and different composition of 
the gut microbiome was observed in responders to PD-1 
blockade versus non-responders [21]. Higher dietary 
fibre was associated with significantly improved PFS in 
128 patients treated with immune checkpoint inhibitors, 
especially those without probiotic use [22]. The effect 
of a high fibre dietary intervention versus an isocaloric 
control diet is now being further investigated in a trial in 
patients with metastatic melanoma, including in adjuvant 
and neoadjuvant settings, and renal cell carcinoma.

Other projects are investigating novel strategies for 
patients with melanoma CNS metastases, personalizing 
early-stage disease management [e.g., through multi-
modal assessment of patients with high-risk stage II and 
sentinel lymph node biopsy (SLNB)-positive stage III 
melanoma] to develop improved risk models for regional 
and distant recurrence, and early melanoma detec-
tion. It is hoped these and other Melanoma Moon Shot 
research efforts will help revolutionize the conventional 
medical research approach and help reduce the burden of 
melanoma.

Loco‑regional treatments for melanoma
In a multinational analysis of 987 patients with 2482 cuta-
neous tumour lesions conducted by the pan-European 
International Network for Sharing Practice, the most 
frequent indications for electrochemotherapy (ECT) 
were basal cell carcinoma, malignant melanoma and 
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squamous cell carcinoma, and three-quarters of patients 
received intravenous rather than intratumoral bleomycin 
[23]. The overall response rate (ORR) was 85%, with 70% 
complete responses, and ORR was high across all indica-
tions. A higher complete response rate was observed in 
patients with lesions < 3  cm diameter; for these smaller 
tumors, linear array electrodes provided better control 
than hexagonal electrodes. Intravenous administration 
was superior to intratumoural delivery, especially for 
tumours ≥ 2 cm diameter.

In a more recent study by the same network, 716 
patients with either ulcerated or non-ulcerated cuta-
neous tumors and metastases treated with ECT were 
assessed [24]. Complete response rate was higher for 
non-ulcerated lesions than ulcerated lesions (65% vs. 
51%). In smaller lesions (< 3 cm), the complete response 
rate was similar in ulcerated and non-ulcerated lesions 
(71%); responses were lower overall in lesions ≥ 3  cm, 
with a higher response in non-ulcerated lesions (50% 
vs. 33%). Patients with ulcerated lesions had higher pain 
and more severe symptoms compared to non-ulcerated 
lesions, which reduced during ECT. In patients with 
non-ulcered lesions, pain increased during ECT but then 
returned to levels similar to pre-treatment. ECT has also 
previously been shown to improve patients’ quality of 
life, with improvements in daily and social activities [25].

ECT in melanoma requires an integrated approach and 
can be combined with immunotherapy. This approach 
appears to be feasible and is well tolerated with evidence 
of a synergistic effect. In a retrospective analysis of 15 
patients with metastatic melanoma treated with ipili-
mumab and ECT, local objective response was 67% and 
a systemic response was observed in 60% of patients [26]. 
Similarly, a retrospective analysis of patients with stage 
IIIC-IV melanoma suggested that ECT improved tumor 
control in patients with melanoma treated with pem-
brolizumab, with a higher ORR and significantly longer 
PFS and OS in patients treated with pembrolizumab plus 
ECT versus pembrolizumab alone [27].

Another locoregional approach in melanoma is 
the oncolytic virotherapy, talimogene laherparepvec 
(T-VEC). In 26 patients with early metastatic (stage 
IIIB/C-IVM1a) melanoma, 16 (61.5%) had a complete 
response and seven (26.9%) had a partial response [28]. 
One-fifth of patients received post T-VEC immunother-
apy with pembrolizumab. In a phase 2 study of patients 
with unresectable stage IIIB-IVM1c malignant mela-
noma, T-VEC plus ipilimumab showed higher antitu-
mor activity without additional toxicity concerns versus 
ipilimumab alone [29]. There was a reduction in lesion 
burden from baseline, with an abscopal effect on distant, 
non-treated lesions. In another trial, neoadjuvant T-VEC 
plus surgery versus upfront surgery for patients with 

resectable stage IIIB-IVM1a melanoma reduced the risk 
of disease recurrence and resulted in durable improve-
ments in survival at 5  years [30]. These results suggest 
that an intratumorally administered oncolytic agent can 
elicit a meaningful long-term systemic effect and sup-
ports neoadjuvant T-VEC plus surgery in advanced 
melanoma.

Less is more: critical issues in clinical practice
Less is more with Immunoscore
The Immunoscore, which is based on densities of 
CD3+ and cytotoxic CD8+ T cells in the tumor and inva-
sive margin, was originally validated as a predictive esti-
mate of the risk of recurrence in patients with stage I–III 
colon cancer [31] and has since been included in several 
clinical guidelines. In stage III colon carcinoma patients, 
the use of Immunoscore in four independent cohorts 
with a total of 2514 patients have confirmed its predic-
tive ability for patients at high-risk and no-risk of recur-
rence [32, 33]. Immunoscore also predicts recurrence 
and survival in high-risk patients with untreated early-
stage colon cancer. In an evaluation of 1885 patients with 
stage I-II colon cancer, Immunoscore was significantly 
associated with survival in stage II, high-risk stage II 
[based on clinico-pathological high-risk features], T4N0 
and microsatellite-stable (MSS) patients [34]. In stage II 
T4N0 colon cancer patients, Immunoscore was the only 
significantly predictive parameter in multivariate analysis 
and was the most important predictor of relapse [35].

In rectal cancer, the use of Immunoscore may help 
patients to avoid surgical intervention. In patients with 
locally advanced rectal cancer receiving neoadjuvant 
therapy followed by surgery, a diagnostic biopsy-adapted 
Immunoscore predicted response to treatment and dis-
ease-free survival [36]. In addition, no recurrence was 
observed in patients with high Immunoscore in a sepa-
rate watch-and-wait cohort. As such, this biopsy-based 
Immunoscore approach could help in the selection of 
patients who could achieve favorable outcomes and be 
eligible for a watch-and-wait strategy.

The immune contexture and Immunoscore [37] may 
also have utility in patients with relapsed/refractory 
diffuse large B cell lymphoma (DLBCL) receiving chi-
meric antigen receptor (CAR) T cell therapy. Among 51 
patients treated with axicabtagene ciloleucel, an anti-
CD19 CAR T cell therapy, in the ZUMA-1 trial, clinical 
response and OS were associated with pre-treatment 
immune contexture as characterized by Immunoscore 
[38]. High densities of subsets of cytotoxic T-cells 
(CD3+ CD8+ expressing PD-1 + LAG-3 ± TIM-3) were 
significantly associated with response to CAR T therapy.

The Immunoscore Immune Checkpoint assay may 
identify patients with metastatic colorectal cancer who 
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are likely to benefit from the addition of immune check-
point inhibitor therapy to standard first-line treatment. 
In the AtezoTRIBE trial, the addition of the PD-L1 inhibi-
tor atezolizumab to standard first-line treatment (FOL-
FOXIRI plus bevacizumab) improved PFS in patients 
with previously untreated metastatic colorectal cancer 
[39]. Post-hoc analyses showed a significant correlation 
between a high Immunoscore IC result and response to 
combination immunotherapy in MSS patients.

Less is more in combination therapies
PD-1-based combination therapy represents a very active 
field of research in melanoma and in oncology in gen-
eral. To date, there have been numerous successes (e.g., 
anti-PD-1 with anti-LAG-3), ineffective strategies (e.g., 
anti-PD-1 with an IDO inhibitor), and those potentially 
detrimental [e.g., anti-PD-1 with bempegaldesleukin 
(BEMPEG)].

Results in clinical trials of targeted therapy with BRAF/
MEK inhibition plus anti-PD-1 therapy in patients with 
BRAF-mutant melanoma have been inconsistent. No 
PFS benefit was seen with the addition of spartalizumab 
to dabrafenib and trametinib [40] but PFS was signifi-
cantly improved with the addition of atezolizumab to 
vemurafenib and cobimetinib [41]. Moreover, in the 
CheckMate 067 trial, a clinical benefit was observed 
numerically with nivolumab plus ipilimumab versus 
nivolumab alone in the general patient population, with 
increased benefit in patients with BRAF-mutant mela-
noma [42]. Nivolumab plus relatlimab provided a PFS 
benefit versus nivolumab alone in the RELATIVITY-047 
trial in patients with previously untreated metastatic 
or unresectable melanoma [43]. Given these multiple 
combination therapy options, treatment decisions need 
to be individualized and consider multiple factors. For 
instance, data from CheckMate 067 support the use 
of anti-PD-1 plus anti-CTLA-4 over anti-PD-1 alone 
or anti-PD-1 plus anti-LAG-3 in patients with BRAF 
mutant melanoma. In patients with low PD-L1 expres-
sion, anti-PD-1 with either anti-CTLA-4 or anti-LAG-3 
appears preferable to anti-PD-1 monotherapy. However, 
in patients with high PD-L1 expression, anti-PD-1 mono-
therapy may be more appropriate given its lower toxic-
ity and the lack of r added benefit of a combined therapy. 
Anti-PD-L1 plus anti-CTLA-4 may also be a better 
option in patients with high lactate dehydrogenase, brain 
metastases, or mucosal melanoma, while anti-PD-1 plus 
anti-LAG-3 may be preferred in the elderly and perhaps 
patients with low tumour burden. PD-1 alone may be a 
suitable option for patients who are unfit for manage-
ment of irAEs or who have desmoplastic melanoma. All 
these characteristics often co-exist, hence the need for an 
individualized strategy.

An example of less is more was demonstrated by the 
combination of anti-PD-1 therapy with BEMPEG, a 
first-in-class CD122-preferential IL-2 pathway agonist. 
High-dose IL-2 has shown anti-tumor activity in patients 
with metastatic melanoma but with high rate of serious 
adverse events; BEMPEG was engineered to increase the 
half-life of IL-2 allowing for less frequent dosing and a 
more favorable safety profile. However, BEMPEG in com-
bination with nivolumab showed no extra benefit regard-
ing ORR, PFS, and OS versus nivolumab [44]. Both ORR 
and PFS were numerically lower in the arm including 
BEMPEG, although OS was similar, suggesting the addi-
tion BEMPEG might negatively affect outcomes. Signifi-
cant limitations of the treatment include higher toxicity 
treatment cessation due to adverse events and use of sys-
temic steroids that was higher in the BEMPEG arm. In 
addition, the effects of BEMPEG by creating conjugated 
version of IL-2 that shows preferential signalling to the 
dimeric form of the receptor and has limited interaction 
with the trimeric receptor on Teff may not be fully under-
stood. Although BEMPEG design and validation was 
carefully carried out in vitro and in vivo, there is the pos-
sibility that the complex biology at the tumor site could 
trigger unexpected biological drug behaviour upon disso-
ciation of the PEG moiety from the drug. The question is 
whether the IL-2 receptor is a valid target or whether the 
issues are related to BEMPEG. Other IL-2 derivatives are 
in clinical development and have favourable efficacy and 
toxicity profiles in the early clinical stages, although this 
was also true of BEMPEG. Early biomarkers of efficacy 
will be key to prioritize the transition from phase II into 
phase III clinical development in the future (Fig. 1).

Role of adrenergic blockade in the immunotherapy 
efficacy
Both α- and β-adrenergic receptors are expressed by a 
variety of innate and adaptive immune cells. Although 
α-adrenergic receptors appear to provide stimuli for 
proinflammatory cytokine production during the classic 
acute stress response, β2-adrenergic receptors have been 
consistently observed to be the most highly expressed 
subtype on immune cells and are the exclusive adrenergic 
receptor expressed by T and B cells, suggesting they are a 
main mediator of catecholamine-induced immune regu-
lation. In general, chronic stress via β-adrenergic signal-
ling has been shown to promote an immunosuppressive 
immune profile.

Tumors can attract autonomic innervation which 
aids to tumorigenesis [45]. In melanoma, studies have 
shown that β2-adrenergic receptors are the major 
drivers in causing tumorigenic changes, and that the 
expression level of these receptors increase as disease 
progresses. Further, a variety of tumor types locally 
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stimulate intratumoral norepinephrine production in 
states of stress leading to tumorigenic effects. In mouse 
models, enhanced tumorigenesis with β2-adrenergic 
receptor agonists (isoproterenol or terbutaline), 
reduced tumor growth when exposed to a non-selec-
tive β-adrenergic receptor antagonist (propranolol) and 
reversal of these pathways have been shown [46].

GLUT1 and glucose membrane transport proteins 
are critical for CD8+ T cell activation and effector func-
tion and these proteins are regulated by β2-adrenergic 
receptors. Expression of GLUT1 and the resultant glyco-
lysis in CD8+ T cells undergoing activation is decreased 
by β2-adrenergic receptor blockade, showing a direct 
mechanism by which stressful stimuli can interfere with 
antitumor CD8+ T cell function. β2-adrenergic recep-
tor blockade in mice exposed to chronic stress led to 
reductions in exhausted T cells and the expression of 
exhausted CD8+ T cell phenotypes (PD-1, LAG-3, TIM-
3) on CD8+ TILs, enhanced metabolic activity and func-
tion of TILs, enhanced natural killer (NK) cells in the 
tumor microenvironment (TME), and suppressed tumor 
growth [47]. These findings are consistent with retro-
spective studies that have suggested that the incidental 
use of β-blockers is beneficial to patients with cancer 
receiving immunotherapy.

In a 3 + 3 dose escalation study for propranolol with 
pembrolizumab, nine patients with metastatic mela-
noma received increasing doses of propranolol in cohorts 
of 10, 20, and 30  mg twice daily [48]. No dose-limiting 
toxicities were observed, and ORR was 78%. The ratio 
of CD8 + T cell/monocytic myeloid-derived suppressor 
cells increased as compared to baseline in three patients 
on the highest propranolol dose, all of whom responded. 

Otherwise, no significant changes in treatment-associ-
ated biomarkers were detected, although there was an 
increase in IFN-α and a decrease in IL-6 in responders. 
This trial is continuing into phase II. The incorporation of 
pan-β-adrenergic blockade is a safe and highly cost-effec-
tive strategy that may enhance the efficacy of anti-PD-1 
therapy with negligible additional toxicity.

Genomics of therapy‑resistant melanoma and translational 
opportunities
Genomic instability processes enable acquired resistance 
to targeted therapy. Understanding the structure and 
dynamics of these processes can help in the development 
of treatments that prevent rather than reverse resistance. 
One type of genomic instability is chromothripsis, which 
refers to a single cataclysmic event that generates exten-
sive and complex genomic rearrangement of one or more 
chromosomes and has been found in many cancer types. 
Chromothripsis per se is not a mechanism of gene ampli-
fication, but during the process deletions can occur and 
pieces of DNA that drop out can circularize and form 
circular extrachromosomal DNAs (ecDNAs). As a result 
of non-Mendelian evolution, ecDNAs can exist in high 
copy numbers and lead to high gene amplification and 
extensive intratumoral heterogeneity. With prolonged 
selection, ecDNAs can re-integrate back into chromo-
somes and exist as intrachromosomal complex genomic 
rearrangement (CGRs) that amplify genes. Thus, ecD-
NAs and CGRs are well-suited to endow melanoma with 
variants that allow melanoma to escape from targeted 
therapy.

We have recently shown that ecDNA-and CGR-ampli-
cons drive acquired mitogen-activated protein kinase 

Fig. 1 Overview and scope of the discussion “less is more”
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(MAPK) inhibitor resistance in clinical BRAFV600MUT and 
experimental (i.e., patient-derived xenografts) NRASMUT 
cutaneous melanoma. We showed further that ecDNAs/
CGRs are likely derived from chromothripsis or shat-
tering and restitching of chromosomal DNA. We found 
that the restitching of double-stranded DNA fragments 
into ecDNAs/CGRs is primarily driven by the double-
stranded DNA break repair pathway, non-homologous 
end-joining. Importantly, targeting NHEJ by DNA-PK 
inhibitors in combination with MAPKi prevents acquired 
resistance by blocking the formation of ecDNAs/CGRs. 
This constitutes the scientific rationale for a phase 1b/2 
trial design in NRASMUT melanoma.

Trials to decrease toxicity and augment the benefit 
of combination checkpoint inhibition
IL-6 receptor blockade may decrease the incidence of 
irAEs. Expression of cytokines in colitis specimens from 
immune checkpoint inhibitor-treated patients with irAEs 
showed increased IL-6 expression in those colon tis-
sues, and in tumors of non-responders versus respond-
ers [49]. Anti-CTLA-4 antibody added to IL-6 blockade 
augmented clinical benefit in murine solid tumor mod-
els, with increased CD8 + T cell tumor infiltration, T 
helper (Th) 1 cytokines, CXCL10, and CXCL11, and 
reduced infiltration of regulatory T cells (Tregs), Th17, 
macrophages, and myeloid-derived suppressor cells 
(MDSCs). Higher baseline serum IL-6 levels have also 
been associated with worse survival in patients receiving 
immune checkpoint blockade [50].

IL-6 blockade with tocilizumab has been shown to 
reverse steroid-refractory toxicity in checkpoint inhib-
itor-treated patients [51]. In order to assess if tocili-
zumab could reduce toxicity and/or augment efficacy 
of checkpoint inhibition, we designed a phase II trial of 
ipilimumab 1  mg/kg and nivolumab 3  mg/kg at ‘flipped 
doses’ with simultaneous IL-6 receptor blockade with 
tocilizumab 4 mg/kg every 6 weeks in a two-stage Simon 
design. In 28 patients who had started therapy, there were 
five irAEs [52]. Higher levels of baseline tumor necrosis 
factor (TNF)-α were associated with grade 3–4 toxicity. 
At median follow-up of 6 months, 14 of 20 patients had a 
response (70% ORR).

In another study, the safety and efficacy of tocili-
zumab 162 mg bimonthly plus ipilimumab 3 mg/kg and 
nivolumab 1  mg/kg was evaluated in 25 patients with 
melanoma. There was a trend to mitigate irAEs (11 
patients with grade 3–4 irAEs), and ORR was 60% [53]. 
Biomarker analysis suggested that the dose of tocili-
zumab used may have been insufficient for full IL-6/Th17 
pathway blockade.

In clinical trials of prophylactic TNF cytokine sup-
pression with checkpoint inhibitor therapy, infliximab 

or certolizumab with standard dose ipilimumab 3  mg/
kg plus nivolumab 1 mg/kg did not reduce toxicity [54]. 
There were 3/6 responders in the infliximab group, and 
7/7 in the certolizumab group.

These data support the further investigation of 
IL-6 blockade and a phase II trial of ipilimumab plus 
nivolumab plus relatlimab with the IL-6 receptor block-
ing antibody sarilumab in patients with stage IV mela-
noma is planned.

The role of neoantigen landscape in metastatic cancer 
patient response to pembrolizumab
Cytotoxic T cells are the major determinants of anti-can-
cer immunity. Anti-tumour T cell immunity is mediated 
by the physical interaction between T cell receptors and 
tumour antigens in complex with HLA. Tumor neoan-
tigens resulting from the proteosomal degradation of 
variant proteins encoded by somatic non-synonymous 
mutations are promising targets for T cell therapy. Adop-
tive transfer of neoantigen-reactive T cells correlates with 
response to immunotherapy but the structural and cel-
lular mechanisms of neoantigen recognition are not well 
understood.

The B16F10 murine melanoma cell line is a common 
murine implantable tumour model of melanoma that 
is resistant to checkpoint blockade and has an elevated 
tumor mutational burden, including a number of driver 
genes. Vaccination with germline antigens (also known 
as cancer-testis) or neoantigens predicted and prioritized 
using genomic approaches elicit tumor specific delayed 
tumor growth. However, no melanoma B16 neoantigens 
have been thoroughly validated. We identified multiple 
cognate neoantigen:T cell receptor from B16F10, includ-
ing a high affinity T cell receptor 47BE7, which targets 
the H2-Db-restricted neo-antigen Heat shock protein 2 
(Hsf2 p.K72N68-76), that conferred specific recognition 
in B16F10 and exhibited effector function in  vitro and 
in vivo [55]. Structural characterization revealed features 
of structural stability of the peptide-major histocompat-
ibility class underlying enhanced immunogenicity of class 
II neoantigens. Hsf2 was the only melanoma B16 neoan-
tigen that passed validation. Discovery of a fully validated 
neoantigen Hsf2 in melanoma B16 opens the oppor-
tunity to study the role of neoantigens in immunity of 
melanoma, including resistance to checkpoint blockade 
(Fig. 2).

Emergent strategies
Identification of high‑risk melanoma patients with gene 
expression profiling assays
Gene expression profiling (GEP) is intended to predict 
recurrence or metastatic risk based on expression pat-
terns of a selected panel of genes from the primary tumor 
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and its use is becoming more prevalent. GEP develop-
ment involves three stages, the first of which is discov-
ery and involves gene identification, developing a training 
set, and lock-down of formula and cut-off point. The sec-
ond stage is validation to evaluate GEP performance for 
its intended use and whether it can discriminate between 
high-risk and low-risk patients. Finally, clinical utility 
through impact and potential benefit on patient manage-
ment, e. g. selecting high-risk patients for adjuvant treat-
ment, is evaluated.

Three major GEP tests that have reported data in 
melanoma are MelaGenix, DecisionDx, and Merlin/
SkylineDX. MelaGenix includes eight prognostic genes 
that correlate with survival. In a validation cohort of 245 
patients with stage II cutaneous melanoma, high gene 
expression risk score was associated with decreased RFS, 
distant metastasis-free survival, and melanoma-specific 
survival [56]. In the NivoMela trial of stage II melanoma, 
MelaGenix is being used to select patients for randomi-
zation to adjuvant nivolumab treatment or observation. 
Another platform, DecisionDX, is a validated 31-GEP 
test to identify the risk of recurrence or metastasis 
including the likelihood of sentinel lymph node positivity 
for patients with stage I–III melanoma. The DecisionDx-
GEP is now combined with patient clinicopathologic 
(CP) factors to further individualize prediction of risk 
of recurrence and sentinel lymph node biopsy positivity. 
A third platform, SkylineDX, based on identification of 

eight prognostic genes which correlate with SLNB metas-
tasis also uses a CP-GEP model. In 210 patients with 
primary cutaneous melanoma who underwent sentinel 
lymph node biopsy, this CP-GEP model identified those 
at low risk for nodal metastasis [57].

The national Melanoma Prevention Working Group 
(MPWG) reviewed these three GEP tests in melanoma. 
Although each test has prognostic power, the MPWG did 
not support the routine use of GEP in the management of 
cutaneous melanoma patients at that point in time [58]. 
In the future, GEP might be able to help select appropri-
ate patients for SLNB and adjuvant therapy.

Melanoma induced metabolically deranged CD8+ T‑cells 
are associated with immunotherapy resistance
Not all patients respond to immune checkpoint inhibi-
tor therapy, highlighting a need for additional strategies 
including biomarkers to stratify patients for therapy. CD8 
T cells have a critical function in response to immune 
checkpoint blockade but tumor-infiltrating lymphocytes 
(TILs), including CD8 T cells, express high levels of 
immune checkpoint receptors, e.g., PD-1, that can sup-
press cytotoxic T cell effector function. TILs can lose 
effector functions characterized by antigen unrespon-
siveness and reduced cytotoxic effector activity. Although 
checkpoint inhibitor blockade can revive effector T cell 
function, this may not be complete and may not explain 
lack of response in some patients.

Fig. 2 Type of tumor antigens
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Single-cell transcriptome comparisons between puri-
fied tumor-infiltrating CD8 T cells and peripheral blood 
lymphocytes (PBLs) from eight patients with melanoma 
identified several unique CD8 subpopulations [59]. 
Three overlapping clusters in CD8 TIL and PBL cells 
were identified, one of which had high levels of cytotoxic 
and exhausted markers, with high expression of multi-
ple immune checkpoints, as well as increased levels of 
metabolic activities, specifically activated oxidative phos-
phorylation (OXPHOS). These high-OXPHOS CD8 T 
cells also had elevated levels of CD38/CD39 ectonucle-
otidases (CD8+  TOXPHOS cells). Melanoma patients who 
did not respond to immune checkpoint inhibitor ther-
apy had higher levels of these CD8+  TOXPHOS PBLs and 
TILs which showed increased glucose metabolism, ATP 
production, and mitochondrial oxygen consumption. 
We developed a novel immunotherapy response predic-
tive model focusing on CD8+  TOXPHOS cells that can be 
assessed using either TILs or PBLs. In a training dataset, 
we predicted response to immune checkpoint inhibitor 
therapy in 11 of 12 patients. The model was then vali-
dated in four additional datasets, including one published 
dataset and three independent validation patient cohorts 
from our institution. In the validation cohorts, signifi-
cantly higher non-response scores were seen in non-
responders versus responders. These data demonstrated 
that the model has high predictive accuracy in TILs or 
PBLs. Given that non-invasive blood-based approaches 
have greater utility, the prediction platform was termed 
the non-invasive circulating T cells model (NiCir) [59].

New therapeutic targets revealed through germline 
genetic polymorphisms
The T cell-inflamed and non-inflamed TME represent 
two categories of immune escape. Most responders to 
immunotherapy have T cell-inflamed tumors, charac-
terized by high expression of chemokines, presence of 
CD8+ T cells, and a type I IFN signature, with immune 
escape primarily via inhibitory pathways. In compari-
son, non-T cell-inflamed tumors are characterized by a 
low inflammatory signature and the absence of intratu-
moral CD8+ T cells with immune escape via T cell exclu-
sion. Anti-PD-1 efficacy is favoured by a T cell-inflamed 
TME and depends on interactions between Batf3+ DCs 
and CD8+ T cells within tumor sites. The T cell-inflamed 
TME is regulated by tumor cell-intrinsic oncogenic 
events, the composition of the commensal microbiota, 
and germline polymorphisms in immune regulatory 
genes. Interestingly, each of these dimensions can influ-
ence functionally important myeloid cells in the tumor 
microenvironment, e.g., β-catenin and decreased Batf3 
DCs, gut microbiota and the shift from an M1 to M2 
myeloid-derived suppressor cell phenotype, and germline 

PKCδ deficiency resulting in a shift to M1. Knowledge of 
these parameters is guiding opportunities for therapeu-
tic intervention, including β-catenin inhibitors, microbi-
ome manipulation through fecal microbial transplant or 
defined bacteria, and inhibitors targeting PKCδ.

TIL Therapy in Melanoma: the future is now
Despite significant advances in the treatment of advanced 
melanoma through immunotherapy, most patients 
experience disease progression and there remains an 
unmet need to identify effective treatment for refrac-
tory disease. Adoptive cell therapy (ACT) with TILs is 
an immunotherapeutic strategy that harnesses the anti-
tumor abilities of tumor-resident antigen-specific T cells. 
High response rates have been reported among patients 
with advanced melanoma after failure of an approved 
front-line therapy with TIL therapy. The expansion of 
cell therapy technologies has resulted in the establish-
ment of off-site manufacturing facilities that have wid-
ened access to TIL therapy. Lifileucel, an autologous, 
centrally manufactured TIL product, has shown prom-
ise in patients with unresectable stage III-IV melanoma. 
In a phase II trial in 66 patients previously treated with 
multiple prior lines of therapy including immune check-
point inhibitor therapy with or without BRAF ± MEK tar-
geted agents, all of whom were refractory to anti-PD-1 
therapy, ORR was 36% with two complete responses and 
22 partial responses [60]. The disease control rate was 
80%, and median duration of response was not reached 
after 18.7 months. The safety profile was consistent with 
known adverse events associated with nonmyeloablative 
lymphodepletion and IL-2; there was an expectedly high 
burden of adverse events related to IL-2 administration, 
followed by relatively few emergent adverse events after 
day 15 after infusion.

In the first randomized trial of TIL therapy, 168 
patients with unresectable stage IIIC-IV melanoma, 
most of whom had progressed following anti-PD-1 treat-
ment, were treated with ipilimumab or TIL therapy [61]. 
Patients treated with TIL therapy had significantly longer 
median PFS of 7.2 months compared to 3.1 months with 
ipilimumab. The ORR was 49% with TIL therapy versus 
21% for ipilimumab, and median OS was 25.8  months 
and 18.9 months, respectively. Several other trials of TIL 
therapy are ongoing, including a pilot trial of lifileucel for 
melanoma brain metastases (NCT05640193).

Preliminary immunological monitoring of first‑in‑human 
immunotherapy‑trio of multivalent autophagosome 
vaccine, anti‑GITR and anti‑PD‑1
Delayed PD-1 checkpoint inhibition following T-cell 
costimulatory agonist treatment (e.g., anti-OX-40) was 
found to be superior to the concurrent combination in 
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cancer models, suggesting that premature PD-1 block-
ade can interfere with priming of new immune responses 
[62].

The combination of PD-1 inhibitor, multivalent DRib-
bles vaccine and GITR agonist has shown increased effi-
cacy in preclinical models [63] and is being tested in a 
clinical trial of DRibbles vaccine ± GITR agonist, followed 
after two weeks by delayed anti-PD-1. DPV-001 (DRibbles 
vaccine) is an off-the-shelf multivalent autophagosome-
enriched cancer vaccine that contains > 300 putative 
cancer antigens, including alternative cancer neoanti-
gens—cancer’s dark matter, DAMPS, HSPs and agonists 
for TLR 2, 4, 7, 8, and NOD2 [64]. INCAGN01876 (GITR 
agonist) is a recombinant, humanized IgG1 κ monoclo-
nal antibody that selectively binds to the extracellular 
domain of human GITR (CD357 or TNRSF18). Retifan-
limab is a humanized, hinge-stabilized, anti-PD-1, IgG4 
κ monoclonal antibody. In Arm 1 of the study, patients 
with recurrent or metastatic head and neck squamous 
cell carcinoma and good functional status, receive vac-
cine followed two weeks later by delayed anti-PD-1; while 
in Arm 2, patients receive combined vaccine/anti-GITR 
followed by delayed anti-PD-1. The primary endpoint of 
the study is safety, and secondary endpoints are objective 
response and survival. Biopsies are collected at baseline, 
weeks 12 and 24, with frequent blood sampling to allow 
exploratory correlative analyses.

Dendritic cells and combinatorial adjuvants reprogram 
TME and lymphoid tissues for enhanced effectiveness 
of PD1 blockade
IL-12 production by DCs is needed for the induction of 
tumor-specific CTLs and Th1 cells, and the activation of 
NK cells. DC production of IL-12p70 predicts long-term 
outcomes in patients with different cancers who receive 
different DC vaccines [65–68]. High-IL-12 producing 
mature DCs can be induced by mediators of acute anti-
viral immunity.

Type-1-polarized DCs induced by mediators of viral 
infections (αDC1s; included by the combination of type-1 
and type-2 interferons with dsRNA, TNFα and IL-1β) 
preferentially interact with naïve, memory and effector 
T cells and induce CTL and Th1 cells against multiple 
cancer cells and tumor blood vessels antigens. In combi-
nation with dasatinib, an αDC1 vaccine targeting tumor 
blood vessel antigens induced durable clinical responses 
in checkpoint inhibitor-refractory melanoma [69]. The 
combination was well tolerated and resulted in immuno-
logic and/or objective clinical responses in 6 of 13 (46%) 
evaluable patients. Clinical responses were associated 
with epitope spreading from vaccine antigens to lineage-
specific antigens and the formation of tertiary lymphoid 
structures in the TME. Data from animal models and a 

pilot clinical trial indicate the ability of αDC1s to convert 
PD1-resistant cold tumors into PD-1-responsive ones.

Immune adjuvants induce intratumoral production of 
CTL attractants, but also Treg attractants and suppres-
sive factors. However, combinatorial adjuvants can selec-
tively induce CTL attractants and block Treg attractant 
CCL22 in myeloid cells. Rintatolimod (poly-I:C12U) can 
activate the TLR3 pathway and induce IFNα, ISG-60, and 
CXCL10 to promote CTL chemotaxis to ex vivo-treated 
tumors. without activating the MAVS/helicase pathway 
and avoiding NFκB- and TNFα-dependent induction of 
COX2, COX2/PGE2-dependent induction of IDO, IL10, 
CCL22, and CXCL12, and Treg attraction [70]. Induc-
tion of CTL attractants by rintatolimod was synergisti-
cally enhanced by exogenous IFN-α, which elevates TLR3 
expression. The combination of αDC1 vaccine combined 
with a combinatorial chemokine-modulating regimen 
of rintatolimod, IFN-α2b and celecoxib, plus pembroli-
zumab is being assessed in a clinical trial in patients with 
PD-1-refractory HLA-A2 + melanoma.

Next generation strategies to target MAPK signaling 
in cancer
RAS/MAPK signaling drives 30% of cancers and probably 
all melanomas. To date, MAPK-directed therapies have 
been successful in certain indications (i.e., BRAF V600E 
melanoma), encouraging in some (BRAF V600E colorec-
tal cancer, KRAS G12C NSCLC), but have achieved only 
modest results in others. Clinical response is associated 
with MAPK inhibition in the tumor and acquired resist-
ance is associated with lesions that reactivate MAPK 
more than other pathways. Adaptive mechanisms pre-
vent potent and durable MAPK inhibition in the tumor 
and potential solutions, such as higher doses or addi-
tional drugs, are limited by toxicity.

Current RAF inhibitors (i.e., vemurafenib, dabrafenib, 
and encorafenib) preferentially bind to monomeric 
BRAF over dimeric BRAF. Consequently, RAF inhibitors 
are only effective in tumors in which monomeric BRAF 
contributes the totality of input to ERK. Development 
of adaptive drug resistance occurs when relief of nega-
tive feedback upon MAPK pathway inhibition results in 
the rapid formation of RAF dimers. RAF inhibitors equi-
potent for monomeric BRAF and dimeric BRAF have 
been developed but are predicted to have low therapeu-
tic index, since inhibition of dimeric wild-type BRAF is 
likely to cause on-target toxicities in normal tissue.

A new class of RAF inhibitors are more selective for 
dimeric over monomeric RAF [71]. The difference in 
selectivity between equipotent and RAF dimer-selective 
inhibitors is through the restriction of the movement of 
the αC-helix of BRAF. Protein kinases exist in an equi-
librium of active and inactive states, with the switch 
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between them involving movements of two conserved 
structural motifs: the Asp-Phe-Gly (DFG)-motif and the 
αC-helix.

Dimeric RAF inhibitors in NRAS melanoma show 
some activity but mostly modest clinical efficacy. Transi-
tion of either wild-type BRAF or mutated BRAF (V600E) 
to the dimeric state increases its interaction with MEK. 
Current RAF inhibitor plus MEK inhibitor combinations 
may be limited by on-target toxicities caused by adverse 
synergy, in which certain MEK inhibitors enhance MAPK 
inhibition when in combination. A strategy of combining 
a RAF monomer-selective inhibitor with a RAF dimer-
selective RAF inhibitor and a MEK inhibitor may help 
overcome adaptive resistance and retain a high therapeu-
tic index when targeting BRAF (V600E) tumors. The tri-
ple combination of dabrafenib plus trametinib plus a RAF 
dimer-selective inhibitor resulted in more potent in vivo 
tumor suppression than dabrafenib plus trametinib in 
BRAF (V600E) therapy-resistant models [71]. Off-label 
use of the dual RAF inhibitor plus MEK inhibitor com-
bination achieved durable responses in case reports of 
patients with colorectal cancer and multiple myeloma 
who had progressed on standard therapies [71, 72]. This 
MAPK inhibition triplet combination will be further 
assessed in patients with BRAF V600E mutated tumors 
(Fig. 3).

Putting it all together—practical considerations 
for monday clinic
Does single agent immunotherapy have any role 
for the treatment of metastatic melanoma?
In the CheckMate 067 trial, PFS at 6.5 years was 34% with 
nivolumab plus ipilimumab versus 29% with nivolumab 
alone and 7% with ipilimumab alone [42]. Median 
OS in the combination group was 72.1  months, ver-
sus 36.9  months with nivolumab and 19.9  months with 
ipilimumab. In the RELATIVITY 047 trial, median PFS 
was significantly improved with nivolumab plus relatli-
mab compared to nivolumab monotherapy [43]. On the 
basis of these data, combination therapy seems preferable 
to monotherapy for all patients who are able to tolerate 
the additional toxicity and do not have a contraindica-
tion. First choice therapy should be anti-PD-1 combined 
with anti-CTLA-4, with nivolumab plus LAG-3 

inhibitor relatlimab for patients who are not candidates 
for nivolumab plus ipilimumab.

Has the question of sequencing for patients 
with BRAF+ melanoma been put to rest?
The DREAMseq trial randomised 265 patients with 
BRAFV600-mutant metastatic melanoma to either the 
combination of nivolumab plus ipilimumab or dab-
rafenib plus trametinib, switching to the alternative 
combination at disease progression [73]. Patients who 
received nivolumab plus ipilimumab followed by dab-
rafenib plus trametinib was associated with significantly 
greater 2-year OS than the reverse sequence. Nivolumab 
plus ipilimumab was less effective as second-line ther-
apy while second-line dabrafenib plus trametinib was a 
critical contributor to overall efficacy. Thus, combina-
tion immunotherapy followed by combination targeted 
therapy if necessary is the preferred option. A sandwich 
approach of targeted therapy for 8  weeks followed by 
immunotherapy until switching back to targeted therapy 
at disease progression, as investigated in the SECOMBIT 
trial, may also be of interest [74].

How should I approach adjuvant therapy for patients 
with stage II melanoma?
In the KEYNOTE 716 trial, adjuvant pembrolizumab 
significantly improved RFS and DMFS (both HR 0.64) 
versus placebo after 27  months of follow-up in patients 
with stage IIB or IIC melanoma [75]. The CheckMate 
76K trial has also reported significantly improved RFS 
with nivolumab versus placebo (HR 0.42) in patients with 
completely resected stage IIB/C melanoma with stand-
ard wide local excision [76]. Grade 3–4 treatment-related 
toxicity occurred in 16% of pembrolizumab-treated 
patients and 10% of nivolumab-treated patients in these 
two studies. Based on these, adjuvant therapy may be 
offered to all patients with stage IIC disease and should 
be discussed as an option for patients with stage IIB dis-
ease. However, overtreatment with its associated toxicity 
and financial burden is still a concern.

Should I jump on the neoadjuvant bandwagon?
In the randomized phase II SWOG 1801 trial of patients 
with stage III–IV melanoma, neoadjuvant treatment with 
pembrolizumab resulted in a significant improvement in 
EFS compared with adjuvant pembrolizumab (HR 0.58) 
after a median follow-up of 14.7  months, with 2-year 
landmark EFS rates of 72% and 49%, respectively [19]. 
The neoadjuvant approach also improved OS (HR 0.63), 
although this was not statistically significant. These data 
are interesting and potentially practice changing; how-
ever, we need to wait for mature OS data. It may be that Fig. 3 A taxonomy of RAF inhibitors
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we are just treating patients earlier in their disease course 
and further clinical trial data are needed.

Conclusions
The management of patients with advanced melanoma 
has advanced dramatically in the past decade, with the 
advent of immunotherapeutic and targeted approaches 
resulting in positive clinical outcomes for many patients 
beyond what was previously even considered possible. 
Treatments combining immunotherapy approaches with 
targeted therapies have further increased treatment effi-
cacy and durability.

Despite these advances, many patients still experience 
primary and acquired resistance to treatment and toxic-
ity that remain critical challenges. Thus, the focus in the 
field is on how best to address these challenges, through 
the development of novel treatments, new combination 
strategies, and new adjuvant or neoadjuvant approaches. 
The increasing complexity of the melanoma treatment 
landscape and the widening choice of treatment options 
requires new biomarkers and drug targets to improve 
accuracy in selecting appropriate therapy for individual 
patient.

Several predictive biomarkers of outcome, includ-
ing tumor mutational burden, neoantigen load and pre-
treatment CD8 lymphocyte count have been evaluated 
in clinical trials with different immunotherapies. Data 
also suggest that neoadjuvant therapy provides not only 
improved response as compared to adjuvant design, but 
it provides option to assess biomarkers for response. 
Pathological specimens provide a resource for correlative 
study to investigate tumor evolution, and the mechanism 
of resistance.

During the meeting, we summarized the current sta-
tus of melanoma treatment landscape and outlined data 
from ongoing and new trials. Optimization of current 
therapies through rational combinations of existing and 
upcoming new drugs, drugs targets and biomarkers are 
the next stage in melanoma treatment with the ultimate 
goal to improve the efficacy and approaches for personal-
ized therapy.
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