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Abstract 

Background Recent studies have uncovered that the microbiota in patients with head and neck cancers is signifi-
cantly altered and may drive cancer development. However, there is limited data to explore the unique microbiota of 
laryngeal squamous cell carcinoma (LSCC), and little is known regarding whether the oral microbiota can be utilized 
as an early diagnostic biomarker.

Methods Using 16S rRNA gene sequencing, we characterized the microbiome of oral rinse and tissue samples from 
77 patients with LSCC and 76 control patients with vocal polyps, and then performed bioinformatic analyses to iden-
tify taxonomic groups associated with clinicopathologic features.

Results Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by histo-
logic and tissue type. By exploiting the distinct microbial abundance and identifying the tumor-associated microbiota 
taxa between patients of LSCC and vocal polyps, we developed a predictive classifier by using rinse microbiota as key 
features for the diagnosis of LSCC with 85.7% accuracy.

Conclusion This is the first evidence of taxonomical features based on the oral rinse microbiome that could diagnose 
LSCC. Our results revealed the oral rinse microbiome is an understudied source of clinical variation and represents a 
potential non-evasive biomarker of LSCC.
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Introduction
The human body harbors trillions of microorganisms 
with various functions that are closely related to our 
health. Being one of the largest habitats of microor-
ganisms, there are more than 1000 different kinds of 
microorganisms in the oral cavity. Plenty of studies 
showed that altered oral microbial profile and their 
metabolites are associated with head and neck squa-
mous cell carcinoma  (HNSCC) [1, 2] and esopha-
geal cancer [3], and they might also influence remote 
organs through the digestive tract [4], thus contrib-
uting to colorectal cancer [5], pancreatic cancer [6], 
and lung cancer [7]. Through extensive studies, some 
specific taxa were identified to be related to oral/oro-
pharyngeal cancers, such as Fusobacterium, Peptos-
treptococcus, Prevotella, Veillonella, Capnocytophaga, 
etc. Several mechanisms of carcinogenic action of oral 
bacteria have been proposed [8–10]. The first is bac-
terial stimulation of chronic inflammation. Anaerobic 
species such as Fusobacterium, Prevotella, and Porphy-
romonas are responsible for periodontal diseases and 
lead to chronic inflammation that may facilitate cell 
proliferation, angiogenesis, and oncogene activation. 
The second mechanism involves antiapoptotic activ-
ity. Bacteria such as Porphyromonas gingivalis inhibit 
apoptosis by modulating several pathways [11]. The 
third mechanism is the direct or indirect production 
of carcinogenic substances. Several oral bacteria are 
capable of metabolizing alcohol to carcinogenic acet-
aldehyde [12]. Besides, genotoxic metabolites of cer-
tain bacteria could cause DNA damage or produce free 
radicals and affect reactive oxygen species (ROS)  [13, 
14].

Laryngeal squamous cell carcinoma (LSCC) is the 
second most prevalent in all respiratory system carci-
nomas after lung cancer [15]. LSCC is also common 
among HNSCC. Approximately 184,615 new cases 
and 99,840 deaths were estimated attributing to LSCC 
worldwide in 2020 [15]. However, due to the lack of 
early detection, most patients have developed advanced 
LSCC upon diagnosis [16, 17], which always leads to 
regional recurrence and distant metastase even after 
surgical resection. The pathogenesis of LSCC is not 
fully uncovered, and several risk factors are related to 
LSCC, such as smoking, alcohol, and human papilloma-
virus (HPV) infection.

Recently, several studies of head and neck can-
cer showed that alterations in microbiota may drive 
HNSCCs, and some potentially oncogenic bacteria 
are identified [9, 18, 19]. However, prior work inves-
tigating the microbiome of head and neck cancer 
mainly focused on oral/oropharyngeal cancer. There is 
very limited data to explore the unique microbiota of 

laryngeal cancer, in addition, whether the oral micro-
biome could serve as a biomarker for the non-invasive 
early detection of laryngeal cancer has not been stud-
ied. The oral microbiome from oral rinse has been 
considered as a good tool to study the microbiota of 
oral/oropharyngeal cancer due to the close anatomi-
cal sites [1, 20]. It is also a promising biomarker for 
the early detection of cancer with lower cost and non-
invasive access. As the oral microbiota can migrate to 
the laryngopharyngeal region through inhalation and 
swallowing, this study aimed to identify alterations in 
the microbiome of LSCC patients from control-group 
patients with tissue samples and oral rinse samples, and 
explore whether oral microbiota can be applied as non-
evasive diagnostic markers in LSCC patients.

Materials and methods
Clinical samples and database
Patients were enrolled in this study at Peking Union 
Medical College Hospital (PUMCH) from 2020 to 2022. 
All the patients were divided into two groups: (1) tumor 
group, 77 patients who had pathologically confirmed, 
previously untreated LSCC undergoing radical resection; 
(2) control group, which was composed of 76 patients 
who had vocal cord polyps matched by age and gender. 
The exclusion criteria were as follows: (i) antibiotics 
therapy in a month; (ii) infection with HBV, HCV, syphi-
lis, or HIV; (iii) a history of malignant tumors, chemo-
therapy, or radiotherapy. TNM stages of all participants 
were identified according to National Comprehensive 
Cancer Network (NCCN) Guidelines in 2021. Clinical 
information such as age, sex, tobacco, and alcohol con-
sumption was obtained from the medical history of the 
participants. “Smokers” were defined as patients who had 
smoked > 100 cigarettes during their lifetime; otherwise, 
they were defined as “never smokers”. “Drinkers” were 
defined as those who drank alcohol at least once a week 
for a year or longer; whereas “never drinkers” had drunk 
less. Before sampling, participants were banned from 
dieting, smoking, and oral hygiene prophylaxis for at 
least 2 h. Participants rinsed the mouth vigorously with 
10 ml sterile saline for 30 s in the operating room to ster-
ilely collect oral rinses. Then, cancerous tissues or polyp 
tissues from the central area of the lesions were obtained 
in the surgery. Tissue samples were placed into sterile 
2  ml Eppendorf tubes (Axygen, USA) and then frozen 
at − 80 degrees Celsius before further processing.

16S rRNA sequencing data analysis
Total genomic DNA was extracted from the speci-
mens using the QIAampFast DNA Stool Mini Kit 
(Qiagen, Hilden, Germany). The V3-V4 region of the 
bacterial 16S rRNA gene was amplified with PCR using 
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the forward  primer 341F (5′-barcode-CCT AYG GGRB-
GCASCAG-3′) and  reverse primer 806R (5′-GGA CTA 
CNNGGG TAT CTAAT-3′). PCR was performed in a 
mixture of 30  μl as previously described. Pooled PCR 
products were extracted using 2% agarose gels and then 
purified using a GeneJET Gel Extraction Kit (Thermo 
Fisher Scientific). NEB  Next® Ultra™ DNA Library Prep 
Kit (New England Biolabs) was applied for generation of 
the sequencing libraries, and the index codes were added. 
The qualified library was sequenced on an Illumina 
NovaSeq platform, and 250  bp paired-end reads were 
generated according to the standard protocols.

Bioinformatics analysis
Paired-end reads were merged into tags with FLASH 
(version 1.2.7) [21]. Raw tags were filtered using the 
command split_libraries_fastq.py in QIIME (version 
1.8) [22]. Chimeric tags were removed with USEARCH 
(version 6.1) [23] after quality control. The satisfied 
reads were clustered into operational taxonomic units 
(OTUs) at 97% similarity using QIIME. Taxonomic 
information on OTUs was obtained with the Ribosomal 
Database Project classifier [24] against the Greengenes 
database (release 13.8) [25]. Alpha diversity indices  and 
β-diversity distance matrices measuring the pairwise 
difference among samples were calculated with QIIME. 
Differences in the Chao1 index, Shannon index, Simp-
son index, and observed OTUs were detected using the 
Wilcoxon rank sum test. Principal coordinates analysis 
(PCoA) was conducted using R software (version 4.0.2) 
[26], PERMANOVA was performed with the vegan [27] 
package in R to clarify differences in microbial commu-
nities between groups. The Wilcoxon rank sum test was 
applied to identify differentially abundant taxa between 
groups, and a false discovery rate < 0.05 was considered to 
be statistically significant.

Using genus profiles, samples were randomly divided 
into a training set and a test set by using the “sample” 
function (80% of samples as training dataset and 20% of 
samples as testing dataset). Only genera that were pre-
sent in at least 10% of subjects were considered in the 
analyses. The number of selected biomarkers were deter-
mined after tenfold cross-validation that was repeated for 
five times based on the training set profile. Then, the final 
random forest classification models were constructed, 
and the mean decrease accuracy of selected markers were 
used to evaluate the importance of biomarkers. The area 
under the curve (AUC) was used to measure the perfor-
mance of the models when applied to the training and 
test sets using the ROCR (version 1.0–11) [28] package 
in R, and receiver-operating characteristic (ROC) curves 
were calculated using the pROC (version 1.17.0.1) [29] 
package in R. The code for bioinformatics analysis can 

be requested at https:// github. com/ Jora1 991/ Oral- micro 
biome- for- laryn geal- cance rs.

Results
Diversity dysbiosis of the tumor and oral microbiome 
in LSCC
A total of 153 patients were enrolled in this study at 
Peking Union Medical College Hospital (PUMCH) 
from 2020 to 2022. Most patients were between 56 and 
70  years old (66.0%), and average age of patients was 
60.4. The male/female ratio was 8.6:1 (137 males:16 
females). According to cancer statistics, laryngeal can-
cer occurs more commonly in men than in women, 
most frequently diagnosed among people aged 55–74 
[15, 30]. The male/female ratio and age range of LSCC 
patients in this study approximately corresponded 
with the epidemiology of laryngeal cancer in litera-
ture. The baseline characteristics of the entire cohort 
are presented in Table  1. As is shown, no significant 
differences were found between the LSCC group and 
the control group regarding age or gender. Smokers 
and drinkers were more common in the LSCC group, 
which was inevitable. Community alpha diversity was 
assessed with observed taxonomic units (OTUs), Simp-
son, Shannon, and Chao1 indices (Fig.  1A). Statisti-
cal P values of alpha diversity indices among different 
groups are presented in Additional file 1: Table S1. The 
oral rinse samples exhibited more elevated microbial 
diversity indices compared with the tissue samples in 
both the tumor group and control group (P value < 0.05 
for the Simpson index, Shannon index, and observed 
OTUs). The Simpson index and Shannon index were 
significantly higher in the tumor tissues than in the 
control tissues. Although the oral rinse samples did not 
show significant differences in α-diversity between the 
tumor and control group, it is worth noting that the in-
group variation of oral rinse samples was lower than 
that of tissue samples. Then, principal coordinate anal-
ysis (PCoA) was performed based on the Bray–Curtis 
distance matrix from the genus profile to investigate 
β-diversity. As shown in Fig. 1B, the oral rinse samples 
were clustered closely with each other and separated 
from the tissue samples, in which a clear distinction 
between tumor tissue and control tissue samples was 
found based on permutational multivariate analysis of 
variance (PERMANOVA). In summary, oral rinse sam-
ples presented lower within-group variation compared 
to laryngeal tissue samples.

Microbial composition alterations of LSCC tumor and oral 
rinse samples
Subsequently, the relative abundance of the top 20 taxa 
was compared between specimens from LSCC patients 

https://github.com/Jora1991/Oral-microbiome-for-laryngeal-cancers
https://github.com/Jora1991/Oral-microbiome-for-laryngeal-cancers
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Fig. 1 Microbiota diversity in LSCC (N = 77) and control samples (N = 76). A. Comparison of microbial α-diversity between groups. P values were 
calculated from the Wilcoxon rank sum test. P < 0.01 was labeled with “+”, and “*” represented P < 0.05. B Principal coordinate analysis (PCoA) plots. 
The P value was derived from permutational multivariate analysis of variance (PERMANOVA)

Table 1 Demographics and clinical characteristics of the study cohort

Entire cohort (N = 153) Train set (N = 121) Test set (N = 32)

LSCC (N = 77) Control 
(N = 76)

P LSCC (N = 64) Control 
(N = 57)

P LSCC (N = 13) Control 
(N = 19)

P

No % No % No % No % No % No %

Age (y)

 ≤ 55 12 15.6 21 27.6 0.182 10 15.6 16 28.1 0.242 2 15.4 5 26.3 0.737

 56–70 54 70.1 47 61.8 45 70.3 35 61.4 9 69.2 12 63.2

 > 70 11 14.3 8 10.5 9 14.1 6 10.5 2 15.4 2 10.5

Gender (%)

 Male 71 92.2 66 86.8 0.278 59 92.2 50 87.7 0.412 12 92.3 16 84.2 0.496

 Female 6 7.8 10 13.2 5 7.8 7 12.3 1 7.7 3 15.8

Smoking status

 Smokers 66 85.7 27 35.5 < 0.01 56 87.5 21 36.8 < 0.01 10 76.9 6 31.6 0.012

 Nonsmokers 11 14.3 49 64.5 8 12.5 36 63.2 3 23.1 13 68.4

Alcohol

 Drinkers 45 58.4 19 25.0 < 0.01 39 60.9 16 28.1 < 0.01 6 46.2 3 15.8 0.061

 Nondrinkers 32 41.6 57 75.0 25 39.1 41 71.9 7 53.8 16 84.2
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Fig. 2 Dominant genera in LSCC (N = 77) and control samples (N = 76). The relative abundance of the top 20 dominant genera in different groups 
were presented. Samples of each group were clustered and ordered based on the abundance profile of top 20 genera using “hclust” function in R

Fig. 3 Differential microbial composition in LSCC tumor tissues and oral rinse samples. A Log2-fold change (Log2FC) of the genera was significantly 
different between tumor tissue and control tissue samples (above panel); Log2FC of the genera was significantly different between oral rinse 
samples from tumor patients and oral rinse samples from control patients (lower panel). Log2FC > 0 indicated that the genus was more abundant 
in tumor patients than in control patients, while log2FC < 0 indicated that the genus was less abundant in tumor patients than in control patients. B 
Colored heatmap according to the abundances of differential genera in A 
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and specimens from control patients (Fig.  2). At the 
genus level, tumor tissues contained a much higher per-
centage of Fusobacterium (0.088 ± 0.115 (mean ± SD) vs. 
0.022 ± 0.028, tumor vs. control tissues), Pseudomonas 
(0.083 ± 0.160 vs. 0.055 ± 0.101), and Acinetobacter 
(0.055 ± 0.127 vs. 0.003 ± 0.013) compared to control tis-
sues, whereas Ralstonia (0.016 ± 0.026 vs. 0.233 ± 0.241) 
were prominent constituents of most control tissues, 
but were scarce in tumor tissues. Oral rinse samples dis-
played similar microbiome composition and were char-
acterized by the same general in both the tumor group 
and control group (Prevotella, Neisseria, Streptococcus, 
Haemophilus, and Alloprevotella), which also implied 
lower within-group variation compared to laryngeal 
tissue samples. As expected, significant differences in 
the microbiota composition at the genus level were dis-
covered among different groups of samples (Fig.  3A). 
Compared with the control tissues, the tumor tissues 
exhibited a marked increase in the abundance of several 
genera, such as Flavobacterium (P = 0.008, 0.003 ± 0.007 
vs. 0.000 ± 0.000, tumor vs. control tissues), Klebsiella 
(P = 0.002, 0.017 ± 0.038 vs. 0.000 ± 0.001), Mycoplasma 
(P = 0.001, 0.002 ± 0.011 vs. 0.000 ± 0.000), etc., while 
the abundances of Ralstonia (P = 0.000, 0.012 ± 0.026 vs. 
0.233 ± 0.241, tumor vs. control tissues), Actinobacillus 
(P = 0.000, 0.000 ± 0.000 vs. 0.002 ± 0.005), Streptococ-
cus (P = 0.000, 0.024 ± 0.039 vs. 0.151 ± 0.238), Lactoba-
cillus (P = 0.000, 0.002 ± 0.006 vs. 0.010 ± 0.035), Rothia 
(P = 0.002, 0.003 ± 0.006 vs. 0.015 ± 0.041), and several 
other genera were significantly lower in the tumor tis-
sues. In the oral rinse samples, Saccharopolyspora 
(P = 0.018, 0.001 ± 0.003 vs. 0.000 ± 0.002, tumor vs. con-
trol rinses) and Actinobacillus (P = 0.008, 0.019 ± 0.050 
vs. 0.005 ± 0.010) were more abundant from tumor 
patients than those from control patients. The heatmap 
is colored according to the relative abundances (Fig. 3B) 
showing the genera differences among the four sam-
ple groups (the tumor tissue samples, the control tissue 
samples, the oral rinse samples from LSCC patients, and 
the oral rinse samples from control patients). We found 
that the tissue samples were separated from the oral rinse 
samples and that the tumor tissue samples were distinct 
from the control tissue samples. The genera Veillonella, 
Fusobacterium, Ralstonia, etc., contributed to this sepa-
ration. Additionally, 39 genera were observed only in the 
differential analysis of the tissue samples (Leptotrichia, 
Veillonella, Solobacterium, etc.; shown in Fig. 3B). Three 
unique genera, Alistipes, Selenomonas, and Saccharopol-
ysora were observed only in the differential analysis of 
the oral rinse samples. Four genera, L.NK4A136, Alicyc-
liphilus, Actinobacillus, and Moraxella were detected in 
the differential analysis of both the oral rinse and tissue 
samples. More details about the percentage values and 

statistical P values of genera among different groups are 
presented in Additional file 1: Table S2.

Classification model for LSCC diagnosis based on oral rinse 
microbiota
Our results suggested that the abundance of several 
taxa was significantly different in the oral rinse samples 
between the LSCC group and the control group. There-
fore, the oral microbiota has the potential to be a pre-
dictive marker indicating a risk for LSCC. To test this 
hypothesis, microbial biomarkers were selected first at 
the genus level using tenfold cross-validation that was 
repeated five times based on a training set of 121 sam-
ples (Table  1). Then, two random forest (RF) models 
were trained from the selected biomarkers utilizing the 
training sets from tissue samples (N = 61) and oral rinse 
samples (N = 60). The performances of the constructed 
models were evaluated by the area under the curve (AUC) 
of receiver operating characteristic (ROC) curves. A total 
of 15 genera, including Candidatus Saccharimonas, Ral-
stonia, Moraxella, Solobacterium, Neisseria, Streptococ-
cus, Veillonella, and 8 others, were identified as microbial 
biomarkers that could discriminate LSCC patients from 
control patients in both tissue samples (Fig.  4A) and 
oral rinse samples (Fig. 4B), indicating the potential use 
of microbial features in the identification of LSCC. Spe-
cifically, the model for tissue samples exhibited excellent 
performance based on the training set (AUC = 98.1%) 
and the test set (N = 16, AUC = 83.3%) (Fig.  4A). Inter-
estingly, compared with the previous model using tissue 
samples, the RF model for oral rinse samples showed a 
higher AUC based on the test set (N = 16, AUC = 85.7%) 
accompanied by a lower AUC based on the training set 
(AUC = 86.4%) (Fig.  4B), supporting the potential diag-
nostic value of our oral microbiota-based classifier for 
LSCC. Moreover, we also examined the potential abil-
ity of the 15 microbial biomarkers to discriminate LSCC 
based on PCoA and PERMANOVA. Significant separa-
tions (PERMANOVA, P < 0.05) between the LSCC and 
control groups were observed.

Discussion
While the role of oral microbiota in oral/oropharyngeal 
cancer has received much attention, few data in the lit-
erature investigated the association between microbial 
alteration and laryngeal cancer [31–33]. None of the 
studies included both oral rinse/saliva samples and tis-
sue samples to study the alterations of oral microbiota 
and laryngeal microbial composition in LSCC patients. 
The present study included both sample types to inves-
tigate whether oral rinse samples can replace tissue 
samples in microbiome studies and be applied as early 
diagnostic markers in LSCC patients. Our study showed 
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that although oral rinse samples exhibited remark-
ably elevated microbial diversity indices compared with 
the tissue samples, and the oral rinse samples did not 
show significant differences in α-diversity or β-diversity 
between the tumor and control group, oral rinse samples 
presented lower within-group variation compared with 
laryngeal tissue samples, which indicated their poten-
tial character as a stable diagnostic biomarker. Com-
pared with the control tissues, the abundance of several 
genera was significantly higher in the laryngeal tissue of 
the LSCC group, including some notorious genera such 
as Fusobacterium, which is in accordance with previous 
studies [31, 34]. Fusobacterium is an invasive anaerobe 
mainly associated with periodontitis, which may lead to 
chronic inflammation and contribute to carcinogenesis. 
Recently, more and more studies have found an associa-
tion between the abundance of fusobacterium and can-
cer, including oral/ oropharyngeal cancer [35], colorectal 
cancer [36, 37], and so on. In the oral rinse samples, taxa 
differences between the tumor group and the control 
group were not as large as those based on the tissue sam-
ples, however, the RF model using microbial biomarkers 
from oral rinse samples exhibited excellent performance 
based on the training set and the test set, indicating the 
diagnostic value of our oral microbiota-based classifier 
for LSCC.

Of note, no previous study had proven that a micro-
biota-based model could reliably detect laryngeal can-
cer through oral rinse samples with high sensitivity and 
specificity. We identified taxonomic features that yielded 
a model and developed a classifier, which was able to dis-
tinguish cancer status. Our results demonstrate that oral 
microbiome shifts might serve as a marker in advance of 
the clinical phenotypes detectable by endoscope or CT 
scans. As this study describes cohorts of patients with 
diagnosed laryngeal cancer, future work should examine 
if this signature can be applied to assess cancer onset in 
individuals with precancerous lesions such as vocal leu-
koplakia. This is a good clinical endpoint as the model 
enables non-invasive LSCC detection with a simple taxa 
quantification test on oral rinse samples. Our findings 
provide a strong rationale for developing microbiome-
based liquid biopsy technology to prioritize at-risk indi-
viduals for clinical attention.

Although this is not the pilot study to reveal the spe-
cific microbial composition of LSCC patients, our study 
is the first one to include multiple sample types and 
investigate whether oral rinse samples can replace tissue 
samples in microbiome studies. Several unavoidable limi-
tations inherent in this study should be acknowledged. 
First, this was a retrospective study conducted in a sin-
gle institution and therefore involved possible selection 

Fig. 4 Identification of microbial-based markers for clinical diagnosis by random forest models. A Mean decrease accuracy (MDA) of variables from 
the RF model using the profile of 15 selected biomarkers in tissue samples (left). ROC curves are based on the training set and test set from tissue 
samples (middle). The AUC is displayed in the lower right-hand corner. PCoA based on the profile of 15 selected genera in tissue samples (right). The 
P value is derived from PERMANOVA. B MDA of 15 selected biomarkers (left), ROC curves, and AUC (middle) based on the RF model from oral rinse 
samples. PCoA and PERMANOVA based on the profile of 15 selected genera in oral rinse samples (right)
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bias. Second, although age and gender are paired in two 
groups, the influence of smoking and alcohol consump-
tion on microbiota cannot be eliminated in this study. 
Tabbco and alcohol consumption could alter oral micro-
bial composition [9, 38], and might lead to the natural 
selection of microbiota capable of a high rate of carcino-
gen metabolism, which may synergize with the primary 
risk factors such as alcohol abuse and smoking in cancer 
pathogenesis [39–41]. In the present study, there are no 
genera differences in oral rinses between smokers and 
non-smokers of control group, and only one genus (Ral-
stonia) was found in microbial differential analysis in 
oral rinses between drinkers and non-drinkers of con-
trol group. In brief, we believe that smoking and drink-
ing showed limited influence on microbiota from oral 
rinses in this study, so the classification model for LSCC 
diagnosis based on microbiota from oral rinses is solid. 
Further studies conducted with more patients will be 
performed to allow sub-group analysis.

Conclusion
Through the analysis of alpha and beta diversity, we 
found that oral rinse samples presented lower within-
group variation compared with laryngeal tissue samples, 
which indicated their potential character as a stable diag-
nostic biomarker. Then, our results proved that dysbiosis 
of the oral microbiome is a key hallmark of LSCC, and 
the oral microbiota-based model exhibited excellent per-
formance in the discrimination of LSCC samples. To our 
knowledge, this is the first study to provide a strategy for 
the non-invasive prediction of LSCC by employing an 
oral microbiota-based model, which represents a prom-
ising early diagnostic biomarker of LSCC patients for 
future clinical use.
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