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Abstract 

Computational models are increasingly used in high-impact decision making in science, engineering, and medicine. 
The National Aeronautics and Space Administration (NASA) uses computational models to perform complex experi-
ments that are otherwise prohibitively expensive or require a microgravity environment. Similarly, the Food and Drug 
Administration (FDA) and European Medicines Agency (EMA) have began accepting models and simulations as forms 
of evidence for pharmaceutical and medical device approval. It is crucial that computational models meet a standard 
of credibility when using them in high-stakes decision making. For this reason, institutes including NASA, the FDA, 
and the EMA have developed standards to promote and assess the credibility of computational models and simula-
tions. However, due to the breadth of models these institutes assess, these credibility standards are mostly qualitative 
and avoid making specific recommendations. On the other hand, modeling and simulation in systems biology is a 
narrower domain and several standards are already in place. As systems biology models increase in complexity and 
influence, the development of a credibility assessment system is crucial. Here we review existing standards in systems 
biology, credibility standards in other science, engineering, and medical fields, and propose the development of a 
credibility standard for systems biology models.

Introduction
As computing power rapidly increases, computa-
tional models become more intricate and an increas-
ingly important tool for scientific discovery. In systems 
biology, where the amount of available data has also 
expanded, computational modeling has become an 
important tool to study, explain, and predict behavior of 
biological systems. The scale of biological models ranges 
from subcellular components [1] to entire ecosystems 
[2]. Modeling paradigms include mechanistic models, 

rule-based systems, Boolean networks, and agent-based 
models [3]. This review will focus on mechanistic models 
of subcellular processes.

The Food and Drug Administration (FDA) defines 
model credibility as “the trust, established through the 
collection of evidence, in the predictive capability of 
a computational model for a context of use” [4]. Model 
credibility is important in systems biology as models are 
used to guide experiments or to optimize patient treat-
ment. This is particularly important given the increasing 
scale and intricacy of models. Reproducibility, the abil-
ity to recreate a model and data de novo and obtain the 
same result [5], is directly connected to credibility, but 
even reproducibility remains a challenge. It was recently 
discovered that 49% of published models undergoing 
the review and curation process for the BioModels [6] 
database were not reproducible primarily due to missing 
materials necessary for simulation, the availability of the 
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model and code in public databases, and lack of docu-
mentation [7]. With some extra effort, an additional 12% 
of the published models could be reproduced. A model 
that cannot be reproduced is not credible.

Due to the increasing importance of computational 
models in scientific discovery, the National Aeronautics 
and Space Administration (NASA), the FDA, and other 
regulatory bodies have developed standards to assess the 
credibility of models [4, 8, 9]. These standards are some-
what vague and generally qualitative to accommodate the 
broad scope of models in these fields. However, mecha-
nistic models in systems biology are relatively narrow 
in scope and are supported by a variety of standards for 
model encoding, annotation, simulation, and dissemina-
tion potentially enabling the development of a credibility 
standard for mechanistic systems biology models.

In this review, we discuss current systems biology 
modeling standards that could aid in the development of 
credibility standards, examine existing credibility stand-
ards in other scientific fields, and propose that current 
standards in systems biology and other fields could sup-
port the development of a credibility standard for mecha-
nistic systems biology models.

Current standards in systems biology
Klipp et  al. describe standards as agreed-upon formats 
used to enhance information exchange and mutual 
understanding [10]. In the field of systems biology, stand-
ards are a means to share information about experiments, 
models, data formats, nomenclature, and graphical rep-
resentations of biochemical systems. Standardized means 
of information exchange improve model reuse, expanda-
bility, and integration as well as allowing communication 
between tools. In a survey of 125 systems biologists, most 
thought of standards as essential to their field, primarily 
for the purpose of reproducing and checking simulation 
results, both essential aspects of credibility [10].

A multitude of standards exist in systems biology for 
processes from annotation to dissemination. Although 
there is currently no widely used standard for model 
credibility, the development of this standard is likely to 
depend on existing systems biology standards, just as 
standards for model simulation are dependent on stand-
ards for model encoding. This section will summarize 
current standards relevant to model credibility includ-
ing standards for ontology, encoding, simulating, and 
disseminating models. Although standards also exist 
for graphical representation of systems biology models 
(SBGN) [11] and representation of simulation results 
(SBRML) [12], these will not be discussed here as they 
are less relevant to the future implementation of model 
credibility standards.

Model representation
Having a commonly understood language for describing 
a model is essential in exchange, reproducibility, cred-
ibility. Without a common language to describe models, 
they cannot be simulated across different platforms or 
freely shared. For this reason, systems biology model rep-
resentation has become standardized using XML-based 
languages SBML [10, 13], CellML [14], and BioPAX [15]. 
NeuroML [16], similar to SBML and CellML, is used to 
represent neuronal models, but is beyond the scope of 
this review.

SBML
The most widely used model format is SBML (Sys-
tems Biology Markup Language) [10, 13, 17, 18]. SBML 
is a XML-based language for encoding mathematical 
models that reproduce biological processes, particu-
larly biochemical reaction networks, gene regulation, 
metabolism, and signaling networks [17, 19]. SBML 
encodes critical biological process data such as species, 
compartments, reactions, and other properties (such as 
concentrations, volumes, stoichiometry, and rate laws) 
in a standardized format. Annotations can also be stored 
in the SBML format. With its support by over 200 third 
party tools and its ability to easily convert to other model 
formats, SBML is the de facto language for systems biol-
ogy models [13, 19].

SBML models are composed of entities, such as spe-
cies, located in containers that can by acted upon by 
processes that create, destroy, or modify [20]. Other 
elements allow for the definition of parameters, initial 
conditions, variables, and mathematical relationships. 
The SBML language is structured as a series of upwardly 
compatible levels, with higher levels incorporating more 
powerful features. Versions describe the refinement of 
levels. Most recently, SBML level 3 introduced modular 
architecture consisting of a set of fixed features, SBML 
level 3 core, and a scheme for adding packages that aug-
ment the core functionality. This allows for extensive cus-
tomization of the language while enabling reuse of key 
features. Currently, eight packages are part of the SBML 3 
standard. These packages extend the capability of SBML 
such as enabling descriptions of uncertainties in terms of 
distributions [21], allowing for the encoding, exchange, 
and annotation of constraint-based models [22], render-
ing visual diagrams [23], among many others [20].

CellML
Similar to SBML but broader in scope, CellML is also 
an XML-based language for reproducing mathemati-
cal models of any kind, including biochemical reaction 
networks [24]. CellML models do not encode biological 
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information explicitly in the model, but instead consist of 
mathematical formulations of biological processes [25]. 
This feature of the CellML language increases flexibil-
ity enabling the description of a wide variety of biologi-
cal processes. CellML models are composed of several 
interconnected components [26] with each component 
containing at least one variable that is associated with 
physical units. This enables CellML processors to auto-
matically check equations for dimensional consistency.

Both CellML and SBML use almost identical math-
ematical expressions in MathML, an international stand-
ard for encoding mathematical expression using XML 
[27]. CellML explicitly encodes all mathematics, such 
as ODEs [28]. It is more versatile than SBML, capable 
of describing any type of mathematical model. SBML 
defines reaction rates, which can be used to build rate 
rules and ODEs [29]. There is more third party support 
for SBML and it is a semantically richer language com-
pared to CellML [13, 28].

BioPAX
BioPAX (Biological Pathway Exchange) is an ontology, a 
formal systems of describing knowledge that structures 
biological pathway data making it more easily processed 
by computer software [15]. It describes the biological 
semantics of metabolic, signaling, molecular, gene-reg-
ulatory, and genetic interaction networks [15]. Whereas 
SBML and CellML focus on quantitative modelling and 
dynamic simulation, BioPAX concentrates primarily on 
quantitative processes and visualization [15, 30].

BioPAX contains one superclass, Entity. Within the 
Entity superclass, there are two main classes: Physical-
Entity and Interaction. PhysicalEntity describes mol-
ecules, including proteins, complexes, and DNA, while 
the Interaction class defines reactions and relationships 
between instances of the PhysicalEntity class. Interac-
tions can be either Control or Conversion, both of which 
are divided into several more detailed subclasses [15, 30]. 
Like SBML, BioPAX is released level-wise with level 1 
describing interactions, level 2 supporting signaling path-
ways and molecular interactions, and level 3 enabling 
the description of gene-regulatory networks and genetic 
interactions.

Annotation
As models grow more numerous and complex, there is 
an increasing need for a standardized encoding format 
to search, compare, and integrate them. While standards 
such as SBML and CellML provide information on the 
mathematical structure of a model, there is no informa-
tion as to what variables and mathematical expressions 
represent. Simple textual descriptions of these represen-
tations are subject to errors and ambiguity and require 

text-mining for computational interpretation [31]. Stand-
ardized metadata annotations address these issues by 
capturing the biological meaning of a model’s compo-
nents and describing its simulation, provenance, and lay-
out information for visualization. The use of annotations 
improves model interoperability, reusability, comparabil-
ity and comprehension [32]. Annotations are enabled by 
systems biology specific ontologies [25] which define a 
common vocabulary and set of rules to unambiguously 
represent information [33].

To avoid accounting for a variety of annotation formats 
and approaches, standard annotation protocols are nec-
essary [32]. However, despite the numerous standards 
and tools, annotation remains a challenge. For example, 
the ChEBI database [34] has approximately 1,000 anno-
tations for glucose. While more than one entry for each 
annotation can serve a purpose (some users may prefer 
to be more abstract in their annotations), this adds to the 
challenge of defining the purpose of a model and, there-
fore its credibility. Additionally, annotations can be obso-
lete, inappropriate or incorrect, or provide insufficient 
information. Evaluating the quality of annotations would 
be essential in any credibility assessment for systems 
biology models. Some tools already exist for this purpose, 
such as SBMate [35], a python package that automatically 
assesses coverage, consistency, and specificity of seman-
tic annotations in systems biology models.

MIRIAM
MIRIAM (Minimum Information Requested in the 
Annotation of Biochemical Models) [36] was developed 
to encourage the standardized annotation of computa-
tional models by providing guidelines for annotation. The 
MIRIAM guidelines suggest that model metadata clearly 
references the relation documentation (e.g. a journal arti-
cle), that the documentation and encoded model have a 
high degree of correspondence, and that the model be 
encoded in a machine-readable format (such as SBML 
or CellML). Annotations should also include the name of 
the model, the citation for its corresponding journal arti-
cle, the contact information of the creators and date of 
creation, as well as a statement about the terms of distri-
bution. Additionally, models should have accurate anno-
tations that unambiguously links model components to 
corresponding structures in existing open access bioin-
formatics resources. The referenced information should 
be described using a triplet, data collection, collection-
specific identifier, optional qualifier and expressed as a 
Uniform Resource Identifier (URI), a unique sequence of 
characters that identifies a resource used by web technol-
ogies [37]. The optional qualifier field is used to describe 
relationships between the model constituents and the 
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piece of knowledge with language such as “has a”, “is a 
version of”, “is homologous to”, etc.

Systems biology ontology (SBO)
SBO (Systems Biology Ontology) describes entities used 
in computational modeling [31, 38]. It defines a set of 
interrelated concepts used to specify the types of compo-
nents specified in a model and their relationships to one 
another. Annotation with SBO terms allows for unambig-
uous and explicit understanding of the meaning of model 
components and enables mapping between elements of 
different models encoded in different formats [31]. Both 
SBML and CellML support annotation with SBO terms. 
SBML elements contain an optional sboTerm attribute 
[25, 29, 31].

OMEX
In order to harmonize the metadata annotations across 
models encoded in various formats, Gennari et al., with 
the consensus of the COMBINE (Computational Mod-
eling in Biology Network) community, developed a speci-
fication for encoding annotations in Open Modeling 
Exchange (OMEX)-formatted archives. The specification 
describes standards for model component annotations 
as well as for annotation at the model-level, and archive-
level [32]. The specification describes annotation best 
practices and addresses annotation issues such as com-
posite annotations, annotating tabular data and physical 
units, as well as provides a list of ontologies relevant to 
systems biology. Implementation of these specifications 
is aided by LibOMexMeta, a software library support-
ing reading, writing, and editing of model annotations. 
It uses Resource Description Framework [39] (RDF), an 
XML-based standard format for data exchange on the 
web, for representing annotations. It also makes use of 
several standard knowledge resources describing biology 
and biological processes such as ChEBI [34], a dictionary 
of small chemical compounds, and UniProt [40], a data-
base of protein sequence and functional information.

Annotation in CellML and SBML
Both CellML and SBML have their own annotation pro-
tocols based on RDF [25]. The CellML language uses its 
own ontology for model annotation, a necessity due to 
the flexibility of the language [24]. The CellML Metadata 
Specification was developed parallel to the CellML lan-
guage [25]. CellMLBiophysical/OWL ontology is com-
posed of two categories: physical and biological [25]. The 
physical ontology describes physical quantitative infor-
mation and concepts captured in the model’s mathemati-
cal expressions. It is subdivided into processes, such as 
enzyme kinetics, ionic current, and rate constants, and 
physical entities, such as area, concentration, volume, and 

stoichiometry. The biological ontology provides descrip-
tion for processes, entities, the role of an entity in rela-
tion to a process, and the specific location of the entity 
in a biological system. Bioprocesses are divided into three 
subclasses: biochemical reactions, transport, and com-
plex assembly. Biological entities include proteins, small 
molecules, and complexes. The biological roles subclass 
is composed of modifiers, reactants, and products.

SBML also facilitates MIRIAM compliant annotation 
using RDF) [39, 41]. Annotations use BioModels.net [42] 
qualifier elements embedded in XML form of RDF [43]. 
Each annotation is a single RDF triple consisting of the 
model component to annotate (subject), the relationship 
between the model component and the annotation term 
(predicate), and a term which describes the meaning of 
the component (object). These terms come from defined 
ontologies, such as SBO [38]. RDF annotation is sup-
ported by the software libraries libSBML [44] and JSBML 
[45].

Simulation and parameter estimation
Information about a model alone is insufficient to ena-
ble efficient reuse. A variety of advanced numerical 
algorithms and complex modeling workflows make the 
reproduction of simulations challenging. Many modelers 
reproduce simulations by reading the simulation descrip-
tion in the corresponding publication [46]. This is time 
consuming and error prone and the published descrip-
tion of a simulation is often incomplete or incorrect. For 
these reasons, it is essential to define and include infor-
mation necessary to perform all simulations.

MIASE
Guidelines for the Minimum Information About a Simu-
lation Experiment (MIASE) were introduced to specify 
what information should be provided in order to cor-
rectly reproduce and interpret a simulation [46]. MIASE 
is a set of rules that fall into three categories: information 
about the model used in the simulation experiment must 
be listed in a way that enables reproduction of the experi-
ment; all information necessary to run any step of the 
experiment must be provided; all information needed to 
post-process data and compare results must be included. 
Along with MIRIAM [36] guidelines, MIASE compliance 
guarantees that the simulation experiment is true to the 
intention of the original authors and is reproducible.

KiSAO
KiSAO (Kinetic Simulation Algorithm Ontology) is an 
ontology used to describe and structure existing simu-
lation algorithms [31, 47]. It consists of three main 
branches, each with several subbranches. The first branch 
is Kinetic simulation algorithm characteristics, such as 
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the type of system behavior or type of solution. The sec-
ond in the kinetic simulation algorithm such as Gillespie 
or accelerated stochastic simulation. The third branch is 
kinetic simulation algorithm parameters which describe 
error and granularity, among other characteristics.

SED‑ML
Simulation Experiment Description Markup Language 
(SED-ML) is software independent, XML-based format 
for encoding descriptions of simulation experiments and 
results [48, 49]. To help modelers comply with MIASE 
rules, SED-ML describes the details of simulation proce-
dures, including what datasets and models to use, which 
modifications to apply to models, which simulations to 
run on each model, how to post-process data, report, 
and present results can all be encoded [46]. Each algo-
rithm mentioned in a SED-ML file must be identified by a 
KiSAO term [31]. PhraSED-ML was developed to enable 
modelers to encode human readable SED-ML elements 
without the use of specialized software [50].

PEtab
Parameter estimation is common in modeling and simu-
lation, which often requires running multiple simulations 
to scan the suitability of several parameter sets. Although 
many parameter estimation toolboxes exist, they each 
use their own input formats. The lack of a standardized 
format makes it difficult to switch between tools, hinder-
ing reproducibility [51]. PEtab is a parameter estimation 
problem definition format consisting of several files con-
taining information necessary for parameter estimation, 
including the model (in SBML format), experimental 
conditions, observables, measurements, parameters, and 
optional visualization files [51]. A final PEtab problem 
file links all other files to form a single, reusable, param-
eter estimation problem. Following the success of PEtab, 
parameter estimation functionality was added to SED-
ML [49].

Dissemination
Model reproducibility best practices describe dissemina-
tion as an essential part of reproducibility [52]. Sharing 
all model artifacts and documentation on open-source 
repositories allows independent researchers to repro-
duce, reuse, and understand the model. Several guide-
lines and archive formats have been developed to ensure 
that all relevant information necessary to reproduce a 
modeling result is easily accessible to the public.

MIRIAM curation guidelines
In addition to annotation guidelines, MIRIAM also 
provides guidelines for model curation, the process of 
collecting and verifying models. The aim of MIRIAM 

guidelines is the ensure that model is properly associ-
ated with a reference description (e.g. a journal article) 
and that it is consistent with that reference description, 
meaning that it reflects the biological process listed in 
the reference description. The model must be encoded 
in a public, machine-readable format such as SBML or 
CellML and comply with the associated encoding stand-
ard. The encoded model must be simulatable, including 
quantitative values for initial conditions, parameters, and 
kinetic expressions, and must reproduce relevant results 
when simulated [36].

FAIR
More recently, the FAIR guidelines were published to 
improve the ability of computers to Find, Access Interop-
erate, and Reuse models [53] with minimal human inter-
action. FAIR defines characteristics that data resources 
should possess to assist with discovery and reuse by 
third-parties. Unlike most data management and archi-
val guidelines, FAIR is a set of high-level, domain-inde-
pendent guidelines that can be applied to a variety of 
digital assets. Each element of the FAIR principle is 
independent.

For a model to be “findable,” it should be easy to find 
for both humans and computers. This requires describing 
and annotating data and metadata with unique identifiers 
that are registered or indexed in a searchable resource. 
Once the user finds the relevant model, it should be 
accessible: data and metadata should be retrievable by 
their identifiers using standard communications proto-
col. Metadata should remain accessible even when data 
are no longer available. Interoperability refers to the inte-
gration with other data and the ability to operate with 
various applications and workflows. This is enabled by 
the use of broadly applicable languages for model repre-
sentation and annotation. As the ultimate goal of FAIR 
is to enable the reuse of data, the guidelines dictate that 
data and metadata should be associated with detailed 
provenance, meet domain-specific community standards 
(such as COMBINE archive format described below), and 
released with clear and accessible data usage license.

COMBINE archives
COMBINE (COmputational Modelling in BIology NEt-
work) is a formal entity that coordinates standards in 
systems biology. To assist in this coordination, a MIR-
IAM compliant system for sharing groups of documents 
regarding a model was developed called the COMBINE 
Archive [54]. The archive is encoded in OMEX (Open 
Modeling Exchange format) and the archive itself is a 
“ZIP” file. A COMBINE archive could contain files in 
several different standard formats including SBML, 
SBOL, and SED-ML among others. Additionally, every 
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COMBINE Archive contains at least one file titled mani-
fest.xml that contains a list of all the files comprising the 
archive and describing their locations. An archive also 
may contain a metadata file, ideally conforming to MIR-
IAM and MIASE guidelines. The inclusion of all neces-
sary protocols and data needed to implement a model 
enables distribution of models via a single file encourag-
ing reuse and improving reproducibility [55].

Credibility guidelines in systems biology
Although no standard for model credibility in systems 
biology exists, there are general guidelines aimed at 
improving the trustworthiness of models developed by 
the Committee on Credible Practice of Modeling and 
Simulation in Healthcare, a group formed by the U.S. 
National Institutes of Health [56]. The purpose of these 
guidelines is to encourage the credible use of modeling 
and simulation in healthcare and translational research. 
These guidelines are qualitative and share many compo-
nents with best practices for reproducibility. The term 
“credible” was defined as “dependable, with a desired cer-
tainty level to guide research or support decision-making 
within a prescribed application domain and intended use; 
establishing reproducibility and accountability.” These 
guidelines are qualitative and intended to cover a variety 
of modeling approaches and applications within the bio-
medical context (Fig. 1).

The credibility of a model should be evaluated within 
the model’s context of use [56]. To this end, the guide-
lines recommend using contextually appropriate data and 
evaluating the model (performing verification, validation, 

uncertainty quantification and sensitivity analysis) with 
respect to the context in which the model will be used. 
Any limitations should be listed explicitly.

Borrowing from software engineering best practices, 
the guidelines also recommend the use of version con-
trol to track model and simulation development as well 
as extensive documentation of simulation code, model 
mark-up, scope and intended use. Models should also 
include guides for developers and users and conform to 
domain-specific standards  [56].

Different simulation strategies should tested to ensure 
that the results and conclusions are similar across vari-
ous tools and methods. All modeling components such as 
software, models, and results should be reviewed by third 
party users and developers and disseminated widely.

Qualitative credibility assessment in other 
modeling fields
NASA and the FDA also have a keen interest in produc-
ing well-documented and credible models for the pur-
pose of making critical decisions. However, modeling 
and simulation tasks in these institutions are far broader 
compared to systems biology. NASA models range from 
the analysis of individual parts to orbits and spacecraft 
while models submitted to the FDA include medical 
devices and pharmacokinetics. Due to the wide variety 
of modeling tasks relevant to NASA and the FDA, cred-
ibility guidelines in these institutions are general, largely 
qualitative, and do not prescribe specific tests.

NASA credibility assessment scale
After the loss of the Columbia Space Shuttle and its seven 
crew members in 2003, NASA significantly increased 
its focus on quantitative and credible models. The mis-
use of an existing model and the reliance on engineers’ 
judgment led to the false conclusion that shuttle reentry 
would not be affected by a small hole in the heat shield 
caused by a debris strike during takeoff [57, 58]. The lack 
of quantifiable uncertainty and risk analysis in the report 
to management ultimately led to the shuttle’s disinte-
gration [59]. Since then, NASA has developed extensive 
modeling and simulation standards including the Cred-
ibility Assessment Scale [8] (CAS) (Fig.  2).

Each model credibility standard described here empha-
sizes assessments be made within a specific context of 
use, the specific role and scope of the model and the spe-
cific question of interest that the model is intended to 
help answer [4]. The judgment error that ultimately led 
to the Columbia Space Shuttle disaster was partially due 
to the use of a modeling software far outside the intended 
context of use, leading to incorrect predictions and over-
reliance on engineer’s judgment [57]. In addition to spec-
ifying the scope and question of interest, the context of us 

Fig. 1  The Committee on Credible Practice of Modeling and 
Simulation in Healthcare 10 rules of model credibility
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should also describe how model outputs will be used to 
answer the question of interest and whether other infor-
mation, such as bench-testing, will be used in conjunc-
tion with the model to answer the question of interest [4]. 
The standards described here, from various institutions 
such as NASA and the FDA, all specify that credibility is 
to be evaluated within a specific context of use.

NASA’s CAS is intended to help a decision-maker 
evaluate the credibility of specific modeling and simu-
lation results and to identify aspects of the results that 
most influence credibility [57, 60]. The credibility assess-
ment process can be viewed as a two part process: first 
the modeler conveys an assessment of the results, then 
a decision maker infers the credibility of these results. 
The CAS standard consists of eight factors grouped into 
three categories [8]: development, operations, and man-
agement. Each of the eight factors is scored on a scale of 
0–4 with guidelines for each numeric score. These fac-
tors were selected as they were considered to be the most 
essential, sufficiently independent of one another, and 
could be objectively assessed. While the primary concern 
is the score for each individual factor, the secondary con-
cern is the score of the overall model, which is the mini-
mum score of the eight subfactors.

The model and simulation (M &S) development cat-
egory consists of subsections verification and validation 
[8]. Scoring in these subcategories assess the correct-
ness of the model implementation, the numerical error 
and uncertainty, and the extent to which the M &S result 
matches reference data. If numerical errors for important 
features are “small” and if results agree with real-world 
data, the highest score of 4 is awarded for these factors.

The second category, M &S operations, consists of 
three factors: input pedigree, results uncertainty, and 
result robustness [8]. Input pedigree describes the level 
of trust in the input data, where input data that accu-
rately reflects real-world data receiving the highest score. 

The results uncertainty category earns the highest score 
if non-deterministic numerical analysis is performed. 
Result robustness high scores are achieved by including 
sensitivity analysis for most parameters and identifying 
key sensitivities.

Model and simulation management, the third category, 
is less technical, containing the factors use history, M 
&S management, and people qualification [8]. Use his-
tory scores the highest score if the model has previously 
been used successfully and meets de facto standards. For 
example, a model used for finite element analysis (FEA) 
would be required to meet FEA standards and codes for 
the type of object being modeled. M &S management 
refers to the maintenance and improvement of the model 
with continual process improvement receiving the high-
est score of 4. The people qualification category assesses 
the experience and qualifications of those constructing, 
maintaining, and using the model where personnel with 
extensive experience with the model and best practices 
scoring the highest.

Although these categories were chosen, in part, due to 
their ability to be objectively assessed, there is still a sig-
nificant subjective component of the scoring process. It is 
acknowledged that different decision makers may assign 
different degrees of credibility to the same model and dif-
ferent decisions may require different levels of credibility. 
The CAS serves as a template to assess and clearly com-
municate risks to decision-makers. Additionally, it can 
be useful in measuring model development progress or 
in identifying areas where improvement is most needed 
[57].

Credibility standards for medical models
In addition to systems biology, computational models 
are also becoming essential tools in biomedical applica-
tions such as drug discovery [61], pharmacokinetics [62], 
and medical devices [63]. Credibility is essential in bio-
medical modeling, particularly in cases where models 
influence patient treatment or regulatory approval of a 
device or drug. Both the FDA and the European Medi-
cines Agency have developed standards guiding model 
credibility for the purposes of regulatory approval. As 
with NASA, these guidelines are broad and qualitative 
due to the broad scope of biomedical modeling. Before 
the FDA began formalizing guidelines for model cred-
ibility, the American Society of Mechanical Engineers 
(ASME) issued Verification and Validation (V &V) 40 for 
assessing credibility of computational models in medical 
device applications [64]. However, this standard assumes 
the ability to perform traditional validation activities 
such as comparing model predictions to well-controlled 
validation experiments [4], a task which can be unfeasi-
ble with some biomedical models. Many models used in 

Fig. 2  Categories of the NASA Credibility Assessment Scale (CAS)
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regulatory submissions are supported by many sources 
of evidence beyond traditional validation experiments 
including clinical trials and population-level validation. 
Recognizing this fact, FDA modeling credibility guide-
lines expand on ASME V &V 40 concepts to provide a 
more general framework for assessing a wider variety of 
models.

ASME V &V 40
The ASME developed the V &V 40 standard in 2012 as 
a means of describing verification and validation activi-
ties in the modeling and simulation of medical devices 
[64]. Like the NASA CAS, V &V 40 focuses on context 
of use, model risk, and the establishment of credibility 
goals prior to any credibility assessment. The context of 
use addresses the specific role of the model in address-
ing the question of interest. Model risk is then assessed 
based on the possibility that the model may lead to incor-
rect conclusions resulting in adverse outcomes. After the 
establishment of credibility goals, verification and valida-
tion take place.

Of particular relevance to modeling in systems biol-
ogy are the descriptions of code and calculation verifica-
tion found in V &V 40. Verification seeks to determine 
if the model is built correctly. More specifically, code 
verification aims to identify any errors in the source code 
and numerical algorithms. This can be done by com-
paring output from a model to benchmark problems 
with known solutions [64]. Calculation verification esti-
mates the error in the output of a model due to numeri-
cal methods. Output errors can include discretization 
errors, rounding errors, numerical solver errors, or user 
errors. Calculation verification is complete when it is 
demonstrated that errors in the numerical solution are 
minimized to the point that they are not corrupting the 
numerical results [64].

Validation assesses how well the computational model 
represents reality. Validation activities might include 
comparing the model’s behavior to the biological fea-
tures of the real phenomenon by comparing results to 
in vitro/in vivo benchmark experiments. Validation also 
includes uncertainty quantification and sensitivity analy-
sis. Uncertainty quantification refers to the estimation 
of how stochastic error in the input propagates into the 
model’s output. Sensitivity analysis is a post-hoc exami-
nation of the results of the uncertainty quantification to 
evaluate which elements most influence output variabil-
ity  [64].

Unlike the NASA CAS, V &V 40 does not describe the 
quality of evidence needed to prove a model credible and 
lacks an objective scoring system necessary for imple-
menting “cut-offs” of credible versus non-credible mod-
els, or for comparing the credibility of multiple models.

FDA guidance on computational model credibility in medical 
devices
Based on the V &V 40 standard, the FDA released guid-
ance on assessing credibility for models of medical 
devices [4]. This guidance expands V &V 40 to include 
other forms of credibility evidence beyond traditional 
verification and validation exercises. Applicable to phys-
ics-based, mechanistic, or other first-principles-based 
models of medical devices, these guidelines consist of 
ten categories broadly divided into code verification, cal-
culation verification, and validation. The code verifica-
tion category is taken directly from V &V 40 described 
previously.

The calculation verification guideline extends the V &V 
40 by detailing several methods to verify that the model 
produces the intended output. For example, the model 
results can be compared with the same data used to cali-
brate the model parameters. Broader evidence in sup-
port of the model, but perhaps without a specific context 
of use are also acceptable. A model can also be verified 
using in vitro or in vivo experiments either within the 
context of use, or within conditions supporting a differ-
ent context of use. These techniques can also be used for 
validation evidence.

Validation assesses the model’s ability to reproduce 
real-world behavior. In addition to the methods described 
for calculation verification, validation can also include 
population-based evidence, statistical comparisons of 
model predictions to population-level data such as the 
results of a clinical trial. Credibility is also supported by 
emergent model behavior, the ability of a model to repro-
duce real-world phenomena that were not pre-specified 
or explicitly modeled, as well as general model plausibil-
ity, that model assumptions, input parameters, and other 
characteristics are deemed reasonable based on scientific 
knowledge of the system modeled.

Unlike the NASA Credibility Assessment Scale, these 
FDA guidelines are sets of nonbinding recommendations. 
Additionally, no scoring or suggested quality measures of 
FDA credibility factors are included making quantitative 
analysis of credibility impossible.

EMA guidelines for PBPK models
Of particular relevance for the field of systems biology is 
The European Medicines Agency’s (EMA) Guideline on 
the Reporting of Physiologically Based Pharmacokinetic 
(PBPK) Modeling and Simulation issued in 2018 [9, 65]. 
PBPK models are mathematical models that simulate the 
concentration of a drug over time in tissues and blood. 
With the rise in regulatory submissions that include 
PBPK models that rely on specialized software programs, 
this guideline provides detailed advice on what to include 
in a PBPK modeling report.
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The standard dictates the necessary information to 
describe and justify model parameters. Like the FDA 
standard, modelers are required to submit any assump-
tions made when assigning parameters and to document 
the sources of any literature-based parameters. Addi-
tionally, modelers must perform a sensitivity analysis 
for parameters that are key to the model (those that sig-
nificantly influence the outcome) and list any parameters 
that are uncertain.

The submission must include the simulation results as 
well as the files used to generate the final simulations in 
both tabular and executable format. This requirement is 
shared with reproducibility standards already in place for 
systems biology in the COMBINE Archive standard as 
well as described in systems biology modeling reproduc-
ibility best practices [52].

The predictive performance of the model must also 
be evaluated. That is, its ability to recapitulate observed 
pharmacokinetics. This requirement is also mentioned in 
the FDA guidelines.

Lastly, the guideline requires a discussion of uncer-
tainty and confidence in the model. Although described 
more qualitatively in the EMA standard, this require-
ment is shared by NASA’s CAS, V &V 40, FDA credibility 
guidelines, and best practices for reproducible modeling 
in systems biology [52].

Current tools for systems biology model testing
Although there is no credibility standard in systems biol-
ogy modeling, some tools provide automated model test-
ing. Although these tools were not developed explicitly to 
assess credibility, many of the factors they test for could 
be considered aspects of credibility. Future model cred-
ibility assessments could aspire to the level of quantifica-
tion and automation these tools offer.

MEMOTE
MEMOTE (MEtabolic MOdel TEsts) is an open-source 
Python software that automatically tests and scores 
genome-scale metabolic models [66]. MEMOTE offers 
a web interface and command line interface where 
SBML files can be uploaded and analyzed, and ulti-
mately scored. The tests check that a model is annotated 
according to the MIRIAM standard, that components 
are described using SBO terms, and that the model is 
properly constructed using the relevant SBML package, 
SBML-FBC [66, 67]. Basic tests check for the presence of 
relevant components, charge information, and metabo-
lite formulas. Biomass tests check that biomass precur-
sors are produced and that the growth rate is non-zero. 
Stoichiometry tests test for inconsistency, erroneously 
produced energy metabolites, and reactions that are per-
manently blocked. A numeric score is output after testing 

indicating the extent to which a model conforms to these 
standards.

MEMOTE is designed to assess genome-scale meta-
bolic models and largely includes tests that are specific 
to this model subset. Although a high MEMOTE score 
is likely to be indicative of model quality and reproduc-
ibility, it is not an assessment of credibility. A credible 
model will likely have a good MEMOTE score, but a good 
MEMOTE score does not necessarily indicate a credible 
model. However, the quantitative and automated nature 
of MEMOTE allows for quickly gauging model quality, 
comparing models, and the iterative improvement of 
metabolic models.

FROG analysis
Similar to MEMOTE, the COMBINE community has 
recently developed FROG analysis, an ensemble of analy-
ses for constraint-based models to generate standardized 
numerically reproducible reference datasets [68]. Results 
from constraint-based models are often communicated 
as flux values and there are often multiple solutions for 
a single model. As such, results cannot be used to gauge 
reproducibility. The COMBINE community outlined 
a list of outputs and results of flux balance analysis that 
are numerically reproducible and can be used for cura-
tion, known as FROG reports. FROG reports can be 
used in the BioModels [6, 69] curation process to assess 
reproducibility.

FROG analysis consists of Flux variability analysis, 
Reaction deletion, Objective function values, and Gene 
deletion fluxes. Flux variability analysis tests that the 
maximum and minimum fluxes are reproducible using 
different software tools. The objective function value for 
a defined set of bounds should be reproducible. The sys-
tematic deletion of all reactions or all genes, one at a time, 
should provide comparable reference results. Currently 
four tools support the generation of FROG reports. Web-
based tools include fbc_curation [68], CBMPy MOdel 
Curator [70] (both of which are also available as com-
mand line tools), and FLUXER [71]. fbc_curation_matlab 
is a command-line tool and exports results in COMBINE 
archive format [72].

Unlike MEMOTE, FROG analysis produces a report in 
lieu of a single numerical score.

Discussion
When standards are established, tests can be established 
to assess the extent to which a model conforms to that 
standard. With the development of standardized quan-
titative metrics (as opposed to qualitative guidelines 
such as those discussed previously), models can be con-
structed to meet minimum quality requirements lending 
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credibility to those models and allowing for easy compar-
ison across models [73].

The difficulty in developing these quantitative metrics 
is that the characteristics of an ideal bio-model must be 
known and expressed concisely. Existing standards in 
systems biology seek to address the first point by outlin-
ing what information is necessary to completely define 
and reproduce a model as well as the format in which 
that information is to be presented. However, a model 
could meet all existing standards and not be credible. 
For example, a model could be fully defined in SBML 
with extensive annotations, be reproducible, properly 
formatted for dissemination with SED-ML files describ-
ing all simulations. Despite meeting these standards, this 
hypothetical model could produce negative concentra-
tions when simulating, clearly indicating that the model 
is not credible. Additional metrics and standards must be 
established to adequately assess credibility. These metrics 
might include the relative concentration of floating spe-
cies or the shape of response curves.

Hellerstein et  al. note that several issues in bio-
medical modeling are analogous to problems faced in 
software development and propose that software devel-
opment best practices might be translated to improve 
modeling in systems biology [74]. Of particular inter-
est is software testing, which can be considered a form 
of credibility assessment. These tests aim to ensure the 
correctness, reliability, and availability of software, all 
characteristics that are also essential in systems biology 
model credibility.

Software tests can be divided into two categories, 
which may also be applicable in systems biology mod-
eling: (i) black-box testing and (ii) white-box testing. 
Black-box software testing assesses the behavior of the 
code and does not deal with implementation. For systems 
biology model credibility assessment, black-box credibil-
ity indicators might be that the model accurately predicts 
observed data. White-box testing evaluates the internal 
workings of a software project or model. The absence of 
errors, such as undefined parameters, typos, or unused 
species, might serve as white-box credibility indicators.

Conclusion
Although many reproducibility standards are in use to 
simplify assessing reproducibility, there are no stand-
ards and scoring systems for model credibility in sys-
tems biology. Unlike institutions such as NASA and the 
FDA, which deal with models spanning a broad scope 
of applications and scales, systems biology is focused on 
the modeling of cellular processes. This narrow scope, 
combined with the variety of standards already in use, 
makes systems biology models well-suited for a credibil-
ity standard.

A quantitative credibility scoring system would be par-
ticularly useful and enable comparing the credibility of dif-
ferent models and guide the development of more credible 
models. Credibility metrics could be published alongside 
models to indicate the trustworthiness of results and allow 
users to make informed decisions about reusing models.

Systems such as MEMOTE demonstrate that model 
standards and model quality indicators can be automati-
cally quantitatively scored enabling iterative improvement 
during the development phase. More challenging is further 
developing standards to express characteristics, both quan-
titative and qualitative, that make a model credible. Cur-
rent modeling standards in other scientific fields emphasize 
assessing credibility in the model’s context of use. This 
poses a challenge for automating credibility assessment 
in systems biology modeling as more or less rigor may be 
required to achieve a sufficiently credible model depending 
on the intended use of the model. It may prove useful to 
develop a manual, semi-quantitative scoring systems, such 
as NASA’s Credibility Assessment Scale prior to attempting 
to implement a fully quantitative and perhaps automated 
credibility scoring system for systems biology models.
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