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Abstract 

Objective No evidence has been found of a relationship between remnant cholesterol (RC) and the likeli-
hood of gestational diabetes mellitus (GDM) in pregnant women. The aim of our study was to investigate the link 
between serum RC at 12–14 weeks of gestation and the risk of GDM.

Methods This was a secondary analysis with data from a prospective cohort study in Korea. A total of 590 single 
pregnant women attending two hospitals in Korea, up to 14 weeks gestation, from November 2014 to July 2016 were 
included in the study. The formula used to calculate RC in detail was RC (mg/dL) = TC (mg/dL)-HDL-c (mg/dL)-LDL-c 
(mg/dL). Logistic regression models were employed to examine the relationship between RC and GDM and explore 
the association between other lipoprotein cholesterol parameters and the risk of GDM. Furthermore, receiver operat-
ing characteristic (ROC) analysis was performed to assess the ability of RC to identify GDM. Additionally, sensitivity 
and subgroup analyses were conducted.

Results The mean age of participants was 32.06 ± 3.80 years. The median of RC was 34.66 mg/dL. 37 pregnant 
women (6.27%) were eventually diagnosed with GDM. Multivariate adjusted logistic regression analysis showed 
that RC was positively associated with the risk of GDM (OR = 1.458, 95% CI 1.221, 1.741). There was no significant 
association between other lipoprotein cholesterols (including TC, LDL-c, HDL-c) and the risk of GDM. The area 
under the ROC curve for RC as a predictor of GDM was 0.8038 (95% CI 0.7338–0.8738), and the optimal RC cut-off 
was 24.30 mg/dL. Our findings were demonstrated to be robust by performing a series of sensitivity analyses.

Conclusion Serum RC levels at 12–14 weeks of gestation are positively associated with GDM risk in pregnant 
women. RC in early pregnancy is an early warning indicator of GDM in pregnant women, especially those with normal 
HDL-c, LDL-c, and TC that are easily overlooked. There is a high risk of developing GDM in pregnant women whose RC 
is more than 24.30 mg/dL. This study may help optimize GDM prevention in pregnant women and facilitate commu-
nication between physicians, pregnant patients, and their families.
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Introduction
Gestational diabetes mellitus (GDM) is character-
ized by elevated blood sugar levels first detected dur-
ing pregnancy. GDM affects approximately 15% of 
pregnancies worldwide, accounting for approximately 18 
million births annually [1–3]. GDM poses various risks 
to expectant mothers, including prenatal hypertension, 
pre-eclampsia, premature rupture of membranes, the 
birth of large-for-gestational-age babies, and an increased 
likelihood of cesarean section delivery [1, 4, 5]. Addition-
ally, GDM heightens the chances of complications such 
as impaired carbohydrate metabolism, obesity, and car-
diovascular disease. It also predisposes both the mother 
and the infant to the development of type 2 diabetes mel-
litus (T2DM) [6, 7]. The increased prevalence of GDM 
incurs significant economic costs, underscoring the need 
for heightened attention and awareness [8, 9]. Therefore, 
gaining an in-depth understanding of the risk factors 
associated with GDM is crucial.

GDM is influenced by various risk factors, includ-
ing family history, age, dyslipidemia, obesity, and lack of 
physical activity [10, 11]. The relationship between dyslip-
idemia and GDM is controversial [12–14]. In one study, 
pregnant women with GDM exhibited higher serum lipid 
profiles compared to healthy pregnant women, including 
the ratios of low-density lipid cholesterol to high-density 
lipoprotein cholesterol (LDL-c/HDL-c ratio) and triglyc-
erides to high-density lipoprotein cholesterol (TG/HDL-c 
ratio), as well as HDL-c levels [14]. However, other stud-
ies have reported no significant differences in serum lev-
els of high-density lipoprotein cholesterol (HDL-c), total 
cholesterol (TC), triglycerides (TG), and low-density 
lipid cholesterol (LDL-c) between pregnant women with 
and without GDM [13, 15]. Recently, another marker, 
namely remnant cholesterol (RC), has been identified as 
being associated with an increased risk of cardiovascu-
lar diseases (CVD) and all-cause mortality [16, 17]. RC 
is characterized by lipoprotein cholesterol levels rich in 
TG, including intermediate-density lipoproteins and 
very low-density lipoprotein (VLDL) in the fasted state 
and celiac remnants in the non-fasted state [18]. Studies 
have shown that RC is significantly associated with the 
development of T2DM and that higher levels of RC not 
only increase the risk of microvascular complications but 
may also lead to macrovascular complications in diabe-
tes [19–22]. In addition, recent studies have shown that 
RC predicts newly developed T2DM over traditional 
lipid parameters [19, 23, 24]. Based on these findings, we 
hypothesized that cholesterol levels, including RC, dur-
ing early pregnancy might also be associated with GDM. 
Unfortunately, only a limited number of studies have 
explored the relationship between cholesterol param-
eters, especially RC, in early pregnancy and the risk of 

GDM. Therefore, a secondary analysis was conducted 
using published data to elucidate the association between 
cholesterol parameters and the risk of GDM.

Methods
Study design
A prospective cohort study design was used in this study. 
And data were obtained from a study, the "Fatty Liver in 
Pregnancy" registry (NCT02276144), conducted at the 
Government Seoul National University Boramae Medical 
Center and Incheon Seoul Women’s Hospital [25].

Data source
The dataset and information for this study were sourced 
from the publication titled "Nonalcoholic fatty liver dis-
ease is a risk factor for large-for-gestational-age birth-
weight" by Lee SM, Kim BJ, Koo JN, et al., published in 
PLoS ONE, volume 14, issue 8, with the article number 
e0221400 (2019). The publication is available under the 
Creative Commons Attribution License, allowing its 
unrestricted use, distribution, and reproduction, pro-
vided that proper credit is given to the author and source 
[25].

Study population
Singleton pregnant women up to 14  weeks’ gestation, 
who attended Seoul National University Boramae Medi-
cal Center and Incheon Seoul Women’s Hospital from 
November 2014 to July 2016, were recruited by the origi-
nal investigators as part of a prospective cohort study 
(ClinicalTrials.gov registry number: NCT02276144) [25]. 
The Institutional Review Board at Seoul National Uni-
versity Boramae Medical Center and the Public Institu-
tional Review Board of the Korean Ministry of Health 
and Welfare both approved the original study’s conduct. 
At the time of enrolment, every participant completed 
and signed an informed consent form [25]. Therefore, 
our secondary analysis did not require any further ethi-
cal clearance. The original study was also carried out 
in accordance with the Declaration of Helsinki; all pro-
cedures followed the necessary guidelines and rules, 
including the declaration section statement [25]. These 
same principles and guidelines apply to our secondary 
analysis as well.

A total of 663 singleton pregnant women were initially 
recruited for the original study [25]. However, 40 partici-
pants were excluded from the analysis based on the fol-
lowing exclusion criteria: (1) evidence of pre-gestational 
diabetes, excessive alcohol consumption, or chronic liver 
disease; (2) loss to follow-up (n = 35); (3) preterm deliv-
ery before 34 weeks (n = 5). Consequently, the final num-
ber of participants in the original study was 623 [25]. For 
our present study, we further excluded 20 participants 
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with missing information on TC, HDL-c, or LDL-c and 
13 participants with unclear information on GDM. Ulti-
mately, the study included 590 women with singleton 
pregnancies. The selection process for the participants is 
depicted in Fig. 1.

Variables
Independent and outcome variables
RC was the target-independent variable. RC was recorded 
as a continuous variable in mg/dL. RC (mg/dL) = TC (mg/
dL)-HDL-c (mg/dL)-LDL-c (mg/dL) is the formula used 
to calculate RC in detail [26, 27]. GDM (dichotomous: 
0 = non-GDM, 1 = GDM) was the outcome variable.

Covariates
The selection of covariates in our study was based on 
both the original study and our medical experience [25]. 
The following factors were taken into account as covari-
ates: (1) continuous variable: age, pre-pregnancy body 
mass index (BMI), LDL-c, fasting plasma glucose (FPG), 
insulin, alanine, adiponectin, aminotransferase (ALT), 

high-density lipoprotein cholesterol to low-density lipid 
cholesterol ratio (HLR), TC, gamma-glutamyl transferase 
(GGT), aspartate aminotransferase (AST); (2) categorical 
variable: nulliparity, hepatic steatosis. Detailed informa-
tion on the data collection and definition of variables can 
be found in the original study [25].

Treatment of missing data
In the second analysis, the number of participants with 
missing data for pre-pregnancy BMI, FPG, insulin, AST, 
and ALT was 1 (0.17%), 1 (0.17%), 1 (0.17%), 2 (0.34%), 
and 2 (0.34%), respectively. In order to reduce the devia-
tion caused by missing variables, which makes it impos-
sible to accurately depict the statistical efficacy of the 
target sample during the modeling phase, multiple impu-
tations are used for the missing data in this study [28, 29]. 
Age, pre-pregnancy BMI, hepatic steatosis, AST, GGT, 
ALT, FPG, adiponectin, and insulin were all taken into 
account in the imputation model (Iterations were 10, and 
the kind of regression was linear). Processes for missing 

Fig. 1 Flowchart of study participants
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data analysis employ the assumptions of missing-at-ran-
dom (MAR) [28].

Statistical analysis
The participants were stratified based on RC tertile. By 
ranking the RC values from smallest to largest and divid-
ing them into three tertiles by frequency, each contain-
ing about one-third of the participants:: the lowest tertile 
(T1), the middle tertile (T2), and the highest tertile (T3), 
respectively [30–32]. For normally distributed continu-
ous data, we give means and standard deviations; for 
skewed variables, we report medians; for categorical vari-
ables, we report percentages and frequencies. To exam-
ine statistical significance among RC groups, we used 
either a Kruskal–Wallis H test (for skewed distributions), 
One-way ANOVA (for normal distributions), or a χ2 test 
(for categorical variables).

Logistic regression analysis
The link between RC and the risk of GDM was investi-
gated using both univariate and multivariate logistic 
regression models. The multivariate logistic regression 
models were adjusted for various variables, including 
pre-pregnancy BMI, age, hepatic steatosis, AST, GGT, 
ALT, FPG, adiponectin, and insulin. Odds ratios (ORs) 
and 95% confidence intervals (CIs) were recorded in 
this study. Furthermore, the relationship between TG, 
TC, HDL-c, LDL-c, and HDL-c/LDL-c ratio (HLR) 
with GDM risk was explored using the same analytical 
approach. Additionally, variables demonstrating statis-
tically significant differences in the univariate logistic 
regression analysis were further examined in the multi-
variate logistic regression models to assess their relation-
ship with GDM risk.

Subgroup analysis
A subgroup analysis was conducted using a strati-
fied logistic regression model across various sub-
groups, including nulliparity, age, pre-pregnancy BMI, 
and HOMA-IR. Firstly, continuous variables, includ-
ing pre-pregnancy BMI, age, and HOMA-IR, were 
converted into categorical variables based on clinical 
cut-off points (age: < 35, ≥ 35  years old; pre-pregnancy 
BMI: < 25, ≥ 25  kg/m2; HOMA-IR: ≤ 2, > 2) [33, 34]. Sec-
ondly, each stratification was adjusted for all other factors 
(age, pre-pregnancy BMI, hepatic steatosis, AST, GGT, 
ALT, FPG, adiponectin, insulin) except the specific strati-
fication factor itself. Ultimately, the likelihood ratio test 
was used to determine whether interaction terms existed 
in models with and without interaction terms.

Sensitivity analysis
Several sensitivity analyses were performed to assess the 
robustness of our findings. Firstly, RC was converted into 
a categorical variable based on tertiles. Due to the strong 
association between obesity, Non-alcoholic fatty liver 
disease (NAFLD), and GDM [25, 35], we excluded par-
ticipants with pre-pregnancy BMI ≥ 25 kg/m2 or hepatic 
steatosis greater than or equal to grade 1 for further sen-
sitivity analyses. Furthermore, an assessment was con-
ducted to examine the potential presence of unobserved 
confounding between RC and the risk of GDM, utilizing 
the calculation of E-values. Previous research has indi-
cated that the impact of unknown or unmeasured factors 
on the association between exposure and outcome is lit-
tle when the E-value surpasses the relative risk of expo-
sure and unmeasured confounders or when it falls below 
the association between unmeasured confounders and 
the outcome [36].

Receiver operating characteristic curve analysis
Finally, a receiver operating characteristic (ROC) curve 
was generated to evaluate the predictive ability of TC, 
TG, LDL-c, and HDL-c in relation to the risk of GDM.

The analysis was carried out using Empower Stats 
(X&Y Solutions, Inc., Boston, MA, http:// www. empow 
ersta ts. com) and the R statistical software tools (http:// 
www.r- proje ct. org, The R Foundation). Statistical signifi-
cance was determined based on a two-sided approach, 
considering p-values below 0.05 as indicative of statistical 
significance.

Results
Characteristics of participants
The study participants’ demographic and clinical char-
acteristics are presented in Table  1. The mean age was 
32.06 ± 3.80 years old. The median of RC was 34.66 mg/
dL. 37 (6.27%) pregnant women developed GDM. We 
divided participants into subgroups based on RC tertile 
(T1: < 18.50, T2:18.50–25.60, T3: ≥ 25.60  mg/dL). The 
highest tertile (T3: ≥ 25.60  mg/dL) showed significant 
increases in Pre-pregnancy BMI, TC, TG, LDL-c, GGT, 
FFA, HOMA-IR, and insulin in comparison with the low-
est tertile (T1: < 18.50  mg/dL); however, HDL-c, HLR, 
and adipokines showed the opposite trend. Moreover, 
the highest tertile had a higher proportion of partici-
pants with nulliparity and steatosis grade 0. RC showed a 
skewed distribution with a median (interquartile) of 34.66 
(25.50,43.82) mg/dL (Fig. 2). The presence or absence of 
GDM was used to split the participants into two groups. 
Additional file  1: Table  S1 displayed the distribution of 
RC values in both the non-GDM and GDM groups. It 
is observed that the proportion of RC values < 25.6  mg/

http://www.empowerstats.com
http://www.empowerstats.com
http://www.r-project.org
http://www.r-project.org
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dL(T1) was higher in the non-GDM group. Conversely, 
the proportion of RC values ≥ 25.6 mg/dL(T2) was higher 
in the GDM group.

The incidence rate of gestational diabetes mellitus
In Table 2, it was presented that out of the total partici-
pants, 37 pregnant women developed GDM, resulting in 
an overall incidence of 6.27%. The incidence of GDM var-
ied across the RC tertiles, with T1 having an incidence of 
1.03%, T2 having an incidence of 3.06%, and T3 having 
the highest incidence of 14.50%. A significant trend was 
observed, indicating a higher prevalence of GDM among 

Table 1 The baseline characteristics of participants

Continuous variables were summarized as mean (SD) or medians (quartile interval); categorical variables were displayed as a percentage (%)

RC remnant cholesterol, BMI body mass index, ALT alanine aminotransferase, AST aspartate aminotransferase, GGT  gamma-glutamyl transferase, HDL-c high-density 
lipoprotein cholesterol, TC total cholesterol, TG triglycerides, LDL-c low-density lipid cholesterol, HLR high-density lipoprotein cholesterol to low-density lipid 
cholesterol ratio, FPG fasting plasma glucose, HOMA-IR homeostasis model assessment-insulin resistance

RC T1(< 18.50 mg/dL) T2(18.50–25.60 mg/dL) T3(> 25.60 mg/dL) P-value

Participants 194 196 200

Age(years) 31.61 ± 3.67 32.22 ± 3.60 32.35 ± 4.07 0.116

Pre-pregnancy BMI (kg/m2) 21.05 ± 2.68 21.80 ± 3.49 23.23 ± 3.87  < 0.001

GGT(IU/L) 11.00 (9.25–14.00) 11.00 (9.00–14.00) 13.00 (10.00–18.00)  < 0.001

TC (mg/dL) 161.24 ± 22.28 172.31 ± 25.41 184.68 ± 28.33  < 0.001

TG (mg/dL) 76.42 ± 12.71 109.54 ± 10.22 169.55 ± 44.69  < 0.001

HDL-c(mg/dL) 66.51 ± 11.91 65.96 ± 13.81 62.34 ± 14.42 0.004

LDL-c(mg/dL) 79.46 ± 19.13 84.44 ± 20.38 88.05 ± 24.59  < 0.001

HLR 0.90 ± 0.32 0.83 ± 0.30 0.77 ± 0.31

RC (mg/dL) 15.27 ± 2.52 21.90 ± 2.04 34.29 ± 9.79  < 0.001

Adipokines(ng/mL) 6402.45 (3847.80–9978.28) 5482.90 (3196.80–8228.60) 3739.35 (2062.43–6010.28)  < 0.001

AST(IU/L) 16.00 (14.00–18.75) 16.00 (14.00–19.00) 17.00 (14.00–21.00) 0.085

ALT(IU/L) 11.00 (8.00–14.00) 11.00 (8.00–15.00) 11.50 (8.00–18.00) 0.068

FPG (mg/dL) 75.84 ± 8.95 77.14 ± 9.96 78.09 ± 10.17 0.058

Insulin(μIU/mL) 6.70 (4.32–10.07) 7.95 (5.30–10.93) 10.30 (7.30–15.07)  < 0.001

HOMA-IR 1.30 (0.80–1.90) 1.50 (0.90–2.20) 2.00 (1.30–2.82)  < 0.001

Nulliparity(n,%) 0.069

 No 115 (59.28%) 98 (50.00%) 97 (48.50%)

 Yes 79 (40.72%) 98 (50.00%) 103 (51.50%)

Hepatic steatosis(n,%)  < 0.001

 Grade 0 167 (86.08%) 171 (87.24%) 141 (70.50%)

 Grade 1 27 (13.92%) 19 (9.69%) 39 (19.50%)

 Grade 2 0 (0.00%) 5 (2.55%) 13 (6.50%)

 Grade 3 0 (0.00%) 1 (0.51%) 7 (3.50%)

Fig. 2 Distribution of RC. It presented a skewed distribution ranging 
from 2.6 mg/dL to 71.3 mg/dL, with a median (interquartile) of 34.66 
(25.50,43.82) mg/dL

Table 2 Incidence rate of gestational diabetes mellitus

RC remnant cholesterol, GDM gestational diabetes mellitus, CI confidence 
interval

RC Participants(n) GDM events (n) Incidence of GDM 
(95% CI%)

Total 590 37 6.27 (4.31–8.23)

Tertile1 194 2 1.03 (0.40–2.50)

Tertile2 196 6 3.06(0.60–5.49)

Tertile3 200 29 14.50 (9.58–19.42)

P for trend  < 0.001
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participants with the highest RC (T3) compared to those 
with the lowest RC (T1) (p for trend < 0.001) (Table 2).

The results of univariate analyses using a binary logistic 
regression model
The results of the univariate analyses revealed that 
there was no significant association between the risk 
of GDM and age (odds ratio [OR] = 1.036, 95% confi-
dence interval [CI] 0.949–1.132), TC (OR = 1.011, 95% 
CI 0.999–1.023), LDL-c (OR = 1.001, 95% CI 0.985–
1.016), HLR(OR = 0.733 95%CI0.240, 2.245), or AST 
(OR = 1.020, 95% CI 0.994–1.047) (all p > 0.05). How-
ever, there was a positive association between the risk 
of GDM and pre-pregnancy BMI (OR = 1.284, 95% CI 
1.183–1.392), TG (OR = 1.019, 95% CI 1.012–1.025), RC 
(OR = 1.102, 95% CI 1.067–1.138), ALT (OR = 1.037, 95% 
CI 1.014–1.061), FPG (OR = 1.072, 95% CI: 1.039–1.106), 
insulin (OR = 1.123, 95% CI 1.073–1.175), and HOMA-IR 
(OR = 1.463, 95% CI 1.211–1.766) (all p < 0.05). Partici-
pants with steatosis grade 3 (OR = 17.362, 95% CI 3.814–
79.042) and nulliparity (OR = 1.052, 95% CI 0.541–2.048) 

were also found to be more likely to experience GDM (all 
p < 0.05). Interestingly, adipokines (OR = 0.999, 95% CI 
0.999–1.000) showed a negative relationship with the risk 
of developing GDM in pregnant women (Table 3).

Results of multivariate logistic regression analysis
Multivariate-adjusted logistic regression models were 
utilized to examine the association between RC and 
GDM in pregnant women (Table 4, Additional file 2: Fig-
ure S1). The findings revealed that, after accounting for 
confounding variables, there was a significant associa-
tion between RC levels in early gestation and the risk of 
GDM in pregnant women. Specifically, for each 5 mg/dL 
increase in RC levels, there was a 45.8% increase in the 
risk of GDM (odds ratio [OR] = 1.458, 95% confidence 
interval [CI] 1.221–1.741). The confidence interval dis-
tribution further supports the independent association of 
RC with the risk of GDM.

In addition, the association between GDM risk and 
other cholesterol parameters (LDL-c, TC, HDL-C, HLR) 
was examined (Table  4, Additional file  2: Figure S1). 

Table 3 Factors influencing gestational diabetes based on a univariate logistic regression model

Continuous variables were summarized as mean (SD) or medians (quartile interval); categorical variables were displayed as a percentage (%)

RC remnant cholesterol, BMI body mass index, ALT alanine aminotransferase, AST aspartate aminotransferase, GGT  gamma-glutamyl transferase, HDL-c high-density 
lipoprotein cholesterol, TC total cholesterol, TG triglycerides, LDL-c low-density lipid cholesterol, HLR high-density lipoprotein cholesterol to low-density lipid 
cholesterol ratio, FPG fasting plasma glucose, HOMA-IR homeostasis model assessment-insulin resistance

OR odds ratio, CI confidence interval, Ref Reference

Non-GDM (n = 553) GDM (n = 37) OR (95%CI) P-valve

Age (years) 32.03 ± 3.81 32.54 ± 3.56 1.036 (0.949, 1.132) 0.43038

Nulliparity (n,%)

 No 291 (52.62%) 19 (51.35%) Ref

 Yes 262 (47.38%) 18 (48.65%) 1.052 (0.541, 2.048) 0.881

Pre-pregnancy BMI (kg/m2) 21.78 ± 3.20 25.95 ± 5.17 1.284 (1.183, 1.392)  < 0.001

GGT (IU/L) 13.72 ± 8.38 18.81 ± 10.97 1.040 (1.014, 1.066) 0.002

TC (mg/dL) 172.32 ± 26.97 180.89 ± 29.61 1.011 (0.999, 1.023) 0.065

TG (mg/dL) 115.16 ± 41.67 176.22 ± 81.93 1.019 (1.012, 1.025)  < 0.001

HDL-c (mg/dL) 65.29 ± 13.25 59.29 ± 16.45 0.966 (0.941, 0.992) 0.009

LDL-c (mg/dL) 84.01 ± 21.29 84.29 ± 28.38 1.001 (0.985, 1.016) 0.939

HLR 0.84 ± 0.31 0.81 ± 0.40 0.733 (0.240, 2.245) 0.587

RC (mg/dL) 23.03 ± 8.34 37.31 ± 18.63 1.102 (1.067, 1.138)  < 0.001

Hepatic steatosis (n, %)

 Grade 0 463 (83.73%) 16 (43.24%) Ref

 Grade 1 76 (13.74%) 9 (24.32%) 3.427 (1.462, 8.033) 0.005

 Grade 2 9 (1.63%) 9 (24.32%) 28.937 (10.128, 82.677)  < 0.001

 Grade 3 5 (0.90%) 3 (8.11%) 17.362 (3.814, 79.042)  < 0.001

Adipokines (ng/mL) 6289.62 ± 4296.63 2591.20 ± 2133.90 0.999 (0.999, 1.000)  < 0.001

AST (U/L) 17.71 ± 8.14 19.89 ± 7.34 1.020 (0.994, 1.047) 0.140

ALT (U/L) 11.00 (8.00–14.00) 15.00 (10.00–25.00) 1.037 (1.014, 1.061) 0.002

FPG (mg/dL) 76.54 ± 9.06 84.85 ± 15.10 1.072 (1.039, 1.106)  < 0.001

Insulin (μIU/mL) 8.10 (5.30–11.20) 15.30 (9.10–22.50) 1.123 (1.073, 1.175)  < 0.001

HOMA-IR 1.50 (1.00–2.20) 2.90 (1.60–4.60) 1.463 (1.211, 1.766)  < 0.001
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Through multivariate logistic regression analysis, it was 
found that the risk of GDM in pregnant women did not 
show a significant association with TC (per 5  mg/dL), 
HDL-c (per 5  mg/dL), LDL-c (per 5  mg/dL), and HLR 
after excluding confounding factors. The ORs, along with 
their corresponding 95% Cis and p-values, were as fol-
lows: TC (OR = 1.035, 95% CI 0.967–1.107, p = 0.322), 
HDL-c (OR = 0.880, 95% CI 0.757–1.028, p = 0.107), 
LDL-c (OR = 0.990, 95% CI 0.913–1.073, p = 0.802), 
and HLR (OR = 0.985, 95% CI 0.287–3.377, p = 0.980). 
In other words, there was no significant association 
observed between TC, HDL-c, LDL-c, and HLR with the 
risk of GDM in pregnant women.

Furthermore, the relationship between TG levels and 
GDM risk was further investigated using multivari-
ate logistic regression models (Table 4, Additional file 2: 
Figure S1). The results revealed that after adjusting for 
confounding factors, there was a 6.8% increase in the 
risk of maternal GDM for every 5 mg/dL rise in TG lev-
els during early pregnancy (OR = 1.068, 95% CI 1.027–
1.111, p < 0.001). The relationship between other factors, 
including pre-pregnancy BMI, ALT, GGT, FPG, Insulin, 
HOMA-IR, and adipokines, and the risk of GDM was 
also investigated (Additional file  1: Table  S2). Through 
multivariate logistic regression analysis, after excluding 
confounding factors, the odds ratios (ORs) along with 
their 95% confidence intervals (CIs) for the association 
between these factors and the risk of GDM were as fol-
lows: pre-pregnancy BMI (OR = 1.078, 95% CI 0.967–
1.202), ALT (OR = 1.034, 95% CI 0.988–1.082), GGT 
(OR = 0.997, 95% CI 0.955–1.041), FPG (OR = 1.051, 95% 
CI 0.995–1.111), Insulin (OR = 1.145, 95% CI: 0.923–
1.422), HOMA-IR (OR = 0.640, 95% CI 0.267–1.533), 
and adipokines (OR = 1.000, 95% CI 0.999–1.000). As 

observed from the confidence intervals, none of these 
factors were found to be significantly associated with the 
risk of GDM in pregnant women.

Sensitivity analysis
A series of sensitivity analyses were conducted, including 
the introduction of the tertile of RC into the regression 
equation. The findings indicated that the overall trend in 
the effect sizes between the groups remained consistent 
with the results obtained when RC was treated as a con-
tinuous variable (p for trend = 0.011) (Table 4).

A sensitivity analysis was conducted on participants 
with pre-pregnancy BMI < 25  kg/m2. After adjusting for 
confounding variables, including pre-pregnancy BMI, 
age, hepatic steatosis, AST, GGT, ALT, FPG, adiponec-
tin, and insulin, the results revealed a positive association 
between RC (per 5 mg/dL) and GDM in pregnant women 
(OR = 1.473, 95% CI 1.200–1.809, p < 0.001). Additionally, 
another sensitivity analysis was performed by excluding 
participants with hepatic steatosis greater than or equal 
to grade 1. After adjusting for confounding variables, 
including age, pre-pregnancy BMI, AST, GGT, ALT, FPG, 
adiponectin, and insulin, the findings indicated that RC 
(per 5  mg/dL) remained positively associated with the 
risk of GDM in pregnant women (OR = 1.511, 95% CI 
1.211–1.885, p < 0.001) (Table 5). Furthermore, an E-value 
was calculated to assess the sensitivity of the link between 
RC and GDM risk in pregnant women to unmeasured 
confounders (Additional file 1: Table S3). The E-value of 
2.28, which exceeded the relative risk of RC and unmeas-
ured confounders (1.75) but was lower than the relative 
risk of unmeasured confounders with GDM (3.74), sug-
gested that the influence of unknown or unmeasured 
factors on the association between RC and GDM risk is 

Table 4 lipid parameters including TG, TC, LDL-c, HDL-c, HDL-c/LDL-c ratio, and RC in relation to gestational diabetes mellitus

Values are mean ± SD or n (%) unless otherwise indicated. Odds ratios (OR) were estimated by multivariate-logistic regression models adjusted for age, pre-pregnancy 
BMI, hepatic steatosis, AST, GGT, ALT, FPG, adiponectin, and insulin

CI confidence interval, Ref Reference, RC remnant cholesterol

Exposure Non-GDM (n = 553) GDM (n = 37) Odds ratio (95% CI) P value

TC (mg/dL) 172.32 ± 26.97 180.89 ± 29.61  + 5 mg/dL: 1.035 (0.967, 1.107) 0.322

HDL-c(mg/dL) 65.29 ± 13.25 59.29 ± 16.45  + 5 mg/dL: 0.880 (0.753, 1.028) 0.107

LDL-c(mg/dL) 84.01 ± 21.29 84.29 ± 28.38  + 5 mg/dL: 0.990 (0.913, 1.073) 0.802

TG (mg/dL) 115.16 ± 41.67 176.22 ± 81.93  + 5 mg/dL:1.068 (1.027, 1.111)  < 0.001

HDL-c/LDL-c ratio 0.84 ± 0.31 0.81 ± 0.40 1 unit: 0.985 (0.287, 3.377) 0.980

RC (mg/dL) 23.025 ± 8.337 37.305 ± 18.628  + 5 mg/dL:1.458 (1.221, 1.741)  < 0.001

RC tertile

 T1 (< 18.50 mg/dL) 192 (34.72%) 2 (5.41%) Ref

 T2 (18.50–25.60 mg/dL) 190 (34.36%) 6 (16.22%) 1.404 (0.254, 7.771) 0.698

 T3 (≥ 25.60 mg/dL) 171 (30.92%) 29 (78.38%) 4.500 (0.973, 20.811) 0.054

 P for trend 0.011
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likely minimal. In addition, subgroup analyses were also 
done. In all analyzed predetermined or exploratory sub-
groups (Additional file 1: Table S4), there was no signifi-
cant interaction between age, nulliparity, and HOMA-IR 
and RC (P for interaction > 0.05). Evidently, based on all 
sensitivity assessments, our conclusions are solid.

The results of the ROC curve analysis
We drew ROC curves to measure the ability of LDL-
c, HDL-c, TG, TC, HLR, and RC to predict the risk 
of GDM in pregnant women (Fig.  3). The areas under 
the curve (AUC) of each variable were as follows: 
HLR:0.4585 < LDL-c: 0.5000 < TC: 0.5810 < HDL-c: 
0.5923 < TG:0.7837 < RC:0.8038. The highest Youden 
index of HLR, LDL-c, TC, HDL-c, TG, HDL-c, LDL-c, 
and RC was 0.1045, 0.0679, 0.1753, 0.2357, 0.4798, and 
0.5069, and the corresponding optimal cut-off value was 
0.7633, 105.55, 181.50, 49.20, 121.50, 24.30, respectively. 
The Youden index and AUC of RC were the biggest, so 
the predictive ability of RC to GDM in pregnant women 
was better than that of other lipid parameters (Table 6).

Discussion
This prospective cohort study of 590 pregnant women 
examined the relationship between RC and GDM. The 
results found that RC was an independent risk factor 
for GDM in pregnant women but not for other choles-
terol parameters, including HDL-c, LDL-c, and TC. The 
results of the sensitivity analysis further support a stable 
association between RC and the risk of GDM. We also 
demonstrated that RC can accurately predict GDM with 
an AUC of 0.8038 (0.7338–0.8738). RC was much supe-
rior to TG, HDL-c, TC, and LDL-c in predicting GDM in 
pregnant women. Therefore, RC may be an effective non-
invasive method for predicting GDM.

Atherogenic dyslipidemia, characterized by elevated 
levels of TG, TG-rich lipoproteins, and decreased HDL-c 
levels, has been extensively studied in the context of 

Table 5 Relationship between RC and GDM risk in different sensitivity analyses

Model I was a sensitivity analysis after excluding those with pre-pregnancy BMI ≥ 25 kg/m2. We adjusted for age, pre-pregnancy BMI, hepatic steatosis, AST, GGT, ALT, 
FPG, adiponectin, and insulin

Model II was a sensitivity analysis, including those with grade 0 hepatic steatosis. We adjusted for age, pre-pregnancy BMI, AST, GGT, ALT, FPG, adiponectin, and insulin

Exposure Participants(n) Non-GDM GDM Odds ratio (95% CI) P value

Model I RC (mg/dL) 492 22.51 ± 8.32 38.95 ± 22.48  + 5 mg/dL: 1.473 (1.200, 1.809)  < 0.001

Model II RC (mg/dL) 479 23.03 ± 8.34 37.31 ± 18.63  + 5 mg/dL: 1.511 (1.211, 1.885)  < 0.001

Fig. 3 The results of ROC curve analysis for measuring the ability 
of RC, HDL-c, LDL-c, TG, HLR, and TC to predict the risk of GDM. 
Showed that RC was a better predictor of GDM in pregnant women 
than other lipid parameters. ROC curve analysis showed that the area 
under the curve for HLR, LDI-c, TC, HDL-c, TG, and RC were 0.4585, 
0.5000, 0.5810, 0.5923, 0.7837, and 0.8038, respectively

Table 6 Area under the receiver operating characteristic curve (AUROC) for various lipid parameters for identifying GDM

RC remnant cholesterol, HDL-c high-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, LDL-c low-density lipid cholesterol, HLR high-density 
lipoprotein cholesterol to low-density lipid cholesterol ratio, ROC receiver operating characteristic curve, CI confidence interval

Variables AUC (95% CI) Best threshold Specificity Sensitivity Youden index

TC (mg/dL) 0.5810 (0.48226–0.6794) 181.5000 0.6618 0.5135 0.1753

TG (mg/dL) 0.7837 (0.7092–0.8582) 121.5000 0.6420 0.8378 0.4798

HDL-c(mg/dL) 0.5923 (0.4869–0.6977) 49.2000 0.8843 0.3514 0.2357

LDL-c(mg/dL) 0.5000 (0.3968–0.6032) 105.5500 0.8517 0.2162 0.0679

RC (mg/dL) 0.8038 (0.7338–0.8738) 24.3000 0.6420 0.8649 0.5069

HLR 0.4585 (0.3506- 0.5664) 0.7633 0.5099 0.5946 0.1045
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cardiovascular disease [20, 37–39]. The association 
between cholesterol and cardiovascular disease remains 
a topic of debate. Some studies have concluded that cho-
lesterol is not directly associated with cardiovascular dis-
ease but rather with inflammation. Some studies suggest 
that in the presence of atherosclerotic dyslipidemia, the 
overproduction of TG-rich lipoproteins and inefficient 
lipolytic processing contribute to increased RC forma-
tion. This cholesterol-enriched TG-rich lipoprotein is 
more prone to accumulate in the arterial wall, leading to 
atherosclerosis and cardiovascular disease [18, 40]. Con-
versely, other studies have concluded that cholesterol 
is not directly associated with cardiovascular disease 
but rather with inflammation [41, 42].However, there is 
growing evidence that RC is associated with T2DM and 
overall glucose metabolism [19, 24, 43, 44]. Consider-
ing that RC is one of the most prevalent patterns of lipid 
abnormalities in insulin-resistant states [24, 45, 46], we 
hypothesize that RC may affect pancreatic β cells and 
overall glucose metabolism in pregnant women. The cur-
rent study investigated the association of RC with GDM 
and concluded that RC is an independent risk factor for 
the development of GDM in pregnant women, rather 
than other cholesterol parameters, including LDL-c, 
HDL-c, and TC. These findings are consistent with pre-
vious studies in the general population. Previous studies 
have shown that RC is positively associated with the risk 
of T2DM. In a longitudinal cohort study from Korea, the 
multivariate-adjusted analysis suggested that participants 
in the fourth quartile of RC had a higher risk of T2DM 
compared to those in the first quartile of RC (hazard 
ratios HR = 1.95;95% CI1.93–1.97). The HR for the sec-
ond quartile of RC was 1.25 (95% CI1.24–1.27) and 1.51 
(95% CI1.50–1.53) for the third quartile [19]. In addi-
tion, a single-center cohort study in China showed that 
higher RC levels were independently associated with an 
increased risk of new-onset diabetes (HR = 2.44, 95% CI 
1.50–3.89) [24]. This is a very clinically relevant finding 
that RC is an independent risk factor for GDM and may 
be a potential target for the prevention and treatment 
of GDM. Clarifying their relationship informs the opti-
mization of GDM prevention in pregnant women and 
facilitates communication with patients’ families. It also 
provides valuable risk factors for future GDM prediction 
modeling.

Consistent with numerous previous studies, we 
employed the calculation of RC by subtracting HDL-c 
and LDL-c from TC, following the 2019 European Ath-
erosclerosis Society guidelines for dyslipidemia manage-
ment [21, 27, 47, 48]. Our study revealed a statistically 
significant difference in the association between RC and 
GDM when employing this simple calculation. How-
ever, none of the variables in the formula, including TC, 

LDL-c, and HDL-c, exhibited a significant difference in 
their association with GDM risk. Several possible rea-
sons account for this discrepancy. Firstly, as suggested by 
Jepsen et al., calculated RC tends to slightly overestimate 
the directly measured values. Nonetheless, calculated RC 
remains closely linked to measured RC, and the advan-
tage of the RC approximation lies in its wide availability 
and cost-effectiveness [17, 49]. Calculated RC can serve 
as a suitable alternative to measured RC for assessing the 
risk of various clinical outcomes [49]. However, it must 
be emphasized that the calculated RC remains essentially 
the cholesterol of all triglyceride-rich (TG) lipoproteins. 
There is growing evidence that abnormalities in TG, TG-
rich lipoproteins, are associated with T2DM and overall 
glucose metabolism [43]. Studies have confirmed that 
elevated TG is strongly associated with an increased 
risk of GDM [50, 51]. Our study likewise confirmed a 
significant positive association between TG and the risk 
of GDM. Thus, the involvement of TG may be a reason 
for the significant positive association of RC with GDM. 
Secondly, the fact that RC remains cholesterol-specific in 
nature, it is more harmful to pancreatic β-cells because 
of its higher cholesterol content, quantity, and volume 
compared to LDL-c [52]. Additionally, RC may influence 
GDM through the inflammatory pathway, distinguishing 
it from conventional cholesterol. A study has provided 
evidence that elevated RC is causally associated with low-
grade inflammation and ischemic heart disease (IHD), 
while elevated LDL-c is causally associated with IHD but 
not inflammation [53].

Previous studies have shown that in the general popu-
lation, TG, HDL-c, and TC in the conventional lipid pro-
file are good lipid parameters for predicting the risk of 
diabetes mellitus [24, 54, 55]. In the present study, HLR, 
LDL-c, TG, HDL-c, TC, and RC were calculated by ROC 
analysis in pregnant women at 12–14 weeks of gestation 
for their ability to predict GDM. The results showed that 
the area under the curve of RC was larger than other con-
ventional lipid parameters. This suggests that RC may 
be a better indicator of glucose metabolism disorders 
in pregnant women and that measuring RC may help to 
predict pregnant women prone to GDM, especially those 
with normal HDL-c, LDL-c, and TC that are easily over-
looked. When a pregnant woman’s RC is greater than 
24.3 mg/dL in early pregnancy, she has a high likelihood 
of developing GDM.

The underlying mechanism of the association 
between RC and GDM in pregnant women remains 
unclear. Insulin resistance may be the most critical fac-
tor. A study of residents in a rural community showed 
that fasting RC was strongly associated with IR [46]. 
In another study, postprandial RC was an independ-
ent predictor of IR, regardless of BMI, age, and other 
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lipid profiles [56]. Additionally, RC may directly cause 
β-cell malfunction, which in turn causes insulin secre-
tion suppression [57], and this may be one of the poten-
tial mechanisms of their relationship. Furthermore, the 
human placenta is an important site for the conversion 
of cholesterol to steroids, and the biosynthesis of pla-
cental steroids is essential for pregnancy maintenance 
and embryonic development [58]. In turn, a state of IR 
is induced in the second half of pregnancy by placental 
hormones such as placental-derived hormones, human 
placental lactogen, and human placental growth hor-
mone [59, 60]. This may also be one of the mechanisms 
by which elevated RC in early gestation is associated 
with an increased risk of GDM.

There are several strengths to note in this investigation. 
(i) the study is the first in confirming the independent 
association between early plasma RC levels in pregnant 
women and GDM and making comparisons with con-
cerns between other cholesterol parameters and GDM; 
(ii) our study provides an AUROC and optimal thresh-
old for early prediction of GDM by RC; (iii) To ensure 
the robustness of the conclusions, a series of sensitivity 
analyses were performed, including the conversion of 
RC to a categorical variable, reanalysis of the associa-
tion between RC and onset GDM after excluding partici-
pants with BMI ≥ 25 kg/m2 and hepatic steatosis greater 
than or equal to grade 1, subgroup analysis and calcula-
tion of E values to explore the possibility of unmeasured 
confounders.

The present study does have certain limitations. First, 
because the association between RC and GDM may vary 
by race, our findings should be further validated in dif-
ferent ethnic groups. Second, because this study was a 
secondary analysis, it was impossible to adjust for factors 
not in the original data set, such as waist circumference, 
family history of diabetes, and hypertension. In addition, 
the present study did not adjust for inflammatory mark-
ers such as platelet-activating factor, C-reactive protein, 
etc., and analyze their relationship with the risk of GDM. 
In the future, we can think about how to design our study, 
and we will obtain more precise data on variables, includ-
ing some inflammatory mediators. The third drawback is 
that RC was collected only once at 12–14 weeks of gesta-
tion. Therefore, we do not know if the RC changes after 
14  weeks. This is an important- issue that may require 
further study. Fourth, this observational study did not 
demonstrate a causal relationship between RC and GDM; 
rather, it only established an association. Finally, even if 
possible confounders were adjusted for, as with all obser-
vational research, there could still be unmeasured or 
uncontrolled confounders. We calculated E-value, never-
theless, and discovered that unmeasured or uncontrolled 
confounders had no impact on our results.

Conclusion
In pregnant women, serum RC levels at 12–14  weeks 
of gestation are positively associated with GDM risk. 
Serum RC at 12–14 weeks of gestation predicted GDM 
better than other lipid markers, including TG, HDL-c, 
LDL-c, and TC. This study may help optimize GDM 
prevention in pregnant women and facilitate commu-
nication between physicians and pregnant women and 
their families.
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