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Abstract 

Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric 
antigen receptor (CAR)‑T cell therapy, however, leverages the immune system’s T‑cells to recognize and attack tumor 
cells. T‑cells are isolated from patients and modified to target tumor‑associated antigens. CAR‑T therapy has achieved 
FDA approval for treating blood cancers like B‑cell acute lymphoblastic leukemia, large B‑cell lymphoma, and multi‑
ple myeloma by targeting CD‑19 and B‑cell maturation antigens. Bi‑specific chimeric antigen receptors may con‑
tribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells 
do not express the targeted antigens. Despite success in blood cancers, CAR‑T technology faces challenges in solid 
tumors, including lack of reliable tumor‑associated antigens, hypoxic cores, immunosuppressive tumor environments, 
enhanced reactive oxygen species, and decreased T‑cell infiltration. To overcome these challenges, current research 
aims to identify reliable tumor‑associated antigens and develop cost‑effective, tumor microenvironment‑specific 
CAR‑T cells. This review covers the evolution of CAR‑T therapy against various tumors, including hematological 
and solid tumors, highlights challenges faced by CAR‑T cell therapy, and suggests strategies to overcome these obsta‑
cles, such as utilizing single‑cell RNA sequencing and artificial intelligence to optimize clinical‑grade CAR‑T cells.
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Introduction
Immunotherapy boosts the immune system’s ability to 
fight cancer cells by modulating the capacity of immune 
cells [1–3]. In the last decade, there have been giant 
strides in the use of immunotherapy to treat cancer, as 
evidenced by the approval of both monoclonal antibod-
ies to target different immune system components and 
adaptive T-cell-based therapies [4]. Surgery, radiation 
therapy, and chemotherapy are typically recognized as 
the traditional forms of cancer treatment. However, with 
its recent clinical successes, immunotherapy has been 
dubbed the fourth pillar of cancer treatment [5]. Because 
innate and adaptive immunity consists of a wide vari-
ety of cells with various properties able to fight cancer, 
the essential question was how immunotherapy could 
be harnessed to develop an effective treatment against 
cancer [6]. Numerous cancer immunotherapy strate-
gies are currently under investigation, which encom-
passes immune checkpoint inhibitors, cancer vaccines, 
immunomodulators, cytokines, monoclonal antibod-
ies, and oncolytic viruses (OVs) [7]. Although many of 
these approaches have received clinical approval, they 
each possess inherent limitations that hinder their full 
therapeutic potential. Consequently, this emphasizes the 
necessity for pioneering treatments, such as chimeric 
antigen receptor (CAR)-T cell therapy, to address these 
constraints. Immune checkpoint inhibitors have emerged 
as potent allies in cancer treatment, showing remarkable 
success in several malignancies. However, they have sig-
nificant limitations, including the development of resist-
ance, immune-related adverse events, and a low response 
rate in many tumor types. For instance, even in mela-
noma, where immune checkpoint inhibitors have had 
the most success, only a subset of patients show a dura-
ble response. Cancer vaccines have shown promise in the 
preclinical setting but have struggled to reproduce those 
results in the clinic. Often, the immune response they 
generate is insufficient to overcome the immunosup-
pressive tumor microenvironment, and they have so far 
been successful only in a limited number of cancers such 
as prostate cancer. Immunomodulators, while potent in 
augmenting immune response, can induce systemic side 
effects due to their non-specific nature. Additionally, 
resistance to these agents can develop over time, and 
they often have a relatively narrow therapeutic window. 
Monoclonal antibodies have also demonstrated remark-
able efficacy in certain cancers. Nevertheless, issues such 
as off-target toxicity, immunogenicity, resistance, and a 

lack of response in a significant subset of patients per-
sist. These issues are indicative of the complex nature of 
cancer and the intricate interplay between the tumor and 
the immune system, highlighting the need for innovative, 
targeted therapies such as CAR-T cells. Although CAR-T 
cell therapy has its limitations, such as cytokine release 
syndrome and the potential for on-target off-tumor 
effects, it represents an exciting and promising approach 
in the field of cancer immunotherapy. Unlike other ther-
apies, CAR-T cells are engineered to specifically rec-
ognize and target cancer cells, offering a high degree of 
specificity [8]. This is achieved by genetically modifying 
a patient’s T cells to express a CAR, which is designed 
to recognize a specific antigen present on the surface of 
tumor cells [9]. This unique attribute makes CAR-T cell 
therapy stand out from other therapies, such as immune 
checkpoint inhibitors and cancer vaccines, which typi-
cally rely on modulating the patient’s immune system to 
fight cancer and often struggle with issues of specificity 
and efficacy. Furthermore, CAR-T cell therapies have 
demonstrated unprecedented response rates, particularly 
in certain hematological malignancies. For example, they 
have shown impressive results in treating B-cell malig-
nancies such as refractory acute lymphoblastic leuke-
mia (ALL), where other treatment modalities have failed 
[10]. Moreover, the ’living drug’ nature of CAR-T cells, 
which allows for their expansion and persistence in the 
patient, offers a sustained antitumor response, a feature 
not shared by many other therapies, such as monoclo-
nal antibodies. Despite these advantages, it is essential 
to acknowledge that CAR-T cell therapy is not without 
its challenges, including the risk of cytokine release syn-
drome, neurotoxicity, and the potential for ’on-target, 
off-tumor’ effects. However, advancements are continu-
ally being made in CAR design and T-cell engineering to 
improve safety and efficacy.

In summary, CAR T cell therapy’s distinctive ability to 
harness the specificity of adaptive immunity, combined 
with its potential to provide durable responses in hard-
to-treat cancers, presents it as a significant addition to 
the cancer immunotherapy arsenal.

Immunotherapy targeting cancer and immune cells
The discovery of the role of immune checkpoint mol-
ecules in cancer was a critical moment in the rise of 
immunotherapy [7]. Immune checkpoint molecules 
such as PD-1 and CTLA-4, upon activation, bind to 
their ligands to inhibit excessive expansion of activated 
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T cells. However, tumors overexpress these checkpoint 
markers to avoid immune surveillance within the tumor 
microenvironment [11]. In 1996, James Allison and his 
team discovered that administering antibodies blocking 
CTLA-4 interaction with CD28 led to increased T-cell 
activation and tumor rejection [12]. Allison’s research 
group demonstrated that exhausted T cells upregulated 
CTLA-4 expression, but the cells were only reversibly 
exhausted. The discovery that the blockade of supple-
mentary signaling through CTLA-4 could potentially 
reactivate ’exhausted’ cells, ignited an urgency to identify 
further markers indicative of T-cell exhaustion [12]. This 
pursuit swiftly led to the uncovering of the PD-1/PD-L1 
axis. Since then, the FDA has given approval for clinical 
use to monoclonal antibodies that inhibit either recep-
tor [13]. Other investigated immune checkpoint mol-
ecules include TIM3, LAG3, VISTA, and B7-H3 [14–17]. 
Antagonistic antibodies against a combination of these 
markers are also of particular interest, as several com-
bination approaches have demonstrated effective syner-
gies [18, 19]. Immune checkpoint inhibitors have marked 
a significant shift in the paradigm of cancer treatment, 
demonstrating considerable success in multiple malig-
nancies. In terms of clinical outcomes, they have shown 
durable responses and improved survival rates in several 
types of cancer, including melanoma, lung cancer, and 
kidney cancer [20]. For example, pembrolizumab and 
nivolumab, both PD-1 inhibitors, have been particularly 
effective in treating metastatic melanoma, drastically 
improving the 5-year survival rate for these patients [21]. 
However, immune checkpoint inhibitors also have cer-
tain limitations that need to be addressed. Firstly, not 
all patients respond to these treatments. The response 
rates can vary significantly depending on the cancer type, 
ranging from about 15–20% in some cancers to over 50% 
in others. Secondly, some patients may initially respond 
but then develop resistance over time, leading to dis-
ease progression [22]. Furthermore, immune checkpoint 
inhibitors can cause immune-related adverse events 
(irAEs), resulting from the overactivation of the immune 
system. These irAEs can affect any organ system and can 
sometimes be severe or life-threatening [23]. Immune 
checkpoint inhibitors work by blocking inhibitory path-
ways of the immune system, thereby enhancing the abil-
ity of immune cells to function more effectively. While 
they do not directly facilitate the immune system’s selec-
tive identification and elimination of cancer cells, they 
play a crucial role in amplifying the immune response 
against cancer [13].

OVs are another class of immune therapy that uses self-
replicating viruses to kill cancer cells via inflammation 
and cellular death due to exposure to cancer-associated 
antigens. OVs have been engineered to show improved 

tumor tropism [24]. These viruses are modified in vitro to 
infect tumors; once they infect a tumor, they create a pro-
inflammatory environment and release the tumor antigen 
through the lytic pathway [24]. Additionally, viruses can 
be engineered to express antigens in tumor cells upon 
infection to further enhance the anti-tumor response due 
to the presence of immunogenic peptides [25]. The FDA 
has approved three OV-based therapies for clinical use: 
RIGVIR, Oncorine, and T-VEC [26]. RIGVIR is an inarti-
ficial Enteric Cytopathogenic Human Orphan type 7 
(ECHO-7) picornavirus that became the first OV to 
receive regulatory approval all around the world in 2004 
[27, 28]. In 2005, Oncorine became the first recombinant 
oncolytic virus therapy approved by the Chinese state 
FDA and was used in combination with chemotherapy to 
treat head and neck cancer [29]. Talimogene laher-
parepvec (T-VEC), another OV therapy, received US 
FDA approval for the treatment of non-resectable meta-
static melanoma in 2015 [30] and subsequently got 
approved for treatment of locally advanced or metastatic 
cutaneous melanoma in Europe, showing promising effi-
cacy as a single agent and in combination with PD-1 
inhibitor pembrolizumab [31]. Many additional oncolytic 
virus therapies based on Herpesvirus, Adenovirus, Vac-
cinia Virus, Coxsackievirus, and Vesicular stomatitis 
virus are in different phases of a clinical trial [32]. OV-
based therapies have shown impressive results in clinical 
trials; but, the efficacy of this approach varies from per-
son to person based on the immune system status, and 
these treatments are sometimes rapidly removed by the 
host immune system [25]. Furthermore, biosafety of OVs 
is a major issue in individuals having low immunity or 
patients who are on immune-suppressive drugs [33]. 
Adoptive T-cell therapies are another large, growing class 
of immunotherapies. There are various classes of adap-
tive cell therapies, including CAR-T cells, TCR-engi-
neered T-cells, endogenous tumor-reactive T-cells, 
exogenously primed T-cells, and NK cell variants [34]. 
One of the most important and widely applicable modali-
ties of adaptive T-cell therapies to emerge in recent times 
is CAR-T cell therapy. Generally, cellular therapies 
involve directing cells to recognize tumor-associated 
antigens (TAAs), with the goal of cells becoming acti-
vated upon recognition by immune cells and eliminating 
the tumor [35]. Adaptive cell therapy uses cancer anti-
gen-specific T-cells such as tumor-infiltrating lympho-
cytes (TILs), engineered T cells, and peptide/cancer 
antigen-induced T-cells to treat cancer [36–38], leading 
to a long-lasting response in some patients with late-
stage cancer. In 1988, TILs were the first cancer antigen-
specific T-cell therapy used to treat melanoma [39, 40]. 
TIL-based therapy suppresses tumors in the circulation 
and tumor microenvironment while effectively killing 
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cancer cells [41]. Despite the clinical benefits of TIL ther-
apy, many challenges were associated with the therapy. 
TIL therapy requires the surgical removal of tumor tis-
sues and the isolation and cultivation of TILs. Highly 
trained and skilled medical staff are needed to cultivate 
TILs; therefore, only a few medical centers can provide 
this therapy. To overcome this limitation of TILs, unmod-
ified peptide-stimulated T cells and genetically engi-
neered T cells such as T-cell receptor (TCR) were used in 
clinical trials, which achieved promising results [34, 36–
38]. Peptide/cancer antigen-induced specific T cells are 
obtained by in vitro stimulation of peripheral blood mon-
onuclear cells (PBMCs) collected from patients. Different 
cancer antigens and their derived human leukocyte anti-
gen (HLA)-restricted epitopes facilitate the development 
of antigen-specific T cells for cancer treatment; however, 
cancer antigen-induced specific T cells are restricted by 
major histocompatibility complex (MHC) compatibility 
for targeting cancer antigens, the self-antigens expressed 
on both cancer and normal cells [42]. Stimulation of anti-
gen-specific T cells for the long term may exhaust T cells 
and lead to shortened survival in vivo after infusion [43]. 
Genetically engineered TCRs are expressed on T cells to 
recognize cancer cells and kill them [34]. The gene trans-
fer of TCR can be achieved in two ways: TCR from can-
cer-specific T cells can be derived from PBMCs or TILs, 
or TCRs can be produced via immunization of HLA-I/II 
transgenic mice with cancer antigen. The antigen-specific 
TCRs are cloned, transduced into the patient’s peripheral 
blood T cells via retroviral or lentiviral vectors, and 
amplified. TCRs derived from HLA-I/II transgenic mice 
usually have higher affinity than PBMC- or TIL-derived 
TCRs [44]. Various TCR-based T cell therapies have been 
in clinical trials: MART1 for treating metastatic mela-
noma [45], carcinoembryonic antigen (CEA) for treating 
colorectal cancer [46], NY-ESO-1 and gp100 for treating 
melanoma [47, 48], and MAGE-A3 for synovial sarcoma 
treatment [49]. Clinical trials data suggest that TCR ther-
apy can be effective in some patients with haematological 
cancers like ALL but is more frequently applied in 
patients with melanoma [46, 48]. Furthermore, the TCR 
engineering method is laborious and time consuming, 
requiring HLA matching of patients and TCR clones and 
the presentation of tumor-antigen on MHC that is gener-
ally down-regulated in tumor cells, restricting its applica-
tion. Antibody–drug conjugates (ADCs) have surfaced as 
a promising strategy for targeted cancer therapy [50]. 
They work by tethering a chosen therapeutic agent to an 
antibody specific to an antigen overexpressed on cancer 
cells. With several ADCs already receiving clinical 
approval, this innovative approach is actively broadening 
the spectrum of precision oncology [51]. Cytokines are 
another integral component of the immune response to 

cancer. These small proteins play critical roles in regulat-
ing immune and inflammatory responses, facilitating 
communication between cells. Two types of cytokines, 
interferons and interleukins, have been harnessed for 
cancer therapy due to their ability to inhibit tumor 
growth and stimulate the immune system. For instance, 
high-dose Interleukin-2 (IL-2) has been used in the treat-
ment of certain types of kidney cancer and melanoma, 
albeit with variable success and significant toxicity [52]. 
Immunomodulators are agents that adjust immune 
responses, either by enhancing or suppressing them, and 
they have become key players in the arsenal of cancer 
treatments. Immunomodulatory drugs (IMiDs), like tha-
lidomide and its analogs (lenalidomide and pomalido-
mide), have been particularly successful in the treatment 
of multiple myeloma and certain myelodysplastic syn-
dromes [53]. They work by modulating the tumor micro-
environment and enhancing the body’s immune response 
against cancer cells. It’s important to note that while 
these therapeutic strategies have significantly advanced 
our ability to treat various cancers, they are not without 
their limitations. Some patients may not respond to these 
therapies, and others may experience significant side 
effects. Additionally, the potential for resistance to these 
therapies necessitates ongoing research to identify new 
targets and develop new treatment strategies. The recent 
success of CAR-T cell therapy in hematological tumors 
has spurred a lot of interest in this field, and rapid pro-
gress has occurred in the last 5 years, as evidenced by the 
approval of multiple CAR-based therapies targeting 
CD19 and B cell maturation antigen (BCMA) [88, 89, 
133]. CAR-T cell therapy has been especially transforma-
tive in the management of relapsed and refractory malig-
nancies, where traditional first and second-line therapies 
have proven ineffective.

The emergence of CAR‑T cell therapy
Chimeric antigen receptors (CARs) are genetically engi-
neered synthetic receptors that function as immune 
effector cells, similar to lymphocyte T cells. These recep-
tors recognize cells expressing specific target antigens 
and eliminate them [54, 55]. CAR-T cells can be cat-
egorized into two types, based on the origin of the cells 
used: autologous and allogenic. Autologous CAR-T cells 
are derived from the patient’s own blood. In this process, 
blood is drawn from the patient and then subjected to a 
procedure known as leukapheresis, which separates out 
the white blood cells, including T cells. These T cells are 
then genetically modified in the laboratory to express a 
specific CAR that enables them to recognize and destroy 
cancer cells. Once the modification is successful, these 
engineered T cells are expanded in number and then rein-
fused back into the patient. Allogenic CAR-T cells, on the 
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other hand, originate from the blood of a healthy donor. 
In this case, T cells are isolated from the donor’s blood 
and then bioengineered to express the desired CAR. 
These engineered cells are subsequently expanded and 
infused into the patient. This approach, while presenting 
its own set of challenges such as potential graft-versus-
host disease, offers the possibility of an ’off-the-shelf ’ 
treatment, providing readily available therapeutic options 
for patients in need [56]. The binding of CAR to cell sur-
face-expressed target antigen is independent of the major 
histocompatibility complex (MHC) receptor, resulting in 
strong activation of CAR-T cells and potent anti-tumor 
response [57], which is a main advantage of CAR-T cell 
over other forms of adaptive T cell therapy.

As shown in Fig.  1b, the second-generation CAR 
typically consists of four domains: Antigen-binding 
domain, Hinge region, Transmembrane domain, and 
Intracellular T-cell signaling domain. The antigen-bind-
ing domain is an extracellular domain that interacts 
with the target antigen [58, 59]. The domain is made 
up of monoclonal antibodies’ variable heavy (VH) and 
variable light (VL) chains, which are connected with 
short linker peptides of serine-glycine or glutamine-
lysine to form a single chain variable fragment (scFv) 
[60, 61]. The hinge or spacer region is a tiny domain 
that connects the antigen binding domain and the outer 
membrane of the CAR-T cell [62]. The hinge provides 
flexibility to the receptor. The spacer’s length depends 
on the antigen epitope; typically, long spacers are used 

Fig. 1 Structural design of different generations of CARs. A First‑generation CARs with ScFv, Hinge, Transmembrane, and CD3ζ domains. B 
Second‑generation CARs with all first‑generation domains and an additional CD28/4‑1BB costimulatory domain. C Third‑generation CARs 
with all first‑generation domains and two additional costimulatory domains (CD28 and 4‑1BB). D Two different types of fourth‑generation CARs 
with additional cytokine and co‑stimulatory ligand domains to address challenges of tumor microenvironments. E Fifth‑generation CARs with one 
intracellular domain more than the fourth‑generation CAR‑T cells, which include truncated intracellular domains of cytokine receptors (e.g., IL‑2R 
chain fragment), with an additional domain for binding transcription factors such as STAT‑3/5. CARs, Chimeric antigen receptors; ScFv, single‑chain 
variable fragment
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to increase the flexibility of receptors and to provide 
better attachment to membrane-proximal epitopes. In 
contrast, short spacers bind better to membrane-distal 
epitopes [63–65]. The optimal spacer length gener-
ally depends on the target epitope position. The hinge 
domain plays a crucial role in the overall performance 
of the CAR-T cells. The transmembrane domain is 
between the hinge region and the intracellular signaling 
domain [66] and is derived from natural proteins such 
as CD3ζ, CD4, CD8, or CD28 [67]. The transmembrane 
domain’s primary function is to anchor the CAR to the 
T cell’s membrane, and it is also relevant for the CAR-T 
cell’s effector function [68, 69]. When an antigen binds 
to the antigen binding domain, CARs come close and 
cluster together, giving an activation signal to the intra-
cellular T cell signaling domain, and the domain trans-
mits this signal to the inside of the cell [57].

CAR-T cell therapy is a personalized, living drug for 
those with cancer and has shown promise for treat-
ing hematological malignancies. CAR-T cell therapy is 
a promising approach for cancer treatment compared 
to conventional therapeutic approaches in terms of 
survival and cancer recurrence [70]. Other forms of 
adoptive immunotherapies [71] include T-cell recep-
tor (TCR) therapy and tumor-infiltrating lymphocytes 
(TIL) therapy which require MHC molecule activation, 
but CAR-T cells can be activated independently [72, 
73]. TCR therapy is similar to CAR T-cell therapy in 
that it involves the genetic modification of a patient’s 
T-cells. However, TCR therapy modifies the T-cells to 
express a specific T-cell receptor that can recognize a 
particular antigen presented by cancer cells. Unlike 
CARs, TCRs can recognize antigens from within the 
cell that are presented on the cell surface by the major 
histocompatibility complex (MHC). This allows TCR 
therapy to target a broader range of antigens, includ-
ing those derived from proteins inside the cancer cell 
[48]. However, TCR therapy is MHC-dependent, which 
means its effectiveness can be affected by changes in 
MHC expression or antigen processing in the cancer 
cells.

TIL therapy is another type of adoptive cell therapy 
that doesn’t involve genetic modification of T-cells 
[74]. In TIL therapy, lymphocytes are extracted from a 
patient’s tumor, expanded in the laboratory, and then 
reinfused into the patient. These lymphocytes, hav-
ing been naturally present within the tumor, are already 
primed to recognize and attack the patient’s cancer cells. 
However, the success of TIL therapy can be influenced by 
the heterogeneity of tumors and the variable presence of 
TILs within different tumors. Overall, while CAR T-cell, 
TCR, and TIL therapies all involve the use of a patient’s 
immune cells to fight cancer, they differ in their strategies 

for recognizing and targeting cancer cells. Multiple 
generations of CAR-T cells have been developed. Still, 
typically, each CAR consists of an antigen recognition 
domain linked to a T cell co-stimulatory domain and an 
activation domain [61]. New variants continue to evolve 
to overcome challenges imposed by tumor microenviron-
ments in different cancers. CARs have been divided into 
different generations according to their domain configu-
ration, as discussed in the following section.

Different generations of CAR‑T cells
In 1989–1993, Zelig Eshhar and Gideon Gross developed 
the first-generation CAR-T cells at the Weizmann Insti-
tute of Science in Israel. These CARs directed T cells to 
kill tumor cells in vitro and were comprised of the TCR α 
and β chains fused to the variable region of an antibody’s 
light and heavy chain (Fig. 1a) [75]. The first-generation 
CARs were later combined into single molecules with 
intracellular domains of T cell co-receptor and extracel-
lular domains of ITAM-containing immunoreceptors [76, 
77]. However, first-generation CAR-T cells were clinically 
safe but ineffective due to their inability to produce suffi-
cient costimulatory signals for effective target cell killing. 
As a result, second-generation CAR-T cells were devel-
oped to provide better co-stimulation and have recently 
been approved for the treatment of many forms of hema-
tological malignancies. Initially, co-stimulation of T cells 
was achieved through the CD28 ligand, but 4-1BB, a 
TNFRSF member, was later incorporated into some sec-
ond-generation CARs (Fig. 1b) [78–82]. Third-generation 
CARs have two co-stimulatory domains, most commonly 
CD28 and 4-1BB, and confer even greater anti-tumor 
potency on human CAR-transduced T-lymphocytes 
(Fig. 1c). Compared to their second-generation counter-
parts, third-generation CARs were found to have higher 
levels of phosphorylation status upon binding to their 
target antigen, indicating greater intracellular signaling 
[83, 84]. The enhanced phosphorylation and increased 
intracellular signaling allow the third-generation CARs 
to have more significant expansion and support differen-
tiation into memory subsets [83, 85]. However, the third-
generation CAR-T cells have been linked to a greater 
risk of immune-related adverse effects due to the greater 
activation of CAR-T cells and have come under increased 
scrutiny due to safety concerns. A fourth-generation of 
CAR-transduced T cells, termed T-cells redirected for 
universal cytokine killing (TRUCKs) are engineered to 
release a transgenic product, commonly a pro-inflamma-
tory cytokine such as IL-12, once their CAR is activated 
by the target antigen (Fig. 1d) [86]. This results in further 
enhancement of T-cell proliferation and function and, 
more importantly, in the recruitment of innate immune 
effectors specifically to the tumor microenvironment, 
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thus inducing superior tumor killing while limiting 
cytokine-mediated systemic toxicity [87]. Fifth-genera-
tion CARs are currently being developed to make CAR-T 
cells safer and more productive by incorporating one 
more intracellular domain than their predecessors and 
adding drug-dependent OFF-switches or ON-switches 
leading to CAR depletion or activation, respectively [88].

While there have been concerns over the safety of 
third-generation CAR-T cells due to the greater activa-
tion of CAR-T cells, the favorable properties of third-
generation and fourth-generation CAR-T cells make 
them a promising alternative to earlier generations. The 
ongoing development of fifth-generation CARs aims to 
address challenges related to off-target and off-tumor 
activity and further enhance the effectiveness and safety 
of CAR-T cell therapy.

CAR‑T cell clinical application
CAR‑T cell therapy in blood cancers
In the last decade, immunotherapy approaches, includ-
ing CAR T-cell therapy, have significantly improved the 
clinical prognosis of patients with hematological malig-
nancies. Indeed, CAR-T cell therapy has portended 
promising clinical outcomes in the treatment of lym-
phomas, multiple myeloma, and leukemia [55, 89–92]. 
Hence, in the last 5 years, the Food and Drug Administra-
tion (FDA) has approved several CAR-T cell products for 
the treatment of acute lymphoblastic leukemia, chronic 
lymphocytic leukemia, multiple myeloma, and different 
forms of lymphomas (including diffuse large B-cell lym-
phoma [DLBCL], primary mediastinal B-cell lymphoma, 
and transformed lymphoma) [92, 93]. For instance, the 
outcome of CAR-T cell therapy was particularly remark-
able in patients with aggressive forms of blood malig-
nancies that did not respond or relapsed upon multiple 
chemotherapies [78, 79].

Leukemia
Acute lymphoblastic leukemia (ALL) is a heterogenous 
malignancy in children and adults and is characterized 
by abnormal modification and proliferation of lymphoid 
progenitors. Although chemotherapy and hematopoietic 
stem-cell transplantation (HSCT) improved patients’ 
prognosis, some patients with ALL showed a refractory 
disease or experienced relapse, emphasizing the need for 
more efficient therapies [92, 94]. In the last decade, the 
efficacy of CAR-T cell therapy in ALL has been reported 
in several clinical trials [55, 91, 92, 95–97]. Some stud-
ies opted for a pre-conditioning chemotherapy including 
fludarabine and cyclophosphamide followed by the infu-
sion of autologous CD19-specific CAR T-cells (CTL019) 
in children and adult patients suffering from refractory/
relapsed (r/r) ALL. These studies found that a durable 

complete remission (CR) rate was achieved in 70–90% of 
the treated patients [55, 91, 97]. CAR T-cell therapy has 
shown a particular clinical benefit in patients suffering 
from r/r B-precursor ALL with poor prognosis [10, 92, 
98, 99]. A phase 1 long-term cohort study conducted at 
the Memorial Sloan Kettering Cancer Center in 53 adult 
patients (median age, 44 y) with relapsed B-ALL showed 
that autologous CAR-T cells therapy led to a complete 
remission (CR) rate of 83% with a median overall survival 
(OS) of 12.9  months (95% CI 8.7–23.4) [100]. Interest-
ingly, in a phase 2 multicenter study, Maude et al. dem-
onstrated that children and young adults with recurrent 
or refractory B-ALL treated with the CD-19-targeted 
CAR-T cell product tisagenlecleucel, showed a high 
overall remission rate of 82% with a durable response 
up to 12 months (76% OS and 50% event-free survival at 
12  months) [10]. This study led to the FDA approval of 
tisagenlecleucel (Tisa-cel or  Kymriah®) therapy for high-
risk relapsed or refractory (r/r) B-ALL in pediatric and 
young adult patients (age, up to 25 years) [101, 102].

More recently, a phase 1 long-term study in children 
and young adults (age, 3–30 years) with B-ALL reported 
a CR rate in 62% of patients after treatment with autolo-
gous CD19-CAR T-cells [103]. Recently, Marianna Saba-
tino et al. conducted a phase 1/2 cohort study (ZUMA-3) 
in adults with B-ALL to test the safety and clinical effi-
cacy of KTE-X19, an autologous anti-CD19 CAR-T cell 
product whose manufacturing process enables the elimi-
nation of malignant cells [104]. The ZUMA-3 phase 
1 study demonstrated that a single infusion at 1 ×  106 
per kg of KTE-X19 was associated with tolerable side 
effects and a significant CR rate (83%) in adults with r/r 
B-ALL [105]. Interestingly, the same group has recently 
revealed the results of the ZUMA-3 phase 2 multicenter 
study, which demonstrated in a larger population of r/r 
B-ALL adult patients that KTE-X19 conferred a signifi-
cant rate of long-term CR (71%), a median OS of more 
than 18 months, and undetectable minimal residual dis-
ease in 97% of responder patients [106]. KT-X19 (brex-
ucabtagene autoleucel, Tecartus™) is FDA approved 
for the treatment of adults with relapsed or refractory 
mantle cell lymphoma (MCL) [107]. On the basis of the 
ZUMA-3 phase 1 and 2 findings, the FDA approved the 
use of KT-X19 to treat r/r B-cell precursor ALL in Octo-
ber 2021 [107]. Nevertheless, although anti-CD19 CAR-T 
cell therapy showed the most prominent clinical outcome 
in B-ALL, it was demonstrated that the tumor cells could 
escape this immunotherapeutic approach. Therefore, two 
potential targets, CD20 and CD22, are being tested in r/r 
B-ALL [98, 108].

Chronic lymphocytic leukemia (CLL) is the pre-
dominant type of leukemia in adulthood. It is a hetero-
geneous malignancy with variable OS rates and short 
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progression-free expectancy [109, 110]. In addition to 
chemotherapy, allogeneic HSCT is commonly used for 
the treatment of patients with CLL. Nevertheless, many 
patients’ disease relapsed or was irresponsive to conven-
tional chemotherapy; some patients are not eligible for 
HSCT therapy. Hence, CLL remains mostly irremedi-
able, and patients with r/r CLL have a poor clinical prog-
nosis [111]. Treating B-cell malignancies such as CLL 
by using anti-CD19 CAR T-cells seems to be a rational 
and effective therapeutic approach. Indeed, several stud-
ies demonstrated that patients with r/r CLL treated with 
CD-19-targeting CAR T-cells showed a persistent and 
long-term CR rate [112–116]. In a clinical trial of 18 
adults with CD19 + CLL who were heavily pretreated and 
had recurrent or sustained disease, Porter and colleagues 
showed that 8 (57%) of the patients responded to autol-
ogous CD19 CAR-T cells therapy [113]. Among these 
patients, 4 experienced durable CR, and the remaining 
experienced partial remission (PR). Interestingly, none of 
the patients with CR experienced relapse over a follow-
up period of 49  months [113]. Similarly, in a phase I/
II clinical trial, Turtle et  al. showed that CD-19 CAR-T 
cells therapy was clinically successful in 71% of patients 
experiencing high-risk CLL, which progressed after ibru-
tinib treatment [116], a Bruton’s tyrosine kinase inhibi-
tor initially approved as first-line therapy for r/r CLL 
[117]. Additionally, molecular CR was associated with 
progression-free survival up to 6.6 months after CAR-T 
cell therapy [116]. More recently, a phase II clinical trial 
investigated the long-term efficacy and the optimal dose 
of autologous CD19 CAR-T cells in patients with relapsed 
or persistent CD19-positive CLL. The findings of this 
study revealed that overall response was observed in 44% 
of patients and that CR was most common in the group 
that received the higher dose of CAR-T cells. Neverthe-
less, regardless of CAR-T cells dose, progression-free 
survival was significantly longer (median, 40.2 months) in 
patients who experienced CR than in those who did not 
[112]. However, despite the promising clinical outcome 
of CAR-T cells for r/r CLL, the efficiency of the produc-
tion process of autologous CAR T-cells is debatable, spe-
cifically related to the viability of the T cells isolated from 
the heavily treated patients and the long manufacturing 
duration [118]. Moreover, further investigations on larger 
population sizes are needed to confirm the efficacy and 
safety of CAR-T cells in CLL and to characterize how the 
molecular diversity of the disease would affect the clinical 
effect of this immunotherapy. Currently no CAR-T cell 
construct is approved for CLL treatment.

Lymphomas
CAR-T cells are one of the most advanced immuno-
therapeutic approaches for patients with r/r B cell 

non-Hodgkin lymphoma (B-NHL) that resisted multiple 
chemotherapies and/or HSCT [89, 92, 116, 119–123]. In 
a phase I/II clinical trial, Turtle and colleagues evaluated 
the efficiency and safety of adoptive CD19 CAR-T cell 
therapy in patients with advanced CD19 + B cell malig-
nancies, including NHL. They observed that the overall 
response rate for patients who received CAR-T cells after 
lymphodepletion was 84%, in which 47% of the patients 
experienced CR [124]. Allogeneic anti-CD19 CAR-T 
cells have been tested in patients with B-cell malignan-
cies, including ALL, CLL, and B-NHL, for whom alloge-
neic HSCT was unsuccessful [125]. Interestingly, the 20 
treated patients did not receive any priming lymphode-
pletion, and 40% of them experienced partial (10%) or 
complete (30%) remission following infusion of alloge-
neic CAR-T cells [125]. Wang and colleagues investigated 
the potential of autologous CD19 CAR-T cell therapy in 
improving the remission rates in patients with B-NHL 
who received autologous HSCT. Ex vivo-expanded autol-
ogous CD19 CAR-T cells were infused into 8 patients 
2  days following HSCT. The observed overall response 
was 63% (38% CR and 25% PR) [120]. However, notable 
response rates were observed in patients with large B-cell 
lymphomas treated with CAR T-cell after failure of the 
disease to respond to several standard lines of chemo-
therapy [89, 123, 126, 127].

Several CAR-T cell products are FDA-approved for 
the treatment of lymphoma.  Yescarta® (Axicabtagene 
ciloleucel, Axi-cel) is a CD19-directed CAR-T cell prod-
uct designed by researchers [114, 128, 129] and manu-
factured by Kite pharma, Inc.  Yescarta® received its first 
FDA approval in 2017 to treat patients with follicular 
lymphoma (FL) who did not respond or relapsed after at 
least two previous lines of systemic chemotherapy [130]. 
FDA approval was based on the results of a phase 1/2 
clinical trial (ZUMA-1) of 101 patients with NHLs (77 
cases with diffuse large B-cell lymphoma (DLBCL) and 
24 cases with primary mediastinal large B-cell lymphoma 
(PMBCL). In this study, Locke and colleagues demon-
strated that overall survival was observed in 50% of the 
treated patients, with a rate of 41% progression-free 
survival for up to 2 years [131]. More recently, the same 
group conducted a phase 3 clinical trial to check the effi-
cacy and safety of using  Yescarta® as second-line therapy 
for patients with large B-cell lymphoma whose disease 
did not respond or had relapsed 12 months after first-line 
chemoimmunotherapy [127]. Their findings suggested 
that treatment with Axi-cel significantly improved the 
clinical outcome of the patients. For instance, an overall 
response (OR) of 83% with 50% CR was observed in the 
Axi-cel patients compared to 50% OR, including 32% CR, 
in the standard-care group [127]. Also, event-free sur-
vival was significantly higher in the Axi-cel therapy group 
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[8.3  months (95% CI 4·5–15·8) vs. 2  months (1·6–2·8)]. 
Based on these findings, in 2022,  Yescarta® was granted 
FDA approval to be used as second-line therapy of adult 
large B-cell lymphoma not responding to first-line chem-
oimmunotherapy or relapsing within 1  year of first-line 
chemoimmunotherapy [130].

Tisagenlecleucel (Tisa-cel or  Kymriah®), an autologous 
CD19-targeted CAR-T cell product, is FDA approved for 
treating patients with r/r DLBCL that fails at least two 
previous lines of systemic therapy [101]. This approval 
was issued based on the findings of a phase 2 study. This 
pivotal JULIET study showed that an ORR of 52% with 
40% CR was observed in refractory DLBCL patients 
who were treated with a single infusion of Tisagen-
lecleucel [33]. As mentioned above,  Kymriah® is also 
approved for treating B-cell leukemia in children and 
adults up to 25 years old. Very recently,  Kymriah® got a 
new FDA approval for adult patients with r/r follicular 
lymphoma after two or more lines of standard therapy 
[101, 102]. This approval was generated upon publica-
tion of the ELARA trial results, which reported that CR 
was observed in 68% of patients receiving  Kymriah® 
along with a sustained clinical response (85% of cases at 
12 months) and a tolerable safety profile [132]. However, 
tisagenlecleucel did not exhibit any advantage compared 
to standard-care second-line therapies in patients with 
refractory or early-relapsed aggressive lymphoma (within 
12 months) [133].

In a phase 1/2 study by Abramson et al. patients with 
r/r large B-cell lymphomas (including DLBCL, DLBCL 
transformed from indolent lymphoma, and PMBCL) 
treated with Lisocabtagene maraleucel (Liso-cel; 
 Breyanzi®), a second-generation anti-CD19 CAR-T cell 
product, experienced 73% ORR with 53% CR [89]. These 
findings led to FDA approval of Liso-cel for the treat-
ment of r/r DLBCL, PMBCL, and follicular lymphoma 
grade 3B after a minimum of two previous standard 
treatments [134]. Additionally, a recent phase 3 clinical 
trial (TRANSFORM study) showed that Liso-cel therapy 
significantly improved the median event-free survival 
(10·1 month in the Liso-cel-treated group vs. 2·3 months 
in the standard-care group) in patients with early relapse 
(less than 1  year) or refractory large B-cell lymphoma, 
and the authors suggested using Liso-cel as a new sec-
ond-line therapy for this category of patients [135].

Mantle cell lymphoma
Mantle cell lymphoma (MCL) is a rare, yet aggressive 
type of B-cell lymphoma with a poor prognosis despite 
available therapeutic strategies. CAR-T cell therapies 
have demonstrated efficacy in high-risk MCL [136, 137]. 
Brexucabtagene autoleucel  (Tecartus®) is the only FDA-
approved CAR T-cell therapy for adult patients with r/r 

mantle cell lymphoma [107, 138, 139]. The FDA approval 
was based on findings obtained during the ZUMA-2 
phase 2 multicenter clinical trial studying the efficacy 
and safety of  Tecartus® in adult patients with relapsed 
or refractory MCL who failed prior therapies, includ-
ing chemotherapy, anti-CD20 antibody, and a Bruton’s 
tyrosine kinase inhibitor. This study showed that 93% 
of the patients treated with  Tecartus® showed an objec-
tive response, with 67% cases with CR. Moreover, the 
patients’ follow-up at 12 months achieved 61% PFS and 
83% OS, indicating a durable response upon CAR T-cells 
therapy [140].

Albeit the clinical efficacy of CD-19-specific CAR T 
cells is proven in aggressive B-cell lymphoma, long-term 
disease control failed in many patients [92, 141]. Hence, 
there is an unmet need for strategies to improve CAR-T 
cell therapeutic approach. Promising clinical outcome 
was observed with third-generation CAR T cells target-
ing CD20 in B-cell non-Hodgkin lymphomas (B-NHL) 
[142]. In a pilot, clinical trial, Till and colleagues inves-
tigated the efficacy of anti-CD20 CAR T-cells in a pilot 
study of 3 patients with relapsed NHL. Two patients 
experienced complete remission without progression 
for up to 24  months; yet, the third patient showed par-
tial remission, with disease relapse 1 year after treatment 
[142]. Recently, Zhang Y. et  al. published the data of a 
phase I/II study in which they checked the effect of tar-
geting concomitantly or separately both CD19 and CD20 
using tandem CD19/CD20 CAR-T cells (TanCAR7 T 
cells) for the treatment of relapse/refractory NHL follow-
ing chemotherapy lymphodepletion [143]. The maximum 
overall response was 78% (95% CI 68–86); 70% (95% CI 
59–79) of the cases achieved a CR, and the remaining 
exerted a PR. Moreover, 60% of the patients were disease 
free amid a follow-up beyond 2 years [143].

Multiple myeloma
Multiple myeloma (MM) is hematopoietic cancer that 
arises from mutated plasma cells, called myeloma, which 
proliferate uncontrollably within the bone marrow [92, 
144]. Although multiple myeloma is rare cancer, it has 
been recently reported that its global incidence is rising 
[145]. Despite the advances in the diagnosis and thera-
peutic management of multiple myeloma, this cancer 
remains incurable [144].

FDA-approved investigational CAR-T cell therapies 
targeting one or more antigens expressed by myeloma 
cells are considered promising therapeutic approaches 
for MM [146]. The CD138 antigen, highly expressed in 
myeloma cells, is an important diagnostic and thera-
peutic biomarker [144, 147]. A pilot study conducted 
by Guo et  al. reported that patients with advanced 
MM tolerated and favorably responded to autologous 
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anti-CD138 CAR T-cell therapy; Out of 5 patients, 4 
presented stable disease above 3 months and 1 patient 
showed a significant decrease in the percentage of 
peripheral blood myeloma cells (from 10.5% to less than 
3%) [148]. Another hallmark of a differentiated plasma 
cell is the B-cell maturation antigen (BCMA) [92, 147, 
149]. Several clinical trials reported the feasibility, 
safety, and efficiency of anti-BCMA CAR T cells in 
MM patients [150–152]. Currently, there are two FDA 
approved second-generation autologous anti-BCMA 
CAR-T cell constructs for the treatment of relapsed/
refractory in patients with MM that failed four or 
more prior therapies; Idecabtagene vicleucel (Ide-Cel; 
 Abecma®) is the first CAR T-cell product to obtain 
FDA approval (March, 2021) to treat r/r MM patients 
[153, 154] (Table  1).  Abecma® gained its approval 
based on the results of a phase 2 study (KarMMa study) 
conducted on 140 MM patients whose disease was irre-
sponsive or relapsed after at least 3 prior anti-myeloma 
treatment regimens [155]. This study showed an over-
all response in 73% of the heavily pre-treated patients 
with r/r MM, with a CR in 33% of the cases [155]. In 
February 2022, the FDA approved the second BCMA-
directed CAR-T cell therapy for r/r MM: ciltacabtagene 
autoleucel (Cilta-Cel;  Carvykti®) [156]. The approval 
of  Carvykti® was based on the findings of the CARTI-
TUDE-1 study, a phase 1b/2 trial showing 98% ORR 
and 80% stringent CR in 97 CAR-T cell-treated patients 
exhibiting r/r MM. Additionally, 12  months after 
 Carvytki® infusion, the OS and PFS were 89% and 77%, 
respectively [157].

On the basis of pre-clinical data, many researchers 
suggested the potential benefit of using CAR T-cells 
targeting other plasma cells biomarkers such as the 
G-protein-coupled receptor, class C group 5 mem-
ber D (GPRC5D), SLAM Family Member 7 (SLAMF7) 
and integrin ß1 [158–163]. In the phase 1 clinical trial, 
Mailankody and colleagues recently observed an over-
all response rate of 71% in MM patients treated with 

GPRC5D-directed CAR-T cells [164]. Interestingly, this 
study showed a response in 6 (75%) of 8 patients whose 
disease relapsed after BCMA CAR-T cell therapy, 
emphasizing the importance of GPRC5D as an immu-
notherapeutic target in MM [164]. Further, research-
ers and clinicians are also exploring the potential of 
dual-targeted CAR-T cells, such as BCMA/GPRC5D-
directed CAR-T cells, to improve the efficacy of this 
approach in patients with MM [165, 166].

Novel CAR‑T cell targets and adjuvant therapies 
in development
The most common CAR-T cell constructs used for B-cell 
malignancies target CD19. However, additional tumor 
targets such as CD20, CD30, CD38, and CD138 have also 
been investigated [148, 167–169]. Similarly, new targets 
have been explored for treating multiple myeloma [146, 
147]. Moreover, substantial efforts are made to assess 
the potential advantage of combining CAR-T cells with 
standard systemic anti-cancer therapies to improve clini-
cal prognosis in patients with hematological malignan-
cies [170].

Some of the most challenging drawbacks of CAR-T 
cell therapy are its short- and long-term adverse events 
(AEs). The most frequently observed AE of CAR-T cells 
is cytokine release syndrome (CRS), characterized by 
an upregulation of systemic inflammatory cytokines. 
The clinical presentation of CRS varies from mild (high 
fever, hypotension) to life-threatening toxicity (multi-
organ failure, neurotoxicity, seizures, and coma) [92, 146, 
171]. After CAR-T cell infusion, some patients also have 
decreased blood counts leading to reduced immunity and 
increased infections [146]. Managing these AEs includes 
prophylactic antimicrobial treatments to prevent severe 
infection and antibody therapy for patients undergoing 
CAR-T cell therapy to reduce the risk of related neuro-
logical toxicity [159].

Several studies are focused on developing strategies to 
reduce the toxicity of CAR-T cell therapy. For instance, in 

Table 1 US FDA‑approved CAR‑T cell therapies

Generic name Trade name Target antigen Indication Date of FDA approval

Axicabtagene ciloleucel Yescarta® CD19 Large B cell lymphoma October 2017

Follicular lymphoma March 2021

Tisagenlecleucel Kymriah® CD19 Acute lymphoblastic leukemia August 2017

Large B cell lymphoma May 2018

Brexucabtagene autoleucel Tecartus® CD19 Mantle cell lymphoma July 2020

Liscobtagene maraleucel Breyanzi® CD19 Large B cell lymphoma February 2021

Idecabtagene vicleucel Abecma® BCMA Multiple myeloma March 2021

Ciltacabtagene autoleucel Carvykti® BCMA Multiple myeloma February 2022
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a recent clinical trial, systemic corticosteroids were used 
as a prophylactic treatment in patients with large B‐cell 
lymphoma treated with axicabtagene ciloleucel (Axi-
cel) CAR-T cells [172]. This study showed that the use 
of prophylactic corticosteroids prevented grade 3 toxic-
ity, hindered the onset of CRS, and had no affect on the 
clinical efficacy of Axi-cel [172]. Additionally, antibodies 
targeting the Interleukin-6 receptor (anti-IL6R), such as 
tocilizumab, successfully counteracted CRS symptoms 
in CAR-T cell-treated patients with B-ALL [55, 96]. The 
cytogenetic and molecular heterogeneity of hematopoi-
etic cancers plays an essential role in the clinical out-
come of CAR-T cell therapy, so the selection criteria for 
the enrolled patients substantially affects the variation 
of the evaluated clinical endpoints. Therefore, exploring 
more specific tumor cell targets as well as the develop-
ment of bispecific CAR-T cells is of the utmost impor-
tance to achieve an optimal and personalized application 
of CAR-T cells in blood cancers. Bi-specific CAR T-cells 
are a promising new approach that has been designed to 
address the issue of tumor antigen heterogeneity, which 
can limit the efficacy of traditional CAR T-cell thera-
pies [173]. These bi-specific CAR T-cells are engineered 
to express two different CARs, enabling them to recog-
nize and target two different tumor-associated antigens 
simultaneously [174]. By doing this, they are capable of 
recognizing a broader range of cancer cells within the 
same tumor, thereby improving their anti-tumor efficacy. 
Moreover, bi-specific CAR T-cells could potentially delay 
or prevent the development of tumor antigen escape, a 
common resistance mechanism where cancer cells evade 
CAR T-cell recognition by down-regulating or mutating 
the target antigen [175]. These advancements underline 
the ongoing efforts to improve the safety and effective-
ness of CAR T-cell therapy, and it’s our hope that they 
will provide a solid foundation for future developments 
in this exciting field.

CAR‑T cell therapy in solid cancers
Despite the success of CAR-T cell therapy in relapsed 
or refractory hematological malignancies, it still faces a 
challenge for the treatment of solid tumors. Solid tumors 
have a unique TME that is characterized by abnormal 
vasculature, dense extracellular matrix, interstitial fluid 
pressure, hypoxia, and the presence of immunosuppres-
sive cells, all of which are contributing factors in pre-
venting the infiltration of CAR-T cells [176]. Apart from 
the complex tumor niche, a significant hurdle in solid 
tumor CAR-T therapy is target antigen heterogeneity. 
Unlike hematological malignancies such as ALL or CLL, 
in which tumor cells express tumor-specific antigens, 
solid tumors rarely express one tumor-specific antigen 

[177]. Solid tumors commonly contain tumor-associated 
antigens (TAAs), which are self-antigens that are abnor-
mally expressed in tumors and expressed at low levels in 
a subset of normal host cells [178]. Overall, 22 TAAs are 
being investigated in patients with solid tumors in ongo-
ing clinical trials (reviewed in [179]). Of these, the most 
frequently targeted that have been characterized include 
mesothelin [180], mucin-1 (MUC-1) [181], EGFR variant 
III [182], carcinoembryonic antigen (CEA) [183], CA-IX 
[184], GD2 [185], ERBB2 [186, 187], and prostate-specific 
membrane antigen (PSMA) [188] (Table 2).

Breast cancer
Of the 19 antigen targets for CAR-T cells in breast can-
cer, 12 are in ongoing clinical trials [189]. The most 
common antigen targets include neural cell adhesion 
molecule L1 (CD171), CEA, fibroblast activation pro-
tein (FAP), CA-IX, folate receptor α (FR-α), GD2, MUC-
1, EGFR variant III, and VEGF receptor 2 (VEGF-R2) 
[190–192]. Increased expression of MUC-1 (98.6%) 
has been reported in invasive breast tumors [193], and 
MUC28z CAR-T cells derived from single-chain vari-
able fragment (scFv) of TAB004 significantly reduced the 
growth of triple-negative breast cancer (TNBC) tumors 
in vitro and in vivo [194]. Additionally, mesothelin-spe-
cific CAR-T cells were shown to exhibit increased cyto-
toxicity towards mesothelin-expressing primary breast 
cancer cells [195], and human CD3 + T-cells with anti-
ERBB2-CAR were found to induce apoptosis in ERBB2-
overexpressing breast cancer cells [196], suggesting 
ERBB2/HER2 as an important target for inducing cyto-
toxicity in ERBB2-expressing tumors. The incorpora-
tion of ligand-based CARs was reported to warrant high 
affinity to tumor cells and minimize the immunogenicity 
of chimeric proteins compared to the traditional human-
ized scFvs [197]. Heregulin-1β (HRG1β), an endogenous 
ligand for HER3/HER4-based CAR-T cells, suppressed 
the growth of HER3-positive breast cancer cells in vitro 
and in vivo [198].

Prostate cancer
In prostate cancer, TAAs such as PSMA, prostate stem 
cell antigen (PSCA), prostate-specific antigen (PSA), 
and epithelial cellular adhesion molecule (EpCAM) are 
being investigated [199]. PSMA-based CAR-T cells con-
stitutively expressing inverted chimeric cytokine recep-
tor (ICR) exhibit significant antitumor effects on prostate 
cancer cells in vitro and in vivo [200]. Furthermore, phase 
I clinical trial studies have shown the efficacy and safety 
of using CAR-T cells targeting PSMA in patients with 
prostate cancer [201–203].
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Table 2 Major ongoing clinical trials of CAR‑T cell therapy in different cancers

Condition Intervention Phase Clinical trial 
identifier

Estimated 
completion 
date

Sponsors/site Status Source

Breast cancer CEA Phase I/II NCT04348643 April 30, 2023 Chongqing 
Precision Biotech 
Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Multi‑4SCAR T Phase I/II NCT04430595 December 31, 
2023

Shenzhen Geno‑
Immune Medical 
Institute

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

The Seventh 
Affiliated Hospital 
of Sun Yat‑sen 
University

Anti‑hCD70 Phase I/II NCT02830724 January 1, 2028 National Cancer 
Institute (NCI)

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

cMET RNA Phase I NCT01837602 August 13, 2018 
(Completed)

University 
of Pennsylvania

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

huMNC2‑CAR44 Phase I NCT04020575 January 15, 2035 Minerva Bio‑
technologies 
Corporation

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

City of Hope 
Medical Centre

EGFR/B7H3 Early Phase I NCT05341492 May 1, 2025 Second 
Affiliated Hospital 
of Guangzhou 
Medical Univer‑
sity

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

HER2‑BPX‑603 Phase I/II NCT04650451 January 2, 2027 Bellicum Pharma‑
ceuticals

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑CD133 Phase I/II NCT02541370 June 2019 Chinese PLA Gen‑
eral Hospital

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Multiple 
myeloma

CD138 Phase I/II NCT01886976 June 2016 Chinese PLA Gen‑
eral Hospital

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

BCMA Early Phase I NCT05430945 June 20, 2025 Zhejiang Uni‑
versity

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Yake Biotechnol‑
ogy Ltd

CS1 Early Phase I NCT04541368 December 31, 
2026

Zhejiang Uni‑
versity

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Yake Biotechnol‑
ogy Ltd

BCMA Phase I/II NCT04271644 July 1, 2023 Chongqing 
Precision Biotech 
Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

ALLO‑715 Phase I NCT04093596 December 2027 Allogene Thera‑
peutics

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑CD19/BCMA Phase I NCT03706547 December 2021 Peng Liu Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine
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Table 2 (continued)

Condition Intervention Phase Clinical trial 
identifier

Estimated 
completion 
date

Sponsors/site Status Source

Hrain Biotechnol‑
ogy

Shanghai East 
Hospital

Anti‑BCMA/
GPRC5D

Phase II NCT05509530 May 1, 2025 Xuzhou Medical 
University

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

BCMA Phase I/II NCT03548207 August 23, 2022 Janssen Research 
and Develop‑
ment, LLC

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

BCMA Phase I NCT04706936 April 2024 Second Affiliated 
Hospital, School 
of Medicine, Zhe‑
jiang University

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Carbiogene 
Therapeutics 
Co. Ltd

CS1 (UCART) Phase I NCT04142619 December 11, 
2024

Cellectis S.A Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Glioblastoma CD147 Phase I NCT04045847 May 30, 2022 Xijing Hospital Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

IL13Rα2 Phase I NCT04003649 December 1, 
2022

City of Hope 
Medical Center

Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

National Cancer 
Institute (NCI)

EphA2 Phase I NCT03423992 January 30, 2023 Xuanwu Hospital, 
Beijing

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Beijing Mario 
Biotech Company

Hebei Senlang 
BIotech Company

Beijing HuiNen‑
gAn Biotech 
Company

EGFRvIII Phase I NCT03283631 June 30, 2020 Gary Archer Ph.D. Terminated Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

National Cancer 
Institute (NCI)

Duke Cancer 
Institute

MPP2 + Phase I NCT04214392 February 6, 2023 City of Hope 
Medical Center

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

National Cancer 
Institute (NCI)
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Table 2 (continued)

Condition Intervention Phase Clinical trial 
identifier

Estimated 
completion 
date

Sponsors/site Status Source

B7‑H3 Phase I NCT05241392 December 31, 
2024

Beijing Tiantan 
Hospital

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

HER Phase I NCT01109095 March 7, 2018 Baylor College 
of Medicine

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

The Methodist 
Hospital Research 
Institute

Center for Cell 
and Gene 
Therapy, Baylor 
College of Medi‑
cine

GD‑2 Phase I NCT00085930 June 2023 Baylor College 
of Medicine

Active, 
not Recruiting

Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Center for Cell 
and Gene 
Therapy, Baylor 
College of Medi‑
cine

Ovarian Cancer CD133 Phase I/II NCT02541370 June 2019 Chinese PLA Gen‑
eral Hospital

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑ALPP Phase I/II NCT04627740 December 31, 
2023

Xinqiao Hospital 
of Chongqing

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑MESO Phase I NCT03814447 January 2023 Shanghai 6th 
People’s Hospital

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Hrain Biotechnol‑
ogy Co., Ltd

CD70 Phase I NCT05518253 May 30, 2025 Weijia Fang, MD Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Chongqing 
Precision Biotech 
Co., Ltd

TAG72 Phase I NCT05225363 November 5, 
2026

City of Hope 
Medical Center

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

National Cancer 
Institute (NCI)

fhB7H3 Phase I/II NCT05211557 August 31, 2026 The Affili‑
ated Hospital 
of Xuzhou Medi‑
cal University

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Xuzhou Medical 
University

IIT MediTech 
(Jiangsu) Co. Ltd
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Table 2 (continued)

Condition Intervention Phase Clinical trial 
identifier

Estimated 
completion 
date

Sponsors/site Status Source

αPD1‑MSLN Early Phase I NCT04503980 June 2022 Shanghai Cell 
Therapy Group 
Co., Ltd

Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Shanghai 10th 
People’s Hospital

CLDN 18.2 Phase I NCT05472857 December 2024 Suzhou Immuno‑
foco Biotechnol‑
ogy Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Changhai Hos‑
pital

Lung Cancer αPD1‑MSLN Early Phase I NCT04489862 December 2022 Wuhan Union 
Hospital, China

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Shanghai Cell 
Therapy Group 
Co., Ltd

Anti‑MUC1 Phase I/II NCT03525782 January 31, 2022 The First 
Affiliated Hospital 
of Guangdong 
Pharmaceutical 
University

Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Guangzhou Anjie 
Biomedical Tech‑
nology Co., Ltd

University 
of Technology, 
Sydney

TAA06 Phase I NCT05190185 December 1, 
2023

PersonGen 
BioTherapeutics 
(Suzhou) Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Department 
of Immunol‑
ogy, The Fourth 
Hospital of Hebei 
Medical Univer‑
sity

CEA Phase I/II NCT04348643 April 30, 2023 Chongqing 
Precision Biotech 
Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

P‑MUC1C‑ALLO1 Phase I NCT05239143 April 2039 Poseida Thera‑
peutics, Inc.

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

EGFR/B7H3 Early Phase I NCT05341492 May 1, 2025 Second 
Affiliated Hospital 
of Guangzhou 
Medical Univer‑
sity

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

CAdVEC 
and HER2

Phase I NCT03740256 December 30, 
2038

Baylor College 
of Medicine

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

The Methodist 
Hospital Research 
Institute
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Table 2 (continued)

Condition Intervention Phase Clinical trial 
identifier

Estimated 
completion 
date

Sponsors/site Status Source

CEA Phase I/II NCT04348643 April 30, 2023 Chongqing 
Precision Biotech 
Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Prostate Cancer EpCAM Phase I/II NCT03013712 December 2020 First Affili‑
ated Hospital 
of Chengdu 
Medical College

Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

P‑PSMA‑101 Phase I NCT04249947 September 2036 Poseida Thera‑
peutics, Inc.

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑PSCA‑CAR‑
4‑1BB/TCRzeta‑
CD19t

Phase I NCT03873805 December 31, 
2023

City of Hope 
Medical Center

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

National Cancer 
Institute (NCI)

PD1‑PSMA Phase I NCT04768608 January 2024 Zhejiang Uni‑
versity

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Bioray Labora‑
tories

BPX‑601 Phase I/II NCT02744287 February 2026 Bellicum Pharma‑
ceuticals

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Liver Cancer Anti‑CEA Phase I NCT05240950 December 25, 
2026

Changhai Hos‑
pital

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

IM83 Phase I NCT05123209 August 30, 2023 Beijing Immu‑
nochina Medical 
Science & Tech‑
nology Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

GPC3 Phase I NCT05344664 February 1, 2025 Peking University Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑CD133 Phase I/II NCT02541370 June 2019 Chinese PLA Gen‑
eral Hospital

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

IL15 (AGAR) Phase I NCT04377932 February 1, 2040 Baylor College 
of Medicine

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Center for Cell 
and Gene 
Therapy, Baylor 
College of Medi‑
cine

HerinCAR‑PD1 Phase I/II NCT02862028 July 2018 Shanghai Inter‑
national Medical 
Center

Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑CEA Early Phase I NCT04513431 August 30, 2023 Ruijin Hospital Not yet Recruit‑
ing

Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

HuaDao (Shang‑
hai) Biomedical 
Co., Ltd
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Table 2 (continued)

Condition Intervention Phase Clinical trial 
identifier

Estimated 
completion 
date

Sponsors/site Status Source

Pancreatic 
Cancer

CT041 Phase I/II NCT04404595 September 1, 
2035

CARsgen Thera‑
peutics Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

HEC‑016 Early Phase I NCT05277987 March 2025 Shenzhen Fifth 
People’s Hospital

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

IM96 Early Phase I NCT05287165 June 30, 2024 Beijing Immu‑
nochina Medical 
Science & Tech‑
nology Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

TAI‑meso Phase I NCT02706782 September 2018 Shanghai Gene‑
Chem Co., Ltd

Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Claudin 18.2 Phase I NCT05472857 December 2024 Suzhou Immuno‑
foco Biotechnol‑
ogy Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Changhai Hos‑
pital

KD‑496 Early Phase I NCT05583201 June 1, 2026 Jianming Xu Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

KAEDI

CT041 Phase I/II NCT04581473 June 30, 2038 CARsgen Thera‑
peutics Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Peking University 
Cancer Hospital & 
Institute

Fudan University

Anti‑hCD70 Phase I/II NCT02830724 January 1, 2028 National Cancer 
Institute (NCI)

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Colorectal 
Cancer

NKG2D Early Phase I NCT05248048 October 2022 The Third 
Affiliated Hospital 
of Guangzhou 
Medical Univer‑
sity

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Hangzhou 
Cheetah Cell 
Therapeutics Co., 
Ltd

Anti‑CEA Phase I NCT05240950 December 25, 
2026

Changhai Hos‑
pital

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

αPD1‑MSLN Early Phase I NCT04503980 June 2022 Shanghai Cell 
Therapy Group 
Co., Ltd

Unknown Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Shanghai 10th 
People’s Hospital

CEA Phase I/II NCT04348643 April 30, 2023 Chongqing 
Precision Biotech 
Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine
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Ovarian cancer
Aberrantly expressed glycosylated cell surface proteins 
are attractive immunotherapy targets, including for 
CAR-T cells. In ovarian tumors, such proteins include 
MUC-1, mucin-16 (MUC-16), and tumor-associated 
glycoprotein 72 antigen (TAG72) [204–206]. PD1-anti-
MUC16 [207] and TAG72-specific CAR containing a 
4-1BB intracellular co-stimulatory signaling domain 
(TAG72-BBζ) [208] show cytotoxicity against ovarian 
cancer cells in vitro and in vivo. In another study, T-cells 
modified to express 4H11-28z CAR lysed ovarian cancer 
cells in vitro and exhibited in vivo antitumor activity in 
SCID mice bearing orthotopic human MUC-CD + ovar-
ian carcinoma tumors [209]. Another protein, 5T4, an 
oncofetal TAA highly expressed in ovarian cancer [210], 
is also an attractive target for CAR-T cell therapy: co-
culturing CAR-T cells, engineered from patient-derived 
T cells to target the 5T4 antigen, with autologous 
5T4 + tumor cells often results in increased secretion 
of pro-inflammatory cytokines such as IFN-γ and IL-2. 
This phenomenon is part of the CAR-T cells’ immune 
response against the tumor cells, and can be used as a 
measure of their reactivity against the tumor antigen 
[211]. In addition, NSG mice treated with 5T4-spe-
cific CAR-T cells showed prolonged survival in a dose-
dependent manner [211].

Glioblastoma
In glioblastoma, EGFR variant III, ERBB2/HER2, and 
IL-13 receptor α2 (IL13Rα2) are important CAR-T cell 
therapy targets that have been investigated in many 
clinical trial studies [212]. Several studies have shown 
the antitumor efficacy of EGFR variant III-directed 
CAR-T cells against glioblastoma [213–215]. Intracra-
nial administration of CAR-T cells targeting IL13Rα2, 
a monomeric high-affinity receptor for IL-13 found 
to be overexpressed in glioblastomas [216], improves 
T-cell persistence and antitumor efficacy against 

glioblastoma [217, 218]. A study has also shown the 
therapeutic efficacy of third-generation anti-HER2 in 
combination with PD-1 blockade against glioblastoma 
cells [219]. A phase I trial study highlighted the safety, 
efficacy, and clinical benefit obtained by using HER2-
specific, CAR-modified virus-specific T-cells to treat 
progressive glioblastoma [220]. In a recent study, dis-
ialoganglioside GD2 antigens were an important thera-
peutic target for CAR-T cell therapy in glioblastoma 
[221]. GD2-CAR-T cells exhibited an antitumor effect 
against GD2 + glioblastoma cells and improved sur-
vival in the orthotopic glioblastoma model [221].

Colorectal cancer
In colorectal cancer (CRC), several antigen targets 
for CAR-T cell therapy are being investigated in clini-
cal trials, including CEA, CD133, C-Met, EGFR, HER2, 
EpCAM, MUC-1, mesothelin, PSMA, guanylate cyclase-
C (GCC), and natural killer group 2 member D ligand 
(NKG2DL) [222]. NKG2D CAR-T cells exhibited cyto-
toxicity against human CRC cells and suppressed tumor 
growth in a xenograft model of CRC [223]. In another 
study, GUCY2C-targeted murine CAR-T cells pro-
moted antigen-dependent T-cell activation in GUCY2C-
expressing cancer cells in  vitro and provided long-term 
protection in a syngeneic lung metastasis mouse model 
[224]. Clinical trial studies have also demonstrated the 
safety, tumor trafficking, and immunogenicity of TAG-
72 CAR-T cells in CRC [225]. A recent study showed the 
use of Doublecortin-like kinase 1 (DCLK1)-based CAR-T 
cells as a treatment strategy for eradicating CRC tumor 
stem cells [226]. The study showed that DCLK1-based 
CAR-T cells exhibited cytotoxicity against CRC cells 
and inhibited CRC tumor growth in vivo [226]. A previ-
ous clinical trial study also demonstrated the efficacy and 
tolerability of CEA CAR-T cells in  CEA+ refractory CRC 
patients with liver and lung metastasis [227].

Table 2 (continued)
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CEA Phase I NCT05415475 September 15, 
2024

Chongqing 
Precision Biotech 
Co., Ltd

Recruiting Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑CD133 Phase I/II NCT02541370 June 2019 Chinese PLA Gen‑
eral Hospital

Completed Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine

Anti‑HER2 Phase I/II NCT02713984 July 2019 Zhi Yang Withdrawn Clinicaltrials.gov, 
NIH, U.S. National 
Library of Medicine



Page 19 of 36Dagar et al. Journal of Translational Medicine  (2023) 21:449 

Lung cancer
Lung cancer has remained one of the most frequently 
occurring cancers worldwide, with a high mortality rate 
and poor prognosis, making it an essential target for 
CAR-T cell therapy. Current antigen targets in clini-
cal trials for CAR-T cell therapy for lung cancer include 
MUC-1, CEA, HER2, mesothelin, receptor tyros-
ine kinase-like orphan receptor 1 (ROR1), glypican-3 
(GPC3), EGFR, and PD-1 [228]. CAR-T cells targeting 
EGFR variant III [229], mesothelin [230], Erythropoietin-
producing hepatocellular carcinoma A2 (EphA2) [231], 
Delta-like 3 (DLL3) [232], PSCA- and MUC-1 [233], and 
PD-L1 [234] have shown significant antitumor effects 
against lung cancer cells in vitro and in vivo. In another 
study, ROR1 CAR-T cells have been found to be effective 
in inducing apoptosis of 3D lung cancer tumors in static 
culture [235].

Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) accounts for the major-
ity of primary liver cancers and represents a significant 
cause of cancer-related mortality worldwide, although 
it is not the most common cause [236]. The liver is the 
most common site for cancer metastasis originating from 
other organs, such as the pancreas, rectum, colon, breast, 
and lung [237]. The current HCC antigen targets in clini-
cal trials for CAR-T cell therapy include GPC3, EpCAM, 
Claudin 18 (CLD18), CD147, EGFR variant III, C-Met, 
and death receptor 5 (DR5) [238]. Dual-targeted CAR-T 
cells co-expressing GPC3 and asialoglycoprotein receptor 
1 (ASGR1) exhibited cytotoxicity against  GPC3+ASGR1− 
and  GPC3+ASGR1+ HCC cells in  vitro and caused a 
significant reduction of  GPC3+ASGR1+ HCC tumor 
xenografts in  vivo [239]. Another study showed GPC3 
CAR-T cells co-expressing interleukins IL-15 and IL-21 
to exhibit cytotoxicity against HCC cells in  vitro and 
show superior expansion, persistence, and potent antitu-
mor activity against HCC in vivo [240].

Pancreatic cancer
Pancreatic cancer is the most common type of pancre-
atic malignancy, with a poor survival rate and dismal 
prognosis due to the lack of effective systemic therapies 
and limited treatment options. The major cause of the 
limited success of immunotherapy in pancreatic ductal 
adenocarcinoma (PDAC), the most common histological 
subtype of pancreatic cancer, is the presence of a highly 
immunosuppressive TME [241]. CAR-T cell therapy rep-
resents an emerging therapeutic option for overcoming 
these immunosuppressive elements in PDAC. Current 
pancreatic cancer antigen targets in clinical trials for 
CAR-T cell therapy include CEA, mesothelin, CD133, 

CD70, CLD18, HER2, GPC3, PSCA, EGFR variant III, 
and MUC-1 [242]. CAR-T cells targeting a type I trans-
membrane protein B7-H3 exhibit antitumor activity 
against PDAC cells in vitro and controlled tumor growth 
in a xenograft mouse model using PDAC patient-derived 
tumors [243]. Anti-Tn-MUC1 CAR-T cells [244] and 
CXCR2-expressing CAR-T cells [245] have also shown 
superior antitumor activity against such models. A phase 
I clinical trial study has demonstrated the safety and fea-
sibility of using HER2 CAR-T cells against advanced pan-
creatic cancers [246].

In recent years, CAR-T cell therapy in solid tumors 
has shown limited success because of tumor antigen het-
erogeneity, immunosuppressive TME, CAR-T cell traf-
ficking and tumor infiltration, and on-target off-tumor 
effects that restrict the efficacy of CAR-T cell therapy 
within solid tumors [68]. Overcoming these limitations 
may enable treatment of solid tumors using CAR-T cell 
therapy to become as successful as it is in hematologi-
cal malignancies. Various engineering strategies, such as 
fine-tuning the affinity of CARs to their cognate antigens 
[247–249] or engineering CARs that target tumor-asso-
ciated glycopeptide epitopes [244, 250–252] can improve 
the targeting-specificity of CAR-T cells. Other strategies 
include developing CARs capable of Boolean-logic signal 
integration and suicide systems that can eliminate engi-
neered T-cells [253]. The capability of CAR-T cells could 
also be enhanced by using a split, universal, and pro-
grammable (SUPRA) CAR system that enables switch-
ing targets without re-engineering T-cells, fine-tunes 
T-cell activation, and enables the integration of signals 
from multiple antigens [254]. Overall, a multi-faceted 
approach involving novel T-cell engineering approaches 
and gene-editing techniques will allow us to make incre-
mental changes to navigate through the barriers pre-
sented by the complex TME of solid tumors to deliver 
effective CAR-T cell therapy.

CAR‑T cell therapy limitations and their mitigation 
strategies
CAR-T cell therapy has immense potential, which is 
evident by the approval of various forms of CAR-T cell 
therapies for the treatment of cancer and by the sta-
ble remission seen in patients after treatment by CARs 
directed against the different antigens. CAR-based ther-
apies are projected to hold tremendous promise in the 
near future; however, many limitations of CAR-T therapy 
must be addressed before the CARs become universally 
acceptable, especially in solid cancers (Fig.  2). In the 
upcoming section, we will discuss the unique issues faced 
by CAR-T cell therapy in hematological and solid cancers 
and the efforts to address these issues.
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Cytokine release syndrome
Cytokine release syndrome (CRS) is one of the most 
common toxicities associated with the infusion of CAR-T 
cells. The nature of CRS in response to CAR-T infu-
sion and its abetment is an active research area. CRS is 
thought to occur when CAR T-cells, upon recognizing 
their target antigen on cancer cells, become activated and 
start to proliferate and release inflammatory cytokines. 
These cytokines, in turn, can activate other immune 
cells, including monocytes and macrophages. Monocytes 
and macrophages play a crucial role in the pathogenesis 
of CRS. These cells express high levels of the Fc recep-
tor, which can bind to the Fc portion of the monoclonal 
antibodies used in CAR T-cell therapy. Upon activation, 
monocytes and macrophages can produce large amounts 
of inflammatory cytokines such as IL-6 and IL-1, ampli-
fying the inflammatory response and contributing to the 
symptoms of CRS [255–257]. Major symptoms of CRS in 
patients treated with CAR-T cells are high fever, muscle 
and joint pain, low blood pressure, nausea, fatigue, head-
ache, and skin rashes [258]. Toxicities due to CRS are 
generally reversible with supportive care, but it is widely 
thought that the magnitude of CRS varies from patient to 
patient, as well as by the type of CAR being used.

Many strategies have been used to mitigate CRS, 
including the blockade of IL-6 receptors and corticos-
teroids (Fig.  2a). Some of the FDA-approved monoclo-
nal antibodies for the treatment of CRS after CAR-T 
cell therapy are Tocilizumab [55, 259], Siltuximab [260], 
and Sarilumab [261]. Tocilizumab and Siltuximab bind 
and block the IL-6 receptor. Both drugs are widely used 
as they reverse the CRS symptoms in most patients in 
a very short time. When CAR-T cell therapy refracts to 
anti-IL-6 therapy, the use of corticosteroids is considered 
because it suppresses T-cell function [262]. In ZUMA 1 
trial, Tocilizumab reduced the incidence of CRS from 13 
to 5% [263]. A simultaneous report that coadministration 
of Tocilizumab and steroids reduced incidence of CRS 
without affecting the clinical outcome indicate that this 
drug combination does not interfere with the efficacy of 
CAR-T cells [264]. The design of CAR-T also affects the 
CRS in patients with factors such as the nature of the co-
stimulatory domain and intrinsic and extrinsic cellular 
features influencing the outcome (Fig. 2a). CD19 CAR-T 
cell efficacy depends on the antigen density of the target 
cell, with CARs having CD28 as co-stimulatory domain 
showing better efficacy than 4-1BB construct with a 
lower risk of CRS [265]. Additionally, the length of endo-
domain can affect the CAR functionality as well as CRS, 
with CARs having shorter intracellular domains and 
CD28 as a costimulatory domain having reduced inter-
action with CD3ζ, leading to less cellular activation and 
cytokine production [266]. Conversely, CD19 CARs with 

longer transmembrane domains showed less CRS than 
did CARs with shorter domains in a clinical trial [267]. 
The nature of the transmembrane moiety also influences 
CRS, with CD19 CARs having a transmembrane moiety 
containing CD8α producing fewer cytokines and lower 
levels of activation-induced cell death than CD28 CARs 
with comparable efficacy to eliminate tumors in preclini-
cal models [62]. A phase 1 clinical trial with fully human-
ized anti-CD19 CAR with CD8α transmembrane showed 
significantly reduced level of cytokines as compared to 
construct used in ZUMA 1 trial [268].

Selective apoptosis has also been explored as a possi-
ble strategy to mitigate CRS by using an inducible form 
of caspase 9 (iCasp9) that is activated upon exposure to 
small-molecule AP19013 by dimerization, leading to 
rapid depletion of infused cells [269, 270]. This approach 
leads to accelerated depletion of CAR-T cells, resulting in 
significant loss of anti-tumor activity, so it should be used 
only in patients experiencing high-grade CRS that could 
lead to life-threatening complications.

CARs with selective on/off switches have also been 
explored to regulate CRS. A self-cleaving site, which is 
a substrate for protease paired to a degron (degradation 
signal) that induces proteolysis of the CAR protein, has 
been explored; self-cleavage and proteolysis of degron 
will turn this CAR to the ON state, leading to the expres-
sion of CAR on the cellular surface; administering the 
protease inhibitor asunaprevir switches this CAR to the 
OFF state because the active degron moiety induces deg-
radation of CAR degron protein (Fig. 2a) [271]. Tyrosine 
kinase inhibitors like Dasatinib temporarily disrupt cellu-
lar signaling downstream of CD3ζ by inhibiting phospho-
rylation of lymphocyte-specific protein tyrosine kinase 
(LCK), so it can be used to fine-tune CAR function and 
to modulate CRS in patients [272]. Ibrutinib inhibits Bru-
ton’s tyrosine kinase, which is highly expressed in B cell 
malignancies; this inhibitor increases anti-tumor activ-
ity in synergism with CD19 CAR-T cells, simultaneously 
lowering the severity of CRS in patients with CLL [273].

Immune Effector Cell-Associated Neurotoxicity 
Syndrome (ICANS) is a significant and adverse reac-
tion often associated with CAR-T cell therapy [274]. 
ICANS tends to manifest within days to weeks follow-
ing the infusion of the CAR-T cells. It is marked by an 
array of neurological symptoms that can vary in sever-
ity, from being merely inconvenient to posing serious, 
life-threatening conditions. Patients might exhibit symp-
toms such as confusion, restlessness, delirium, and in 
severe instances, seizures. Extremely grave cases may 
also present cerebral edema—a dangerous swelling of the 
brain—and encephalopathy, a general term for diseases 
that alter brain function or structure. While the pre-
cise etiology of ICANS remains unclear, it’s postulated 
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that the syndrome results from an excessive release of 
cytokines and other pro-inflammatory molecules by the 
genetically modified CAR-T cells. This leads to a potent 
immune response within the brain. However, the severity 
of ICANS can differ greatly between patients, making its 
prediction and management challenging [275]. For those 
undergoing CAR-T cell therapy, meticulous monitoring 
is critical to manage the potential risk of ICANS. Regu-
lar neurological evaluations are vital, as is paying care-
ful attention to any shifts in the patient’s mental status. 
If symptoms of ICANS are detected, treatment proto-
cols may involve general supportive care, encompassing 
the use of antiseizure medications or anti-inflammatory 
drugs to control and reduce neurological symptoms. For 
severe cases that involve life-threatening brain swelling 
or changes in brain function, admission to an intensive 
care unit might be required. Here, patients can be closely 
observed, and more potent interventions, such as corti-
costeroids and other immunosuppressive therapies, can 
be employed. To minimize the risk of ICANS, it is crucial 
to thoroughly assess patients prior to CAR-T cell therapy 
to determine their suitability for this treatment. Risk fac-
tors that could contribute to the development of ICANS 
include high disease burden and a high dosage of CAR-T 
cells. There’s a continuous effort in the scientific commu-
nity to understand the mechanisms underlying ICANS 
better, with research focused on developing strategies to 
predict, prevent, and manage this potential severe side 
effect of CAR-T cell therapy [276, 277]. This research is 
pivotal in making CAR-T cell therapy safer and more effi-
cient, thereby benefiting more patients in the long run.

Tumor antigen escape
One of the most challenging limitations of CAR-T cell 
therapy is the development of tumor resistance to sin-
gle antigen-targeting CAR-T cells after the initial high 
response rate [68, 278]. Initial data regarding tumor anti-
gen escape have emerged predominantly from evaluating 
a patient who received anti-CD19 CARs with the com-
plete or partial loss of CD19 expression leading to resist-
ance to anti-CD19 CAR [279]. Tragocytosis, which is the 
transfer of antigen from the tumor to the CAR-T cell, 
has also been reported in a mouse model of leukemia. 
Reversible antigen loss occurred via transfer of target 
antigen to T cells, resulting in reduced target density on 
cancerous cells and thus compromising T cell activity by 
T cell anergy [280]. This mechanism was reported in both 
CD28- and 41-BB-based CARs [259].

The use of bispecific CARs has been the primary 
approach [281, 282] to counter antigen escape, with 
CARs being developed that can recognize both CD19 
and CD20 or CD19 and CD22; these CARs showed bet-
ter activity than anti-CD19 CAR-T cells did (Fig.  2b) 

[283, 284]. However, how effective these approaches 
are remains to be seen. Pan et  al. demonstrated that in 
pediatric B-cell acute lymphoblastic leukemia (B-ALL), 
sequential infusion of two different CARs targeting CD19 
followed by one targeting CD22 could be a viable strat-
egy to increase the efficacy and safety of CAR-T cell ther-
apy [285]. Another important strategy that has emerged 
recently has been the development of Bi-specific T cell 
engagers (BiTEs) [286] (Fig. 2b). Blinatumomab, a CD19-
specific BiTE, was approved by the FDA to treat B cell 
precursor ALL (B-ALL) [287]. Much like CAR-T cells, 
BiTEs (recombinant proteins that simultaneously bind 2 
different antigens) facilitate the T-cell-mediated killing of 
malignant cells by redirecting autologous T lymphocytes 
to cell-surface antigens on cancer cells The engagement 
of T cells by BiTEs and CARs is indeed independent of 
the specificity of the endogenous T-cell receptor (TCR). 
This is because both BiTE and CAR designs bypass the 
traditional TCR recognition of antigens presented by the 
major histocompatibility complex (MHC) on the tumor 
cells. Instead, they directly recognize the antigen on the 
cancer cells, which enables the activation of T cells even 
in the absence of MHC antigen presentation, overcom-
ing a common method by which tumors evade immune 
surveillance. To clarify, the BiTE platform employs one 
ScFv for the specific recognition of a tumor-associated 
antigen and another ScFv to engage the CD3 compo-
nent of the TCR complex on T cells. The dual specificity 
of BiTE molecules effectively bridges T cells and can-
cer cells, facilitating cytotoxic T-cell responses against 
the tumor [286, 288]. Combining both platforms can be 
a viable strategy to improve the efficacy of CAR-T cell 
therapy. CARs can be engineered to secrete BiTEs, which 
can further enhance the anti-tumor response of CAR-T 
cells. This strategy has been explored to overcome chal-
lenges posed by solid tumors and to overcome antigen 
escape [289]. In this study, Choi et al. developed a bicis-
tronic CAR against the glioblastoma-specific tumor 
antigen EGFRvIII and a BiTE against EGFR, which is an 
antigen frequently overexpressed in glioblastoma. CART. 
BiTE secreted BiTEs specific to EGFR and recruited un-
transduced bystander T cells against wild-type EGFR, 
thus amplifying the immune response to achieve a better 
therapeutic outcome.

Tumor heterogeneity is often associated with solid 
cancer, which further leads to antigen heterogeneity. 
Furthermore, much like hematological malignancies, 
there is always a possibility of antigen loss as well as an 
escape. For example, in a Phase 1 study of an EGFRvIII-
specific CAR in GBM, a single dose of the CAR-T cells 
led to downregulation of the EGFR/EGFRvIII receptor 
[214], whereas IL13Ra2-specific CAR-T cells co-express-
ing IL-15 were potent against glioma but led to the rise 
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of tumors with IL13Ra2 downregulation [290]. Much like 
hematological malignancies, bispecific or tandem CARs 
have been developed to address the issue of antigen loss 
or tumor heterogeneity. Bispecific CAR has been devel-
oped against HER2 and MUC1 as well as against HER2 
and IL13Ra2; both are in the preclinical development 
phase [291]. Whether these CARs are successful enough 
to progress to phase 3 trials remains to be seen.

Trafficking and tumor infiltration
The biggest challenge for using CAR-T cells in solid 
cancers is getting them to the target site. This is not an 
issue in hematological cancers as circulating T cells are 
very near their target. In solid tumors, CAR-T cell ther-
apy is limited due to the inability of these cells to traffic 
and infiltrate the tumor due to the immunosuppressive 
TME and physical tumor barriers such as stroma that 
limit the diffusion and mobility of CAR T-cells (Fig. 2c). 

Fig. 2 CAR‑T cell therapy challenges and their mitigation strategies. A Cytokine Release Syndrome (CRS) (1) Choice of costimulatory domain 
CD28 or 41BB as well as the length of the hinge domain influence CRS (2) Cytokines released by macrophages and Inflammatory cytokines 
and immunostimulatory alarmins released during pyroptosis can be mitigated by using specific drugs for each cytokine (e.g., Etanecerpt, 
Tocilizumab, Corticosteroids, Dasatinib, Emapalumab) B Tumor-associated antigen escape (1) CAR‑T cell‑mediated killing of target cell if the target 
antigen is present on the surface (2) Tumor antigen escape in the absence of surface antigen of the CAR‑T cell and potential strategies to abet 
it by using DUAL CARs and BiTE CARs. C Trafficking and tumor infiltration (1) Schematic diagram to demonstrate reduced homing of CAR‑T cells 
to tumor microenvironments due to the presence of different cellular components (2) Improving homing of CAR‑T cells to TME by using armored 
anti‑angiogenic CARs as well as self‑driving CARs, which express multiple anti‑angiogenic factors. D On-target Off-tumor/Lack of reliable TAAs. 
Schematic diagram to demonstrate targeting of the normal cell by CAR‑T cells if the antigen is expressed on normal cells, which can be mitigated 
by a selection of reliable tumor‑associated antigen by integration of artificial intelligence with big data mining. E Immunosuppressive tumor 
microenvironment (1) Diagram to illustrate suppressive tumor microenvironment comprising different cellular components including low oxygen, 
cancer‑associated fibroblast, high ROS and other components that diminish proliferation of CAR‑T cells (2) CAR‑T expressing anti‑checkpoint 
inhibitors to promote the growth of T cells in tumor microenvironments (3) HIF1α‑inducible CARs, which get activated in hypoxic tumor 
microenvironment. HIF1α to promote T cell growth (4) Catalase‑expressing CAR to scavenge reactive oxygen species in tumors to promote T cell 
growth. CARs, Chimeric antigen receptors; BiTE, bispecific T‑cell engagers; TAAs, tumor‑associated antigens; TME, tumor microenvironment; ROS, 
reactive oxygen species; HIF1α, hypoxia inducible factor 1 alpha
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A T cell must cross many barriers before it encounters 
the tumor cells and their associated antigen. Gener-
ally, the trafficking of T cells to a particular site is con-
trolled by a chemotactic gradient, so if the T cells are 
not expressing the appropriate chemokine receptor, 
then the T cell cannot reach their targets [292, 293]. 
Moreover, T cells encounter many physical barriers and 
abnormal vasculature at the tumor site, such as high 
endothelial venules, which facilitate T cell entry but 
are distorted in tumors [294]. The potential solution for 
overcoming abnormal vasculature can be the adminis-
tration of anti-angiogenic therapy targeting angiogenic 
factors such as VEGF, which normalizes vasculature 
with CAR T cell therapy (Fig. 2c) [295]. To address the 
issue of tumor trafficking of T cells, one of the strate-
gies has been to add the chemokine receptor expres-
sion on CAR T-cells that match and respond to the 
chemokines derived from the target tumor [245]. The 
physical barrier, tumor stroma, that prevents the pene-
tration of CAR T-cells, is mainly composed of an extra-
cellular matrix of heparin sulfate proteoglycan (HSPG). 
HSPG does not let CAR-T cells pass into the tumor 
[296]. Engineered CAR-T cells expressing heparinase 
can degrade HSPG and lead to enhanced tumor infiltra-
tion and elimination [297]. In animal models, fibroblast 
activation protein (FAP)-targeted CAR-T cell therapy 
showed a reduction in tumor fibroblasts by increasing 
the cytotoxic function [298]. Researchers have devel-
oped a chemokine CXCL11/mesothelin CAR, which 
increases the intratumoral level of CXCL11 to aid the 
migration of CAR T cells to the target site [299]. Fur-
thermore, another armored mesothelin CAR-T cell 
expresses both IL-7 and CCL19 and has shown promis-
ing results in a murine model [300].

A good strategy to promote the trafficking of T cells is 
the administration of T cells to the site of tumor itself. 
In patients with metastatic breast cancer, intratumoral 
administration of mRNA c-Met CAR T cells result in 
tumor regression and macrophage recruitment [301]. In 
the murine model, considerable success has been dem-
onstrated using this strategy. Intratumoral delivery of 
a HER2-BBz CAR T cell led to the regression of medul-
loblastomas in NSG mice at a dose significantly lower 
than that for intravenous delivery of this CAR [302]. 
The effectiveness of this approach was shown in a study 
in which intracavitary administration of pan-ErbB/IL-4 
CAR T cells targeting patient-derived MPM xenografts in 
severe combined immunodeficient (SCID) mice showed 
significant tumor regression and cure in all mice [303]. 
In another study, intracranial and intratumoral admin-
istration of HER2-specific CAR T cells showed better 
antitumor activity than intravenous delivery, along with 

complete tumor regression and 100% survival following 
tumor rechallenge [304].

On‑target off‑tumor toxicity
One of the toxicities observed in CAR-T cell therapy is 
that tumor antigens are also expressed on normal tissues 
at variable levels, leading to attack against normal tissues 
and, thus, toxicity [305] (Fig. 2d). B cell maturation anti-
gen (BCMA) is a widely used target for immunotherapy. 
These antigens are highly expressed in mature B cells, 
including plasma cells, and few are present in other cell 
lineages [149, 306, 307]. CAR-T cell therapy can lead to 
secondary hypogammaglobulinemia, as BCMA is also 
expressed in healthy plasma cells. Similarly, CD19-pos-
itive B cells are affected by anti-CD19 CAR T-cell ther-
apy, which can cause B cell aplasia [308]. CD38 antigen, 
also expressed in the gastrointestinal tract, cerebellar 
Purkinje cells, or even T cells, is another immune target 
for plasma cells [309–311]. On-target off-tumor toxicity 
should be considered when targeting CD38 with CAR 
T-cells. Targeting tumor-restricted post-translational 
modifications overexpressed by solid tumors such as 
truncated O-glycans such as Tn (GalNAcal-O-Ser/Thr) 
and sialyl Tn (NeuAca2-6-GalNAcal-O-Ser/Thr) can 
help overcome the on-target off-tumor toxicity effects 
[312]. CAR-T cell local administration to the disease site 
is another approach that might limit on-target-off tumor 
toxicity [68].

Lack of reliable tumor‑associated antigens in solid cancers
The TME in solid cancer is highly heterogeneous unlike 
that in hematological cancers such as ALL, CLL, and 
MM, where there is uniform expression of antigens. 
However, in almost all solid cancers, TAA are expressed 
not only on cancer cells but also on normal tissue. Exam-
ples of this phenomenon include the common targets 
EGFR, Mesothelin, MUC1, and PSMA [313–315]. The 
on-target off-target problem in solid cancers has led to 
catastrophic outcome in some clinical trials: in a meta-
static colon cancer trial, CAR-T cells targeting HER2 
antigen led to mortality of the patient 5 days after infu-
sion [316] (Fig. 2d) because the low expression of HER2 
in lung epithelium led to the collapse of both lungs. In a 
neuroblastoma study, high-affinity CAR targeting GD2 
led to fatal encephalitis as this antigen is expressed at a 
low level in brain tissues. These studies point out two 
critical issues with CARs in solid cancer. First, the anti-
gen selection in solid cancer should be made only after 
extensive preclinical studies to ascertain the expression 
in normal tissues. Second, higher-affinity binding CARs 
are not necessarily better in terms of efficacy and safety. 
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This principle is illustrated by examining the case of 
ICAM-1, which is expressed in many solid tumors and 
normal tissues. The CAR that had affinity in micromolar 
concentration was more effective than was the CAR that 
had affinity in nanomolar concentration, showing less 
anergy and increased proliferation [317]. This on-target 
off-tumor effect can cause damage to normal tissues and 
induce side effects ranging from manageable (like skin 
rashes or fevers) to severe and even life-threatening, such 
as neurotoxicity or CRS [171]. To mitigate this issue, 
researchers are developing strategies like dual antigen 
targeting (requiring the presence of two antigens instead 
of one to activate the T cells), inducible suicide genes 
(that can be activated to kill off the T cells if severe toxic-
ity occurs), and antigen-binding domains that preferen-
tially bind to antigens at high densities (like those found 
on tumor cells) [173]. It’s also important to note that the 
selection of suitable tumor-specific or tumor-associated 
antigens with limited expression on vital normal tissues 
is key for the safety and effectiveness of CAR T cell and 
BiTE therapies.

In the age of-omics, many strategies have been devel-
oped, including DNA/RNA sequencing of exome to 
identify a mutation in tumors. Whole-genome sequenc-
ing found antigen-specific TILs in five patients [318]. 
Balachandran et  al. used whole-exome sequencing and 
in silico neoantigen prediction in pancreatic ductal ade-
nocarcinoma to identify new TAA and found MUC16 
(CA125). Loss of these MUC16 neoantigen clones was 
seen on metastasis, suggesting neoantigen immunoedit-
ing to be a phenomenon in patients with PDAC [319].

Overcoming the immunosuppressive tumor 
microenvironment
In the TME, various tumor-infiltrating cells, such as 
myeloid-derived suppressor cells, tumor-associated mac-
rophages, and regulatory T cells, contribute to immu-
nosuppression [320], and the tumor microenvironment 
is generally considered hostile to T cells. These tumor-
infiltrating cells contribute to the production of tumor-
facilitating growth factors, cytokines, and chemokines. In 
the TME, T cell proliferation is inhibited by binding with 
inhibitory ligands (e.g., programmed cell death ligand 1 
[PD-L1] and Galectin-9] and by suppressive myeloid-
derived suppressor cells, cancer-associated fibroblasts 
and other tumor-associated cells, which secrete factors 
such as VEGF and TGFβ that contribute to an abnor-
mal TME characterized by inflammation and hypoxia 
(Fig. 2e) [321].

Immune checkpoint proteins such as CTLA-4 or 
PD-1 contribute to declines in anti-tumor immunity. No 
response or weak response of CAR-T cells is due to poor 
T cell expansion and limited T cell persistence in this 

hostile tumor microenvironment. The development of 
T-cell exhaustion is provoked by co-inhibitory pathways 
[322]. To overcome this, combinational immunotherapy 
with CAR T-cells and checkpoint blockade is a rational 
approach because it provides two main elements for a 
strong immune response: better tumor penetration by 
CAR T-cells and sustained T-cell persistence by PD-1/
PD-L1 blockade [323, 324] (Fig. 2e). Immune checkpoint 
inhibitors have dramatically changed the landscape of 
cancer treatment by effectively harnessing the immune 
system to attack cancer cells [325]. These are generally 
antibodies designed to block inhibitory checkpoint pro-
teins on immune cells, particularly T cells, or on tumor 
cells, thus "releasing the brakes" on the immune response 
against cancer cells [326]. Some prominent checkpoint 
inhibitors include PD-1, PD-L1, and CTLA-4. PD-1 
inhibitors target the programmed cell death protein 1 
(PD-1) receptor on T cells to prevent their interaction 
with PD-L1 and PD-L2 on tumor cells, which can inhibit 
the T cell response [327]. Examples include nivolumab 
(Opdivo) and pembrolizumab (Keytruda). PD-L1 inhibi-
tors directly target PD-L1 on tumor cells to prevent it 
from binding to PD-1 and inhibiting T cells. Examples 
include atezolizumab (Tecentriq), durvalumab (Imfinzi), 
and avelumab (Bavencio). CTLA-4 inhibitors are inhibi-
tory receptors on T cells. CTLA-4 inhibitors help to 
amplify the T cell response against cancer. Ipilimumab 
(Yervoy) is a well-known CTLA-4 inhibitor. Several 
other potential immune checkpoints are currently under 
investigation. These include LAG-3, TIM-3, TIGIT, and 
VISTA, among others. Moreover, the combined use of 
immune checkpoint inhibitors and other immunothera-
pies, such as CAR T-cell therapy or BiTEs, is an active 
area of research [328]. The rationale behind this com-
bination is that while CAR T cells and BiTEs can effec-
tively target and kill cancer cells, the immunosuppressive 
tumor microenvironment can limit their efficacy. There-
fore, by combining these therapies with immune check-
point inhibitors, it may be possible to enhance the 
anti-tumor activity of the engineered T cells or engaged 
T cells. The combinations are currently under inves-
tigation in many preclinical models and clinical trials. 
For example, the combination of pembrolizumab (PD-1 
inhibitor) and axicabtagene ciloleucel (a CAR T-cell ther-
apy) is being explored in clinical trials for refractory large 
B-cell lymphoma.

The first immune checkpoint inhibitor to show efficacy 
in the clinic is ipilimumab, a monoclonal antibody (mAb) 
targeting the inhibitory receptor cytolytic T lympho-
cyte antigen 4 (CTLA-4) [11]. The treatment has led to 
profound benefits in patients with melanoma. Research 
into blocking CTLA-4, an immune checkpoint recep-
tor on T cells, paved the way for the discovery of other 
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immune checkpoint receptors and their ligands [11]. 
These include Programmed Death-1 (PD-1), another 
inhibitory receptor on T cells, and its ligands, PD-L1 and 
PD-L2, which can be expressed by tumor cells and other 
cells in the tumor microenvironment. Other potential 
immune checkpoint targets include lymphocyte activa-
tion gene 3 (LAG-3), T-cell immunoglobulin and ITIM 
domain (TIGIT), and T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3), all of which are expressed 
on T cells [329, 330]. The identification of these inhibi-
tory pathways has spurred the development of a variety 
of immune checkpoint inhibitors to block these interac-
tions and enhance anti-tumor immune responses [331]. 
Monoclonal Ab therapy (atezolizumab, pembrolizumab, 
nivolumab) directed against the checkpoints mentioned 
above and inhibitory receptors have shown promise in 
preclinical animal studies and clinical trials for mela-
noma, lung cancer, head and neck carcinoma, and other 
cancer types [332].

Anti-PD-L1 (atezolizumab) and anti-PD-1 (pembroli-
zumab) are used to treat metastatic NSCLC and are being 
studied for use in other solid tumors and as promising 
candidates for combination CAR-T cell therapy. The FDA 
recently approved anti-PD-1 monoclonal antibody for 
first-line use in combination with chemotherapy in lung 
cancer [333]. The first large-scale trial with anti-PD-1 
mAb therapy using nivolumab (a human IgG4 monoclo-
nal antibody) demonstrated a 2-year durable response 
rate in patients with melanoma, and the outcome was 
strikingly better than that of conventional chemotherapy 
[21, 334]. Nivolumab treatment also caused less toxicity 
than conventional therapy [335]. These promising results 
led to the approval of nivolumab as the first line of treat-
ment for melanoma in Japan and the United States [336]. 
Clinical trials for treating patients with non-small-cell 
lung cancer, renal cell carcinoma, and B and T Hodgkin’s 
lymphoma by using anti-PD-1 mAb rather than conven-
tional therapy showed enhanced clinical benefit, with 
improvements in overall and progression-free survival 
[20]. In addition to blocking PD-1, blocking the ligand 
PD-L1 using anti-PD-L1 mAb was also effective against 
various cancers, including bladder, head and neck, and 
renal cell cancer [337, 338].

Ipilimumab lengthened the survival of metastatic mes-
othelioma patients in a phase III study in 2010. It has 
shown promising results in mouse mesothelioma mod-
els and in many other preclinical studies [339, 340]. To 
treat metastatic melanoma, ipilimumab has been used in 
combination with a VEGF inhibitor and is in a phase 1 
trial. In this study, anti-VEGF antibodies combined with 
anti-CTLA-4 therapy resulted in an increase in anti-
tumor response resistant to the immunosuppressive 
effects of the ligand galectin-1 [341]. CRISPR/Cas9 is also 

being studied for both PD-1 and LAG-3 in CD19-BBζ 
CAR T cells to knock out the gene for the IR (Inhibitory 
Receptor) itself. In both cases, tumors were eradicated in 
mouse xenograft models using the IR knockout CAR-T 
cells [342, 343].

Activation of T cells is associated with a change in res-
piration pattern, with T cells switching from oxidative 
phosphorylation to glycolysis; however, in TME, glucose 
is depleted, so glycolytic T cells are deprived of nutrients. 
Furthermore, glucose Glut 1 receptor is downregulated 
in T cells, resulting in reduced viability of T cells [344]. In 
addition to nutrient depletion, the hypoxic core of solid 
cancer also poses a challenge for CAR-T cell activity by 
limiting oxidative phosphorylation. It provides a signifi-
cant challenge for memory T cells, whose metabolism 
relies predominantly on oxygen [345]. CARs’ designs 
have been modulated to address these issues. Reports 
indicate that the coreceptor signaling domain influences 
the metabolism of CAR T cells, and incorporation of the 
4-1BB domain stimulated the growth of  CD8+ central 
memory T cells, which had elevated respiratory capacity, 
fatty acid oxidation, and enhanced mitochondrial biogen-
esis. In contrast, CAR-T cells with CD28 costimulatory 
domain gave rise to memory cells with an enhanced gly-
colytic signature [346], indicating that the costimulatory 
domain characteristic must be considered while design-
ing CARs for hypoxic conditions.

In addition to hypoxia, CARs are also exposed to 
increases in reactive oxygen species (ROS) in the tumor 
microenvironment, affecting the viability of CARs. To 
address this issue, CARs co-expressing catalase enzyme 
[347], which catalyzes the conversion of hydrogen per-
oxide to water, have been developed. This CAR-CAT bi-
cistronic CAR showed reduced ROS accumulation and 
robust antitumor activity even in the presence of high 
ROS. Furthermore, CAR-CAT T cells provided substan-
tial bystander protection of non-transfected immune 
effector cells (Fig. 2e). In another study, Alexandre et al. 
developed a CAR in which they fused an oxygen-sensitive 
subdomain of HIF1α to a CAR domain, thereby generat-
ing CAR T-cells that are sensitive to hypoxia’s presence in 
the tumor core, which stimulates the growth and prolif-
eration of these CAR T cells [348] (Fig. 2e). These studies 
provided evidence that tailoring CARs to different TMEs 
is a rational approach to improving CAR’s efficacy.

Single‑cell sequencing for CAR‑T cell therapy
Approximately 30–60% of patients receiving CAR-T ther-
apy experience cancer recurrence [349, 350]. Many clini-
cal trials on CAR-T cell therapies have revealed various 
adverse events and low treatment response rates, as iden-
tified in a recent study on 671 registered clinical trials 
[351]. Conventional CAR-T cell discovery uses in  vitro 
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assays and in  vivo models to assess the functioning of 
engineered CAR-T cells by analyzing the expression of 
cell surface markers, cytokine secretion, and the killing 
of tumor cells. However, these assays cannot encapsulate 
the complete picture of T cell immunosurveillance effec-
tors. A comprehensive understanding of cancer cells and 
TME before, during, and after treatment is needed for a 
better therapeutic outcome and to overcome therapeutic 
resistance. The emergence of single-cell RNA sequencing 
(scRNA-seq) has become a powerful approach to decon-
volute heterogeneous cancer cell populations (a compli-
cated network of proliferating malignant cells, immune 
infiltrates, and tumor stroma) by providing a greater 
resolution of transcriptome and gene expression patterns 
[352–358]. Thus, scRNA-seq is a valuable technology for 
deciphering CAR-T cell therapies and correlating geno-
typic markers with the clinical outcome.

Similar to unmodified T cells, CAR-T cells exhibit sig-
nificant heterogeneity that can be intrinsic and produced 
by CAR design. The CAR-T cell heterogeneity affects effi-
cacy and treatment safety. To understand this heteroge-
neity among T cell subtypes, single-cell resolution plays 
a pivotal role by providing the expression profile of each 
individual cell in the TME and each cell’s association with 
therapy outcome [359–361]. Although bulk RNA-seq has 
revealed different genes associated with T cell exhaus-
tion, scRNA-seq revealed additional markers such as 
Thymocyte selection-associated high mobility group box 
(TOX), CXCL13, TIGIT, TIM-3, and LAG-3 demonstrat-
ing novel ways to overcome exhaustion [362–367].

Efficacy and safety performance of CAR-T cell therapy 
can be demonstrated during or in the follow-up of adop-
tive cell transfer (ACT) by using scRNA-seq to analyze 
the CAR-T cell product. The outcome of the therapy can 
be monitored by studying high-resolution gene expres-
sion, tumor heterogeneity, and cell phylogenies [351, 
368]. Following infusion into a patient, CAR-T cells are 
exposed to a dynamic TME, and how this affects the 
behavior of CAR-T cells through time is not well studied. 
A recent study used scRNA-seq along with TCR reper-
toire sequencing to evaluate the CAR-T cell behavior 
after infusion [369]. Differential expression of various 
genes, including those associated with T cell activation 
(CD69 and CD25), cytokine and chemokine signaling 
(CCL3, CCL4, and IL2), exhaustion (PD-1, LAG-3, and 
TIM-3), apoptosis (BCL2 and MCL1), and prolifera-
tion (MKI67 and PCNA) was observed at different time 
points of the treatment, and a profound association with 
outcome was observed [370, 371]. This paves the way 
for identifying cell clusters highly enriched in clones 
with cell proliferative properties. Temporal scRNA-seq 
data of a few thousand CAR-T cells is highly valuable in 
monitoring patient progression by identifying predictive 

biomarkers of clinical response, which can then be used 
to design personalized therapies [369, 372, 373].

Use of artificial intelligence to optimize CAR‑T cell 
therapy
The limitations associated with CAR-T cell therapy, 
including side-effect toxicities, high cost, time duration, 
and implementation of the latest technology, can be over-
come by using artificial intelligence (AI). Further, pre-
dicting the efficacy of different immune products, their 
pathological response, and identifying the optimal prod-
ucts is challenging by using the present, time-consuming, 
and labor-intensive conventional tools [374]. Enormous 
clinical and multi-dimensional data on different cancers 
processed using AI-driven algorithms have transformed 
cancer treatments with significant improvement in 
patient outcomes. Using AI to utilize-omics data before 
and after CAR-T therapy could overcome the limitations 
and make this approach highly precise. The research in 
the field of CAR-T cell therapy utilizing AI-based deep 
learning approaches is sparse, with few studies available 
[374–376]. AI holds great promise in optimizing CAR-T 
cell therapy. AI can be employed to analyze large datasets 
from techniques such as scRNA-seq and TCR-seq, iden-
tifying key genetic signatures associated with treatment 
response [377]. Machine learning algorithms can predict 
patient response to therapy based on individual charac-
teristics, aiding in the development of personalized treat-
ment strategies [377]. Furthermore, AI can assist in the 
design of new CAR constructs and the prediction of their 
efficacy. Spatial transcriptomics, while not yet extensively 
applied to CAR-T cell research, offers a novel perspec-
tive on understanding how CAR-T cells interact with the 
tumor microenvironment by linking gene expression data 
with spatial location within the tumor [378]. As this tech-
nology advances, its integration with AI could lead to an 
even deeper understanding of CAR-T cell behavior and 
potentially reveal strategies to enhance the effectiveness 
of CAR-T cell therapies.

Several individual biomarkers have been associated 
with CAR-T therapy response, including lactate dehy-
drogenase, C-reactive protein, and platelet number 
[379]. AI-based prognostic tools can be used to identify 
biomarkers or signatures predicting CAR-T therapy out-
comes. Multiple dataset biomarkers can be used, includ-
ing tumor mutation burden, signaling pathways, types 
of tumor cells from TME, and gene expression, to build 
these sophisticated AI models for predicting CAR-T 
therapy response, disease progression, and survival. Radi-
omics such as computed tomography, positron emission 
tomography, and magnetic resonance imaging can pre-
dict CAR-T therapy outcome. The sensitive and minute 
image patterns that cannot be discovered by the naked 
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Fig. 3 Artificial intelligence‑based machine learning model for predicting CAR‑T cell therapy outcome. The model can be trained using 
different‑omics and medical imaging datasets as input. The input data are processed by the deep learning algorithm, and results are passed 
to the output for classification

eye can predict therapy responders versus non-respond-
ers by utilizing AI-based algorithms. Accurate prediction 
of aggressive image features by non-invasive methods can 
be used to improve CAR-T cell therapeutic intervention. 
A flowchart depicting the use of AI for CAR-T cell ther-
apy is shown in Fig. 3.

The challenge in building AI-based CAR-T cell pre-
diction models is the requirement for large-omics and 
clinical datasets, necessitating the development of 
multi-omics datasets for implementing AI approaches. 
Radiomics and other cancer imaging data need to be 
generated to predict imaging signatures associated with 
CAR-T therapy response using various machine-learning 
techniques.

Conclusions and future directions
CAR-T cell therapy has been successful in treating 
B-cell malignancies, particularly ALL. However, signifi-
cant improvements are needed to enhance its efficacy in 
hematological malignancies and extend it to solid can-
cers. The US FDA has approved four CAR-T therapies 
targeting CD19 in B-ALL and B-NHL and two CAR-T 
cell therapies against BCMA in MM. The addition of 
costimulatory domains in second-generation CARs 
has improved the persistence of CAR-T cells in  vivo, 
and newer generations are being developed to address 
the challenges posed by different types of TME (Fig. 4). 
Efforts are being made to develop multi-antigen-specific 
CAR-Ts to address the issue of tumor antigen escape. 

Humanizing scFv, which is a complicated process, can 
be replaced by the Type III domain of human fibronec-
tin (Fn3) or the development of designed ankyrin repeat 
proteins (Fig.  4). Producing CAR-T cells is a complex 
and time-consuming procedure. However, the advent 
of CRISPR/Cas9 gene editing technology, enabling effi-
cient knockout of cellular HLA and TCR, holds promise 
for revolutionizing the process. This approach is poised 
to significantly impact the cost-efficiency and methodol-
ogy of CAR-T cell therapy development in the upcom-
ing years (Fig.  4). While CAR-T cell therapies have not 
yet received approval for the treatment of solid tumors 
as of now, advancements in technology such as artificial 
intelligence and high-throughput screening, offer prom-
ising potential. These tools could expedite the discovery 
of unique and effective targets, not just for solid tumors 
but also for hematological malignancies. By integrating 
machine learning algorithms with extensive genomic and 
proteomic datasets, we could identify novel targets and 
predict patient responses to therapy, thereby expanding 
the applicability of CAR-T cell therapies in the future. 
The development of 4th and 5th generation CARs with 
encouraging results in solid cancer is an area that is 
being actively pursued [86, 254]. Incorporating molecular 
switches to fine-tune the activity of CAR-T cells and con-
trol their viability in circulation is also being investigated 
[62, 380]. The cost of CAR-T cell therapy remains a sig-
nificant hurdle, but with its potential spreading to many 
centers around the globe, the cost is expected to decrease 



Page 28 of 36Dagar et al. Journal of Translational Medicine  (2023) 21:449

significantly. This expectation is based on the principle of 
economies of scale: as the production of CAR-T cell ther-
apy increases, the cost per unit tends to decrease. This is 
due to the spreading of fixed costs over a greater volume 
and the improved efficiency and expertise gained from 
greater experience and specialization. Moreover, the cost 
of CAR-T cell therapy includes manufacturing costs, 
hospital admission costs, supportive care costs, and the 
cost of managing adverse events [381]. As more centers 
around the globe adopt this technology, increased com-
petition and technological advancements are expected to 
drive down these costs.

Furthermore, as research continues to evolve, novel 
techniques that are more cost-effective may be devel-
oped, such as off-the-shelf CAR-T cells which are pro-
duced from healthy donors’ T cells and could be used 
in multiple patients. This would greatly reduce the 
individual manufacturing costs associated with creat-
ing a unique CAR-T cell therapy for each patient [382]. 

Despite the challenges, CAR-T cell therapy is expected to 
revolutionize cancer treatment multiple ways such as tar-
geted treatment, personalized treatment approach, dura-
ble response, potential in solid tumors, and as a living 
drug. However, challenges remain, including managing 
severe side effects, refining the treatment for use against 
a broader range of cancers, reducing the high costs asso-
ciated with this personalized therapy, and finding ways to 
make the production process faster and more efficient.

Nevertheless, CAR-T cell therapy stands as a promis-
ing paradigm shift in cancer treatment, offering a potent, 
personalized, and potentially long-lasting method to 
combat this pervasive disease.
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