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Abstract 

Background USP51 is a deubiquitinase (DUB), that is involved in diverse cellular processes. Accumulating evidence 
has demonstrated that USP51 contributes to cancer development. However, its impact on non-small cell lung carci-
noma (NSCLC) cell malignancy is largely unknown.

Methods In this study, we performed bioinformatics analysis on a dataset from The Cancer Genome Atlas to deter-
mine the association between USP51 and cell stemness marker expression in NSCLC patients. RT‒qPCR, Western blot-
ting, and flow cytometry were performed to examine the effects of USP51 depletion on stemness marker expression. 
Colony formation and tumor sphere formation assays were used to assess the stemness of NSCLC cells. A cyclohex-
imide chase time-course assay and a polyubiquitination assay were carried out to analyze the effects of USP51 on 
the TWIST1 protein level. TWIST1 was overexpressed in USP51 knockdown NSCLC cells to determine whether TWIST1 
is required. The effect of USP51 on the in vivo growth of NSCLC cells was tested through subcutaneous injections in 
mice.

Results We found that USP51 deubiquitinates TWIST1, which is significantly upregulated in the tissues of patients 
with NSCLC and is closely associated with poor prognosis. USP51 expression was positively correlated with the expres-
sion of stemness marker CD44, SOX2, NANOG, and OCT4 in NSCLC patients. USP51 depletion attenuated mRNA, 
protein, and cell surface expression of stemness markers and the stemness of NSCLC cells. Ectopic USP51 expression 
potentiated the stability of the TWIST1 protein by attenuating its polyubiquitination. In addition, TWIST1 re-expression 
in NSCLC cells reversed the inhibitory effect of USP51 knockdown on cell stemness. Furthermore, the in vivo results 
confirmed the suppressive effect of USP51 depletion on NSCLC cell growth.

Conclusions Our results show that USP51 maintains the stemness of NSCLC cells by deubiquitinating TWIST1. Knock-
ing it down reduces both cell stemness and growth of NSCLC cells.
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Background
Despite the reduced incidence of lung carcinoma and 
resulting cancer-related deaths over the past 20 years, 
27% of cancer-related deaths still result from lung car-
cinoma [1, 2]. Non-small cell lung carcinoma (NSCLC), 
a major type of lung carcinoma, accounts for 85% of 
all lung carcinoma cases [3]. Because of the investiga-
tion and application of multiple diagnostic and prog-
nostic biomarkers for NSCLC, the 5-year survival rate 
of patients with NSCLC has increased significantly 
[4]. Evaluation of EGFR mutations, detected in 15% 
of NSCLC patients, has guided targeted therapeutic 
approaches for patients, leading to a longer survival 
times [5]. However, cumulative clinical observations 
have shown that a certain group of patients acquire 
resistance to drugs targeting EGFR during chemo-
therapy [5]. Therefore, unraveling the mechanism of 
NSCLC progression may aid in the development of 
more effective adjuvant therapeutic strategies to over-
come drug resistance.

The self-renewal and differentiation capabilities of 
stem cells are fine-tuned during tissue development and 
maintenance [6]. Cancer stem cells, a small population 
of cancer cells that are able to self-renew during cancer 
progression, contribute greatly to chemoresistance and 
cancer recurrence [7]. Moreover, acquisition of stemness 
endows cancer cells with aggressiveness and the capabil-
ity to survive in the circulatory system, which results in 
their seeding in distant organs and, eventually, the forma-
tion of metastases [7]. Thus, screening for drugs that spe-
cifically target cancer stem cells has emerged as a novel 
approach for developing treatments targeting malignant 
cancer cells [8, 9]. Furthermore, the identification of tar-
get genes that potentiate cancer cell stemness can facili-
tate the further development of therapeutic drugs.

Polyubiquitination is a critical process for control-
ling protein abundance at the posttranslational level 
[10]. With the help of E1 activating and E2 conjugating 
enzymes, certain E3 ligases can recognize and target pro-
teins and tag them with polyubiquitin chains. These poly-
ubiquitinated proteins are accumulated and degraded 
by proteasomes or lysosomes [11]. In contrast, deubiq-
uitinases (DUBs) are able to cleave ubiquitin chains and 
thus function to reverse the effects of E3 ligase molecules 
to modulate protein stability by cleaving the ubiquitin 
chains from proteins and recycling the ubiquitin mol-
ecules [12]. E3 ligases and DUBs constitute a dynami-
cally balanced system that regulates protein expression. 
A previous study demonstrated that TWIST1 increases 
stemness of lung cancer cells [13] and promotes the 
occurrence and progression of NSCLC [14]. However, 
limited research has been conducted on the mechanisms 
responsible for regulating TWIST1 stability in lung 

cancer. Further investigation is required to determine 
whether DUBs regulate TWIST1.

Here, we show that the expression of USP51, a DUB 
whose function has not been characterized in NSCLC, 
is positively associated with the expression of a panel of 
stemness markers. The results of loss-of-function studies 
suggested that USP51 knockdown reduced the expres-
sion of stemness markers in NSCLC cells, thereby dimin-
ishing the growth and tumor sphere formation of NSCLC 
cells. Mechanistically, USP51 interacted with and deu-
biquitinated TWIST1, leading to TWIST1 protein stabi-
lization. Moreover, restoration of TWIST1 expression in 
NSCLC cells alleviated the biological effects of the loss of 
USP51. Our study identified USP51 as a novel promoter 
of NSCLC cell stemness and revealed an unexpected 
mechanism by which USP51 exerts its effects in NSCLC 
cells.

Materials and methods
Analysis of data from the Cancer Genome Atlas (TCGA)
Normalized fragments per kilobase of transcript per 
million mapped (FPKM) values, genetic alteration land-
scapes, and clinical data were acquired from TCGA 
through the R package TCGAbiolinks (v.2.24.3) [15]. In 
total, data for 1149 non-small cell lung cancer (NSCLC) 
samples, namely, 598 lung adenocarcinoma (LUAD;59 
normal and 539 tumor tissue) samples and 551 lung 
squamous cell carcinoma (LUSC; 49 normal and 502 
tumor tissue) samples, were obtained. Paired samples of 
tumor and normal tissue were available for only 107 of 
the NSCLC patients. The expression of TWIST1 in vari-
ous tumor tissues, in tissues from NSCLC tumors of dif-
ferent stages was analyzed. Survival analysis, which was 
performed using the R packages survival (v3.3-1) and 
survminer (v.0.4.9), was conducted in TCGA cohorts 
to evaluate the impact of gene expression on the overall 
survival (OS) of NSCLC patients. Spearman correlation 
analysis was performed on data in the Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2, http:// gepia2. 
cancer- pku. cn/# index) database to analyze the correla-
tions between USP51 expression and the expression of 
CD44, SOX2, NANOG, OCT4, C-MYC, and EPCAM in 
LUSC and LUAD tumor samples in the TCGA database.

Analysis of data from Gene expression Omnibus (GEO)
Lung cancer patient data were downloaded from GEO 
(accession: GSE19804) and included clinical data (age 
and stage), and expression data for TWIST1 (213943_at) 
and USP51 (229278_at). There were 60 pairs of lung can-
cer tissue and matched paracancerous normal tissue. 
Twenty-nine patients were 60 years old, and 31 patients 
were more than 60 years old. Of the 60 patients, 16 had 
stage 1  A disease, 19 had stage 1B disease, 5 had stage 

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index


Page 3 of 13Chen et al. Journal of Translational Medicine          (2023) 21:453  

2 A disease, 7 had stage 2B disease, 8 had stage 3 A dis-
ease, 4 had stage 3B disease, and 1 had stage 4 disease. 
The expression of USP51 and TWIST1 was compared 
between normal and tumor tissues, between more than 
60 years old and those 60 years old or younger, and 
between tumor tissues of different stages using GraphPad 
Prism (version 8).

Cell culture
HCC827 and NCI-H1299 cells (IMMOCELL, China) 
were cultured in RPMI 1640 medium (Hyclone Cytiva, 
SH30027.02) supplemented with 10% fetal bovine serum 
(FBS; Gibco, 10099141  C). All cells were maintained at 
37 °C in a humidified atmosphere containing 5%  CO2.

Screen of DUBs
HEK-293T cells, which were stably overexpressing 
TWIST1-GFP, were cultured in 96-well plates at a den-
sity of 3 ×  104 cells per well for a duration of 6 h. Subse-
quently, the plasmids encoding 40 different DUBs was 

transfected individually into the cells. Following a 48-h 
incubation period, fluorescence intensity was quantified 
using an Elispot  immunSpot® S5 UV analyzer (CTL).

Plasmid construction
Ectopic USP51 and TWIST1 expression constructs were 
generated by PCR amplification and inserted into the 
pLV-EF1a-HA-IRES-bsd and pLV-EF1a-Flag-IRES-bsd 
backbones, respectively. USP51 shRNA was synthesized 
by ligating the annealed shRNA oligo into the pLKO.1-
TRC backbone. All the primers used for cloning are listed 
in Additional file 1: Table S1. The plasmid encoding His-
ubiquitin was purchased from Xiamen Antihela Biotech-
nology Co., Ltd.

Real‑time quantitative PCR (RT‒qPCR)
Total RNA was extracted using an RNA isolation kit 
(Omega, USA) with a standard protocol. Subsequently, 
2 µg of the extracted RNA was reverse transcribed using 
a RevertAid First Strand cDNA Synthesis Kit (Thermo 

Fig. 1   Analysis ofTWIST1  data from TCGA. A The expression of TWIST1 in various tumors was compared with that in adjacent normal tissues. 
B, C The expression of TWIST1 in paired or unpaired NSCLC was compared with that in adjacent normal tissue. D The expression of TWIST1 was 
compared in NSCLC patients with different stages, (E) Kaplan–Meier survival curve of OS in NSCLC patients with high or low TWIST1 levels
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Fisher, K1621). RT‒qPCR was performed using SYBR 
Green Master Mix (Roche, 4913914001) on an ABI 7500 
system (ABI, USA). The primers are listed in Additional 
file 1: Table S1. Relative mRNA expression was calculated 
based on the  2−ΔΔCt method. The expression of 18S rRNA 
was used as an internal control for normalization.

Western blotting
Western blot analysis was performed as previously 
described [16]. In brief, cells were lysed with RIPA buffer 
(Beyotime, P0013B) and the protein concentration was 
determined using a BCA protein assay kit II (Abcam, 
ab287853). Proteins were transferred onto a PVDF mem-
brane after separation by 10% SDS‒PAGE, and 5% skim 

Fig. 2   USP51 binds to TWIST1 and shows a positive correlation with the expression of stem cell markers in NSCLC patient cohorts from TCGA. A 
Statistical analysis of the fluorescence intensity of overexpressing individual DUBs in TWIST1-GFP stably overexpressed HEK-293T cells. B–G Scatter 
plots showing the correlations between the USP51 expression level and the expression levels of stemness markers, including CD44 (B), SOX2 (C), 
NANOG (D), OCT4 (E), C-MYC (F) and EPCAM (G) by Spearman correlation analyses
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milk was used to block nonspecific binding. After incu-
bation with primary antibodies and horseradish peroxi-
dase-conjugated secondary antibodies (Additional file 1: 
Table S2), signals were visualized by a ChemiDoc Imag-
ing System (Bio-Rad).

Colony formation assay
After transfection with the pLKO.1-TRC, pLKO.1-
USP51-TRC, or pLV-EF1a-Flag-TWIST1-IRES-bsd plas-
mid using Lipofectamine™ 2000 (Invitrogen, 11668019) 
for 24 h, 1 ×  103 NSCLC cells were seeded into the wells 
of a 6-well plate. After approximately 14 days of subcul-
ture, the cells were washed once with PBS and immedi-
ately fixed with methanol. Fixed viable cells were stained 
with crystal violet by incubation at room temperature for 
15 min. Finally, colonies were photographed and counted 
under a light microscope (Motic).

Tumor sphere formation assay
A total of 1 ×  103 transfected NSCLC cells were seeded 
into 24-well plates and maintained in DMEM/F12 
medium containing B27 supplement (Gibco, 17504044, 
USA), bFGF (20 ng/mL, Novoprotein, China), EGF (20 
ng/mL, Novoprotein, China), and insulin (4  µg/mL, 
Gibco, USA). After 12–18 days of culture, the spheres 
were photographed under a light microscope.

Flow cytometry assay
After transfection, cells were washed with PBS. After 
centrifugation at 300×g for 5  min, the cells were resus-
pended and subsequently incubated with FITC-con-
jugated mouse monoclonal antibodies against human 
CD44 and EPCAM or with isotype control antibodies 
(BD, USA). Signals were detected using a flow cytom-
eter (FACScan, BD, USA). Unstained cells were used as a 
negative control to establish the threshold of background 
fluorescence. Three independent experiments were car-
ried out.

Coimmunoprecipitation (Co‑IP)
HCC827 cells were transfected with pLKO.1-TRC, pLV-
EF1a-HA-USP51-IRES-bsd, pLV-EF1a-Flag-TWIST1-
IRES-bsd, and/or a plasmid encoding His-ubiquitin using 
Lipofectamine™ 2000 (Invitrogen, 11668019) for 24  h. 
Cells were harvested and lysed by immunoprecipitation 
buffer (150 mmol/L NaCl, 50 mmol/L Tris–HCl pH = 7.4, 
40 mmol/L -glycerophosphate, 1 mmol/L  NaV4O3, 10 
mmol/L NaF, and 2 mmol/L EDTA), supplemented with 
1 mmol/L PMSF and protease inhibitor. Protein A/G 
beads were incubated with an anti-Flag antibody (Pro-
teintech, catalog number: 66008-4-Ig) at 4  °C overnight 
and were then incubated with cell lysates at 4 °C for 6 h. 

Immunoprecipitates were washed with immunoprecipi-
tation buffer and then subjected to Western blotting.

Animal experiments
Animal experiments were carried out following a pro-
tocol approved by the Animal Ethics Committee of 
Hainan Medical University (HYLL-2022-390). Briefly, 
5 ×  106 HCC827 cells were subcutaneously injected into 
the lower dorsal surface of BALB/c nude mice (6 weeks 
old, male, n = 5). Beginning 22 days post-inoculation, the 
tumors were measured with calipers every 4 days, and 
the tumor volume was calculated according to the fol-
lowing formula: length ×  width2/2. Forty-two days after 
inoculation, the mice were euthanized, and the tumors 
were weighed and photographed.

Statistical analyses
Statistical analyses were carried out using GraphPad 
Prism 8.0 software. One-way ANOVA with Tukey’s 
post hoc test was used for comparisons among multiple 
groups. Student’s t tests were used to determine the sig-
nificance of differences between two groups. All quan-
titative data are presented as the means ± SDs. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001. ns, not significant.

Results
TWIST1 is upregulated in NSCLC patients and significantly 
correlated with poor prognosis
The role of TWIST1 in LUSC and LUAD were pre-
liminarily explored through bioinformatics analysis. 
TCGA data showed that TWIST1 was highly expressed 
in LUSC and LUAD (Fig.  1A–C). The TWIST1 level 
was higher in stage II LUSC and LUAD tumors than in 
stage I LUSC and LUAD (Fig.  1D). Moreover, patients 
with high levels of TWIST1 had worse overall survival 
outcomes than those with low levels (Fig. 1E). Overall, 
these finding indicate that TWIST1 plays an important 
role in the development of LUSC and LUAD.

USP51 binds to TWIST1, and its expression correlates 
with stemness marker expression in NSCLC patients
Forty DUBs were screened in TWIST1-GFP stably over-
expressed HEK-293T cells, and the cells transfected with 
USP51 demonstrated the strongest fluorescence signal 
(Fig.  2A). This suggests that USP51 has the potential to 
increase the expression of TWIST1 protein. Further-
more, we analyzed data from GEO (GSE19804) and found 
that TWIST1 (213943_at) and USP51 (229278_at) were 
both highly expressed in lung cancer tissues (Additional 
file  1: Fig. S1A, B). These findings further suggest that 
TWIST1 expression is positively correlated with USP51 
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Fig. 3   USP51 knockdown mitigated the stemness of HCC827 and NCI-H1299 NSCLC cells. A RT‒qPCR quantification of the expression of USP51 
and the indicated stemness markers upon USP51 knockdown. B, C Western blotting (B) and quantification (C) of USP51 levels in USP51-depleted 
cells. D, E Representative images (D) and quantification (E) of cell surface CD44 and EPCAM expression upon USP51 knockdown
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expression in lung cancer. Further, we analyzed the cor-
relation between USP51 expression and the expression 
of stemness markers in the LUSC and LUAD cohorts 
from TCGA. The Spearman correlation analysis revealed 
a positive correlation between USP51 and CD44, SOX2, 

NANOG, and OCT4 (as shown in Fig. 2B–E), except for 
C-MYC and EPCAM, which did not exhibit such a corre-
lation (Fig. 2F, G). Considering these results collectively, 
we identified a general trend of positive correlations 

Fig. 4   USP51 depletion diminished NSCLC cell stemness. A, B Colony formation assay of HCC827 and NCI-H1299 cells with USP51 depletion. C, 
D Tumor sphere formation assay of HCC827 and NCI-H1299 cells with USP51 knockdown
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between USP51 expression and stemness marker expres-
sion in patients with NSCLC.

USP51 knockdown attenuates the stemness of NSCLC cells
As cancer stem cells are a key population of cancer cells 
that result in tumor progression and recurrence [7], 
we determined the impact of USP51 on NSCLC cell 
stemness. USP51 was depleted in two NSCLC cell lines, 
HCC827 and NCI-H1299, by transducing the cells with 
shRNA. Compared with nontransduced cells (Mock) or 
cells transduced with a nontargeting shRNA (shNC), 
USP51 shRNA-transduced cells exhibited marked down-
regulation of USP51 mRNA and protein expression 
(Fig. 3A). Moreover, the expression of stemness markers, 
including CD44, NANOG, OCT4, SOX2 and C-MYC, 
was suppressed upon USP51 depletion (Fig.  3B, C). 
Consistent with these results, USP51 depletion greatly 
reduced the cell surface levels of two stemness markers, 
EPCAM and CD44 (Fig. 3D, E). Furthermore, the results 
of the colony formation assay demonstrated that USP51 
depletion led to the formation of fewer colonies by 
NSCLC cells (Fig. 4A, B). Furthermore, the tumor sphere 
formation ability of NSCLC cells was decreased upon 
USP51 knockdown, as determined by measurement of 
the tumor sphere diameter (Fig. 4C, D). Taken together, 
these findings indicate that USP51 knockdown dramati-
cally diminishes the stemness of NSCLC cells.

USP51 deubiquitinates TWIST1
Given that the TWIST1 protein has been connected to 
stemness maintenance [17, 18] and that USP51 is a DUB 
that binds to its targets to modulate their ubiquitina-
tion and degradation, we checked whether USP51 affects 
TWIST1 stability. USP51 interacted with TWIST1, and 
the ectopic USP51 expression decreased the polyubiq-
uitination of TWIST1 in HCC827 cells in the presence 
of MG132 (Sigma, M7449), a specific inhibitor of pro-
teasome activity (Fig.  5A). The results of the cyclohex-
imide (CHX) chase timecourse assay suggested that the 
TWIST1 protein half-life was increased when USP51 was 
coexpressed with TWIST1 in HCC827 and NCI-H1299 
cells (Fig.  5B, C). In conclusion, USP51 interacted with 
and stabilized TWIST1 by suppressing its polyubiquit-
ination and degradation.

Increasing TWIST1 expression alleviates the inhibitory 
effects of USP51 depletion on the proliferation 
and stemness of NSCLC cells
To further determine whether TWIST1 is required for 
the stemness-enhancing effects of USP51 on NSCLC 
cells, we ectopically expressed TWIST1 in USP51de-
pleted cells (Fig.  6A–C). Ectopic TWIST1 expression 
restored the expression of stemness markers CD44, 
NANOG, SOX2, OCT4, and C-MYC, that was attenu-
ated by USP51 depletion (Fig.  6A–C). Similarly, the 
decrease in the cell surface levels of CD44 and EPCAM 

Fig. 5   USP51 interacts with TWIST1 and mitigates its polyubiquitination. A Co-IP assay to check the interaction between TWIST1 and USP51 and 
the effect of ectopic USP51 expression on TWIST1 polyubiquitination in HCC827 cells. B, C Cycloheximide chase time-course assay to determine the 
stability of TWIST1 upon USP51 overexpression
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resulting from USP51 knockdown was reversed when 
TWIST1 was re-expressed in NSCLC cells (Fig.  6D, E). 
Additionally, re-expression of TWIST1 in NSCLC cells 
alleviated the USP51 knockdown-mediated inhibition of 
colony formation and stemness in NSCLC cells (Fig. 7A–
D). Overall, these results indicate that overexpression 
of TWIST1 attenuates the inhibitory effects of USP51 

depletion on the proliferation and stemness of NSCLC 
cells.

Absence of USP51 expression reduces the tumorigenic 
ability of NSCLC cells in mice
To confirm our in  vitro results, HCC827 cells were 
subcutaneously injected into nude mice. Dramatically 

Fig. 6   TWIST1alleviates the decrease in stemness marker expression caused by USP51 knockdown in NSCLC cells. A RT‒qPCR quantification of 
the expression of USP51 and the indicated stemness markers upon USP51 knockdown and TWIST1 overexpression in HCC827 and NCI-H1299 cells. 
B, C Western blot analysis of USP51, TWIST1 and stemness marker expression in HCC827 and NCI-H1299 cells upon USP51 knockdown and TWIST1 
overexpression. D, E Representative images (D) and quantification (E) of cell surface CD44 and EPCAM expression in HCC827 and NCI-H1299 cells 
upon USP51 knockdown and TWIST1 overexpression
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decreases in the tumor weight and volume were observed 
upon USP51 depletion, and increasing TWIST1 expres-
sion reversed the effect of USP51 knockdown on decreas-
ing the tumor weight and volume (Fig.  8A–C). Similar 
to our observations in in vitro-cultured cells, analysis of 
lysates from mouse-derived tumors indicated that over-
expression of TWIST1 alleviated the decreases in the 
expression of stemness markers caused by USP51 knock-
down in the tumor cells (Fig. 8D, E). In summary, USP51 
enhances the tumorigenic ability of NSCLC cells in mice 
by stabilizing TWIST1.

Discussion
USP51 belongs to the ubiquitin-specific protease family, 
which is the largest group of DUBs [19]. USP51 is a DUB 
that antagonizes RNF168-mediated ubiquitination at 
DNA double-strand break sites, which promotes aberrant 
DNA repair and destabilizes the genome [20]. A recently 
published study demonstrated that USP51 is overex-
pressed in metastatic LUAD [21]. USP51 was first shown 
to act as a cancer promoter by targeting ZEB1 for deu-
biquitination in breast cancer [22]. Similarly, ZEB1 was 
validated as a target of USP51 in NSCLC, and CDK4/6 

Fig. 7   TWIST1 restored the colony and tumor sphere formation, which were reduced by USP51 depletion. A, B Colony formation activity of NSCLC 
cells upon USP51 knockdown and TWIST1 overexpression. (C, D) Tumor sphere assay of HCC827 and NCI-H1299 cells upon USP51 knockdown and 
TWIST1 overexpression
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was found to activate USP51 [21]. The potentiating effect 
of USP51 on NSCLC metastasis was shown to result 
from its targeting of ZEB1 for stabilization [21]. How-
ever, whether USP51 is involved in cancer cell stemness 
has not yet been investigated. In the present study, we 
discovered positive correlations between USP51 expres-
sion and stemness marker expression in NSCLC using 
bioinformatics analysis. In the absence of USP51, NSCLC 
cells showed decreased expression of stemness markers 
and attenuated growth and tumor sphere formation. Sub-
sequently, TWIST1 was validated as a target of USP51 
for deubiquitination, and rescue experiments confirmed 
the importance of TWIST1 in the functions of USP51 in 
NSCLC stemness regulation. Collectively, our findings 
confirmed that the USP51/TWIST1 axis is an underlying 
mediator of NSCLC cell stemness, supporting the need 
to develop specific drugs for targeting USP51.

TWIST1 is a transcription factor that induces epithe-
lial-to-mesenchymal transition (EMT) [23]. Cancer cells 
undergoing EMT are highly invasive and acquire stem 
cell properties [24]. TWIST1 is modulated at a variety 
of levels, including the posttranslational level, by DUBs 

[25]. DUB3 can deubiquitinate and stabilize TWIST1 
upon stimulation by Interleukin 6 (IL-6) [26–28]. More-
over, TWIST1 is deubiquitinated by USP4 in NSCLC 
cells, resulting in an increased stemness of NSCLC 
cells [18]. Here, we identified USP51 as a novel modu-
lator of TWIST1 expression and linked TWIST1 with 
the stemness-promoting effect of USP51. In addition, 
we found that knockdown of USP51 in NSCLC cells did 
not reduce the TWIST1 mRNA level, but did reduce 
the TWIST1 protein level, indicating that USP51 is not 
involved in the transcriptional and pretranslational reg-
ulation of TWIST1. Given that a DUB may have multi-
ple targets and that a protein can be targeted by various 
DUBs, we cannot exclude the possibility that other DUBs 
may also control the ubiquitination-deubiquitination 
process of TWIST1, thereby fine-tuning the TWIST1 
protein level under certain conditions. To systematically 
identify DUBs targeting TWIST1, a method for screening 
TWIST1-interacting DUBs can be performed by overex-
pressing the DUB library in cells. Additionally, the pro-
tein interactome of TWIST1 can be used to reveal more 
DUBs and other interacting modulators of TWIST1. 

Fig. 8   USP51 knockdown reduced the tumorigenic ability of NSCLC cells in mice. A–C Representative images (A) and weights (B) and volumes 
(C) of tumors formed by HCC827 cells upon USP51 knockdown and TWIST1 overexpression. D, E Representative Western blot images (D) and 
quantification (E) of USP51, TWIST1 and stemness marker expression in tumors formed by HCC827 cells with USP51 knockdown and TWIST1 
overexpression
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Such analyses can help us better understand the regula-
tory network of TWIST1, which can further aid in target-
ing TWIST1 in a more effective manner.

Cancer stem cells are a key population of cancer cells 
that despite their low abundance, control the reseed-
ing of new tumors [29]. In this study, we found that the 
expression of USP51 was positively correlated with the 
expression of stemness markers in NSCLC. Knockdown 
of USP51 decreased the expression of CD44, NANOG, 
SOX2, OCT4, C-MYC, and EPCAM. Therefore, we con-
sider that USP51 is associated with cancer cell stemness 
and cancer progression in patients with NSCLC. How-
ever, further clinical evidence is required to support this 
conclusion.

Conclusions
Taken together, our investigation revealed that USP51 
promotes the stabilization of the TWIST1 protein by 
deubiquitinating TWIST1, which enhances the stemness 
of NSCLC cells, leading to NSCLC tumor proliferation. 
Upon depletion of USP51, TWIST1 is polyubiquitinated 
and subsequently degraded by the proteasome, resulting 

in a decrease in NSCLC cell stemness and in  vivo inhi-
bition of tumor growth (Fig.  9); these finding suggest 
that USP51 could be a candidate therapeutic target for 
NSCLC.
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