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Abstract 

Background Epithelial ovarian cancer is the leading cause of death from gynecologic cancer, in which serous ovarian 
carcinoma (SOC) is the most common histological subtype. Although PARP inhibitors (PARPi) and antiangiogenics 
have been accepted as maintenance treatment in SOC, response to immunotherapy of SOC patients is limited.

Methods The source of transcriptomic data of SOC was from the Cancer Genome Atlas database and Gene Expres-
sion Omnibus. The abundance scores of mesenchymal stem cells (MSC scores) were estimated for each sample 
by xCell. Weighted correlation network analysis is correlated the significant genes with MSC scores. Based on prog-
nostic risk model construction with Cox regression analysis, patients with SOC were divided into low- and high-risk 
groups. And distribution of immune cells, immunosuppressors and pro-angiogenic factors in different risk groups 
was achieved by single-sample gene set enrichment analysis. The risk model of MSC scores was further validated 
in datasets of immune checkpoint blockade and antiangiogenic therapy. In the experiment, the mRNA expression 
of prognostic genes related to MSC scores was detected by real-time polymerase chain reaction, while the protein 
level was evaluated by immunohistochemistry.

Results Three prognostic genes (PER1, AKAP12 and MMP17) were the constituents of risk model. Patients classified 
as high-risk exhibited worse prognosis, presented with an immunosuppressive phenotype, and demonstrated high 
micro-vessel density. Additionally, these patients were insensitive to immunotherapy and would achieve a longer 
overall survival with antiangiogenesis treatment. The validation experiments showed that the mRNA of PER1, AKAP12, 
and MMP17 was highly expressed in normal ovarian epithelial cells compared to SOC cell lines and there was a posi-
tive correlation between protein levels of PER1, AKAP12 and MMP17 and metastasis in human ovarian serous tumors.

Conclusion This prognostic model established on MSC scores can predict prognosis of patients and provide 
the guidance for patients receiving immunotherapy and molecular targeted therapy. Because the number of prog-
nostic genes was fewer than other signatures of SOC, it will be easily accessible on clinic.
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Background
Ovarian cancer (OC) is one of the most dangerous 
gynecologic malignancies. In 2020, the morbidity of OC 
was estimated to be 3.4% worldwide for women, and 
ranked eighth among female malignant tumors and third 
among gynecological malignancies. Mortality from OC 
accounts for 4.7% of all female malignant tumors around 
the whole world and is ranked second among female 
genital tumors [1]. Serous ovarian cancer (SOC) is the 
most common type of gynecological malignancy [2]. 
The National Comprehensive Cancer Network (NCCN) 
has recommended poly ADP-ribose polymerase inhibi-
tors (PARPi) and angiogenesis inhibitors as treatment for 
patients with SOC. Although PARPi and antiangiogenics 
have been shown to prolong progression-free survival 
(PFS), they do not reflect an obvious improvement in 
overall survival (OS) of patients with SOC [3, 4].

The tumor microenvironment (TME) denotes the niche 
where tumor cells interact with the surrounding stroma, 
including various immune cells, stroma cells, lymph-
vascular space, and the extracellular matrix (ECM) [5]. 
Mesenchymal stem cells (MSCs) are a key component 
of stromal cells and can mediate the immune response 
by inhibiting the activity of T lymphocytes, interfering 
with the proliferation and differentiation of B lympho-
cytes, and inducing macrophage phenotypic switching 
[6]. In addition to immune regulation, MSCs can pro-
mote angiogenesis by releasing soluble factors and can 
be a source of carcinoma-associated fibroblasts (CAF). 
CAFs, in turn, can directly release angiogenesis-related 
factors and indirectly modulate pathophysiological pro-
cesses, including ECM stiffness, elasticity, and intersti-
tial fluid pressure [7, 8]. In OC, MSCs regulate cancer 
cell proliferation, metastasis, phenotype, and response to 
chemotherapy by binding directly to target cells, secret-
ing soluble factors, or discharging exosomes from MSCs 
[9–11]. Cancer-associated MSCs (CA-MSCs) can be iso-
lated and identified in tumor tissue, and exhibit a unique 
gene expression profile from MSCs compared to that of 
healthy individuals [12]. Patients with the CA-MSC phe-
notype have a significantly worse PFS  than  those with 
the normal MSC phenotype [10]. It is reported that CA-
MSCs of an immune ’hot’ mouse OC drived CD8 + T cell 
tumor immune evasion of CD8 + T cells from tumors 
and these mouse exhibited a poor response to anti-pro-
grammed death ligand 1 (PD-L1) immune checkpoint 
blockade therapy (ICB) through the secretion of multiple 
chemokines, such as CCL2, CX3CL1, and TGF-β1 [13].

Cobalt chloride  (CoCl2)-induced polyploid giant can-
cer cells (PGCC) exhibit the same characteristics as 
cancer stem cells (CSC) and express markers related to 
CSC (CD133 and CD44). Daughter cells produced by 
PGCC undergo an epithelial–mesenchymal transition 

(EMT) and gain a mesenchymal phenotype and are thus 
endowed with strong abilities for migration and invasion 
[14], thus promoting cancer progression [15–17]. And 
the risk score of PGCCs and their daughter cells with 
high migration and invasion capacity were higher than 
those of control cells.

In this study, a comprehensive transcriptomic analy-
sis of MSC trait genes was performed. Using an MSC-
related scoring system based on the expression of 3 MSC 
genes, patients were divided into low- and high-risk 
groups. Compared to the low-risk group, the high-risk 
group had a worse prognosis and exhibited an obvi-
ous immunosuppressive effect. Analysis of genomic 
data and molecular targeted therapy datasets between 
the two groups revealed that high-risk patients had less 
homologous recombination deficiency (HRD) and were 
weakly responsive to anti-PD-1 inhibitors. The progno-
sis of patients who received traditional chemotherapy 
was worse than that of patients treated with both bevaci-
zumab and chemotherapy in high-risk group. In addition, 
the mRNA of PER1, AKAP12, and MMP17 were highly 
expressed in normal ovarian epithelial cells compared 
to OC cell lines and the protein levels were increased in 
SOC cases with metastasis.

Methods
Dataset collection, filtering, and preprocessing
Transcriptome profile value (counts; Fragments Per Kilo-
base Million [FPKM]) and matched clinical information 
on OC were downloaded from The Cancer Genome 
Atlas (TCGA) database (https:// portal. gdc. cancer. gov/) 
and were used for the training cohort. The validation 
datasets were retrieved from two different microarray 
platforms in Gene Expression Omnibus (GEO), includ-
ing GSE26712, GSE14764, GSE23554, GSE17260, and 
GSE53963. The gene expression profile of normal ovary 
tissue was obtained from the Genotype-Tissue Expres-
sion (GTEx) database from the University of California 
Santa Cruz (UCSC) Xena browser (https:// xenab rowser. 
net/ hub/). The exclusion criteria for OC samples were: (i) 
duplicate samples; (ii) nonserous tumors; and (iii) sam-
ples without follow-up record.

The normalized FPKM count matrix and clinical data 
from patients with advanced melanoma treated with 
Nivolumab (anti-PD-1)  in GSE91061 were available to 
define MSC risk scores for immune checkpoint blockade 
therapy. GSE140082, a study of patients with OC treated 
with bevacizumab (an antiangiogenetic agent), was tested 
for the application of the MSC risk scores and response 
to antiangiogenic therapy. Variables with a P-value < 0.1 
were considered.

https://portal.gdc.cancer.gov/
https://xenabrowser.net/hub/
https://xenabrowser.net/hub/
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Raw data from the Affymetrix platform were filtered 
using the gcRMA algorithm and adjusted for background 
and quantile normalization based on the Affy software 
package (Affymetrix, Inc) [18]. The ’backgroundCorrect’ 
and ’normalizeBetweenArrays’ functions in the limma 
package used performed for the Agilent platform data 
sets for normalization of data [19]. The ComBat algo-
rithm of the “sva” package corrected for batch effects 
and non-biological technical biases across different data 
sets [20]. For RNA sequencing data, the FPKM value was 
transformed into a transcript per million (TPM) value 
and was further log2- transformed (log2TPM) for subse-
quent analyzes.

Access to gene signatures
MSCs have the capabilities of self-renewal and multidi-
rectional differentiation. A total of 19 MSC-related gene 
signatures were extracted from the GOBP_MESENCHY-
MAL_STEM_CELL_DIFFERENTIATION and GOBP_
MESENCHYMAL_STEM_CELL_PROLIFERATION in 
Molecular Signatures Database (MSigDB) (Additional 
file  1). For angiogenesis-related genes, a gene set was 
derived from the intersection of several published papers 
investigating angiogenesis in OC and from the HALL-
MARK_ANGIOGENESIS in MSigDB [21–25] (Addi-
tional file 2). The immune gene signatures of melanoma 
and the formula of immune gene score were from the 
literatures (Additional file  3). The immune gene score: ∑

29

i=1
βi ∗ Xi , βi is the estimated regression coefficient of 

each gene and Xi is the expression value of each gene.

Single‑sample gene set enrichment analysis (ssGSEA) 
and immune or stromal cell infiltration in TME
Gene expression values for samples were rank-normal-
ized and enrichment scores were aggregated using the 
Empirical Cumulative Distribution Function (ECDF) of 
the genes in the signatures. The enrichment scores repre-
sent the relative abundance of the gene sets in all samples 
and were obtained using the ssGSEA algorithm of the R 
package ’GSVA’ [26]. 

xCell is a published method based on ssGSEA that 
estimates abundance scores of 64 types of immune cells 
and stromal cells, including adaptive and innate immune 
cells, hematopoietic progenitors, epithelial cells, and 
ECM components [27]. Fourteen kind of tumor-infil-
trating lymphocytes were identified from xCell, includ-
ing activated B cell, activated CD4 T cell, activated CD8 
T cell, CD56-bright natural killer cell, CD56-dim natural 
killer cell, gamma delta T cell, immature B cell, natural 
killer T cell, natural killer cell, regulatory T cell, T follicu-
lar helper cell, type 1 T helper cell, type 17 T helper cell 
and type 2 T helper cell.

Identification of differentially expressed genes (DEGs)
The patients were classified into two groups according 
to enrichment scores of` MSC infiltration (MSC scores). 
With the absolute value of the fold change > 1 and a false 
discover rate (FDR) < 0.05 as the screening conditions, 
7792 significant genes of these two clusters were identi-
fied with the R package ’edgeR’ [28]. For DEGs between 
normal ovaries and tumor tissues, the ’limma’ package 
was used to distinguish 7269 genes from the count matrix 
in the context of the absolute value of fold change > 2 and 
a FDR < 0.05 [19].

Analysis of MSC‑related pattern function and pathway 
enrichment
Genes in different MSC clusters were subjected, respec-
tively, to Gene Ontology (GO) enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis using the ’clusterProfiler’ package in R software. 
The statistical significance criteria for the enrichment 
analysis were set as an adjusted P-value of < 0.05.

Weighted correlation network analysis (WGCNA) 
of MSC‑score genes
WGCNA is a computational method in systems biology 
that describes the correlation patterns among genes and 
can be used to summarize changes between the gene set 
and phenotype [29]. The  Log2TPM of 7269 genes was 
specified as the input data, and the soft threshold power 
of β = 6 was selected to construct the scale-free topol-
ogy network and gene modules. A correlation analysis 
between the constructed modules and MSC scores was 
performed and a significant module was adopted for 
subsequent analyses. The entire process was performed 
using the R package ’WGCNA’.

Establishment of an MSC score gene‑related prognostic 
model
The univariate Cox regression analysis was performed 
using 245 genes extracted from the Brown module to 
identify prognostic genes with the criterion of P < 0.05. 
A three-MSC-related gene-score prognostic model 
was constructed using the stepwise regression analysis 
derived from multivariate Cox regression analysis. All 
samples in the training and validation cohorts were strat-
ified into the low- or high-risk group according to the 
same formula of risk scores with the ’predict’ function 
using a uniform cut-off value. To eliminate numerical 
differences between microarray data and high-sequence 
data, prognostic genes were centralized and standardized 
with the ’scale’ function. Cox regression and Kaplan–
Meier analyses were performed using the ’survival’ R 
package. To evaluate the discrimination of the MSC score 
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model, receiver operating characteristic (ROC) curve, 
area under the curve (AUC), and concordance index 
(C-index) were quantified using survivalROC package 
and survcomp package, respectively.

Correlation of MSC scores and mesenchymal‑related 
genetic characteristics
Mesenchymal-related characteristics, including neoan-
tigen load, homologous recombination defects (HRD), 
CTA scores, intratumor heterogeneity (ITH), and copy 
number variation (CNV), were recovered from the study 
by Mariathasan et  al. [30]. TCGA cohort gene variant 
information was accessible from the TCGAbiolinks pack-
age in R [31]. The package maftools was used to calcu-
late the tumor mutation burden (TMB) and to define the 
mutational landscape of the 20 main driver genes with 
the highest mutation frequency [32]. TMB of GSE91061 
was downloaded from the supplementary file of the cor-
responding literature (Additional file  4). The TISIDB 
(http:// cis. hku. hk/ TISIDB/ index. php) is a reciprocal net-
work demonstrating tumor and immune system inter-
action [33]. Twenty-four immunosuppressors from the 
TISIDB website were obtained for immunosuppressive 
analysis.

Independence of MSC‑based prognostic model and other 
clinicopathological parameters
Univariate Cox analysis was performed for each clin-
icopathological parameter to determine whether it was 
significantly associated with survival. Variables with a 
P-value < 0.1 were added as input from the multiple Cox 
regression and detected the association with quality of 
life. Cox analysis was implemented using the ’survival’ 
package in R.

Nomogram construction based on independent 
prognostic factors
Based on the contribution of each influencing factor on 
survival, certain scores for each influencing factor were 
obtained. The total scores of all factors were calculated 
to evaluate for the probability of OS at 1, 3, and 5 years 
for patients using the R package rms (version 6.3-0; 
https:// CRAN.R- proje ct. org/ packa ge= rms). The ROC 
curve and C-index were used to evaluate nomogram dis-
crimination using the survivalROC package and the sur-
vcomp package, whose values fluctuate between 0.5 and 
1. The consistency of the nomogram was determined 
using calibration plots with the calibrate function in the 
rms package. Decision curve analysis (DCA) was used 
to assessing the clinical impact of risk prediction models 
with or without other clinical indexes [34].

Cell culture
The human normal ovarian epithelial cell line IOSE 80 
and human OC cells HEY and SKOv3 were obtained 
from the Tianjin Union Medical Center and cultured 
under complete Dulbecco’s modified Eagle’s medium 
(DMEM) and RPMI-1640 conditions, respectively. 
The induction of PGCCs is undertaken when HEY and 
SKOv3 cells reached 60% confluence in T25 flasks [14, 
17]. After treatment with 450 μM  CoCl2 (Sigma-Aldrich, 
St. Louis, MO, USA) 3–4 times, cancer cells are har-
vested for further studies.

Total RNA extraction and real‑time polymerase chain 
reaction (RT‑PCR)
Cell pellets were mixed with TRIzol and chloroform for 
lysis and RNase inactivity. After centrifugation at low 
temperature, isopropanol, and anhydrous ethanol were 
added to precipitate and wash RNA sediments, respec-
tively. The concentration of RNA was calculated and 
1000 μg RNA was used for reverse transcription to cDNA 
(11141ES10, Yeasen Biotechnology, Shanghai, China). 
RT-PCR was performed using the SYBR Green Mas-
ter Mix (11184ES03, Yeasen Biotechnology, Shanghai, 
China). The relative gene expression was calculated using 
the Livak method (also known as the  2−ΔΔCt method). All 
experiments were performed in triplicate. The primer 
sequences are listed in Additional files 5 and  6 and the 
protocol for reverse transcription and RT-PCR is previ-
ously described [35, 36]. The risks cores of cancer cell line 
are defined by the relative expression of each gene and its 
associated Cox coefficient: PER1 ×  0.124154 + AKAP12 
× 0.145457 + MMP17 × 0.122203.

Tissue microarray and SOC samples
Paraffin-embedded SOC (n = 42) tissue samples were 
collected from the Department of Pathology in Tianjin 
Union Medical Center, and included 24 primary lesions 
without metastasis and 18 primary SOC with metastasis. 
The Hospital Review Board of the Tianjin Union Medical 
Center approved this study and patient information con-
fidentiality was maintained.

Immunohistochemistry (IHC) staining and scoring
Paraffin-embedded tissue sections were deparaffined 
with xylene and rehydrated in an ethanol gradient. After 
antigen retrieval with ethylenediaminetetraacetic acid 
(EDTA) buffer (Solarbio, Beijing, China) and blocking 
endogenous peroxidase, sections were then incubated 
with specific anti-PER1 (1:100, Proteintech, Wuhan, 
China), anti-AKAP12 (1:100, Proteintech, Wuhan, 
China), MMP17 (1:100, Proteintech, Wuhan, China) 
at 4  °C overnight. The sections were incubated with 

http://cis.hku.hk/TISIDB/index.php
https://CRAN.R-project.org/package=rms
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reagents 2 and 3 (PV-9001; Zhong Shan Biotech Co Ltd, 
Beijing, China) next day and detailed processes are pro-
vided in Additional file 7 [37, 38]. The staining intensity 
was assessed as follows: 0, negative; 1, light yellow; 2, yel-
low; and 3, brown. The percentage of positive cells was 
graded as 0 (< 10%), 1 (11–25%), 2 (26–50%), 3 (51–75%), 
4 (76–100%). The multiplication of the staining intensity 
and positive cell scores was used to determine the stain-
ing index for each section.

Statistical analyses
Data were analyzed using R version 4.1.2 (https:// www.r- 
proje ct. org/) and Bioconductor software (https:// www. 
bioco nduct or. org/), a toolkit based on the R language. 
X-tile 3.6.1 software (Yale University, New Haven, CT, 
USA) was applied to determine the best cutoff value for 
patients with OC according to the MSC scores and were 
classified as low- and high-score groups [39]. SPSS 25.0 
(IBM Corporation, Armonk, NY, USA) was used to ana-
lyze IHC data in the study. The expression of three prog-
nostic genes was performed through UCSC XenaShiny, 
which is a package in R that can be downloaded to vis-
ualize datasets from the UCSC Xena database [40]. The 

Mann–Whitney–Wilcoxon test was used to compare two 
independent groups for continuous variables and ordinal 
categorical variable. The Spearman rank correlation coef-
ficient was calculated to measure the dependence of two 
variables. Pearson correlation analysis were applied for 
detecting the correlation between metastasis and stain-
ing index. The Kaplan–Meier curves and the logarithmic 
rank test were used to assess the predictive ability of the 
prognostic model.

Results
Clusters were constructed based on the abundance scores 
of mesenchymal stem cells
The general study flow is shown in Fig.  1. To better 
understand the association between the characteris-
tics of MSCs and clinical characteristics of patients, the 
enrichment scores of OC cases were calculated based 
on 19 MSC-related gene signatures (Additional file  1) 
using ssGSEA methods. After removing duplicates, the 
expression profile of 376 samples was incorporated into 
the study. The normalized enrichment scores of each 
sample combined with survival information were con-
sidered input variables in the X-tile software (Additional 

Fig. 1 Graphical abstract of bioinformatics section in this study. MSC mesenchymal stem cell, TCGA the Cancer Genome Atlas, WGCNA weighted 
gene co-expression network analysis, GO gene ontology, KEGG Kyoto Encyclopedia of Gene Genome, ICB immune checkpoint blockade

https://www.r-project.org/
https://www.r-project.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
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file  8). The patients were then assigned to low or high 
MSC scores groups at the cut-off value of 0.7946 to iden-
tify the importance of MSC scores in predicting patient 
outcomes (Additional file  16: Fig. S1). The Kaplan–
Meier analysis demonstrated that high MSC scores 
reflected poorer prognosis (Fig. 2A), while patients with 
a lower MSCs score were associated with an unfavorable 
prognosis.

Identification and enrichment analysis of differential 
expression genes between the two MSC clusters
Using the package ’edgeR’, there were 7792 genes identi-
fied between the low and high MSC scores groups using 
a filter criterion of |fold change|> 1 and FDR < 0.05, that 
included 4698 downregulated DEGs and 3094 upregu-
lated DEGs. The top 25% DEGs of |fold change|> 2 were 
inserted into the function and the pathway enrichment 

analysis. GO was used to define gene or protein func-
tion in three dimensions: biological processes (BP), cellu-
lar components (CC), and molecular functions (MF). In 
terms of BP, the genes were enriched in the organization 
and stucture of ECM  and MSC differentiation processes, 
such as the regulation of chondrocyte differentiation or 
the muscle system process (Fig.  2B; Additional file  9). 
With regard to CC terms, the collagen-containing ECM, 
endoplasmic reticulum lumen, and basement membrane, 
were detected (Fig.  2C; Additional file  9). For the MF 
analysis, the structural components of the ECM, colla-
gen binding, and growth factor binding were significant 
processes (Fig.  2D; Additional file  9). As shown in the 
enrichment analysis, these differentially expressed genes 
were mainly correlated with mesenchymal development, 
differentiation, and relevant constituents and organelles, 
such as fibrin involved in the organization of the ECM 

Fig. 2 Enrichment analysis of genes related to MSC scores in TCGA-OV cohort. A Kaplan–Meier analysis of low and high MSC-scores groups. The 
most significant GO enrichment analysis of DEGs between groups with low and high MSC scores: B biological process (BP); C cellular components 
(CC); D molecular functions (MF). E KEGG pathway analysis of low and high MSC-scores groups. A larger circle represents more genes enriched 
in the corresponding term, and the darker rectangle means more statistically significant. MSC mesenchymal stem cell, GO gene ontology, DEGs 
differentially expressed genes
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or the active endoplasmic reticulum. According to the 
KEGG pathway analysis, the biological process involved 
in the ECM of cancer comprised ECM-receptor inter-
action and proteoglycans. The signal pathways associ-
ated with CSC included PI3K/Akt and MAPK signaling 
pathway. The PI3K/Akt signaling pathway involved in the 
regulation of chemoresistance and CSCs in ovarian car-
cinoma, and the MAPK signaling pathway can maintain 
CSC stemness in solid tumors [41, 42]. (Fig.  2E; Addi-
tional file 10).

WGCNA co‑expression network construction 
and significant module identification
The differentially expressed genes were distinguished 
from 88 normal ovary tissues and 374 SOC samples. To 
identify a gene set that correlated with the MSC scores, 
7269 DEGs derived from the above analysis were inserted 
in the WGCNA. After removing outliers, an appropriate 
soft threshold (β = 6) was chosen to construct a scale-
free network that was validated by a value of R-square 

0.93 (Fig. 3A, Additional file 16: Fig. S2A, B). Setting the 
cut off value at 0.25, the blue and red module eigengenes 
obtained were combined (Additional file 16: Fig. S2C, D). 
Afterwards, these modules were associated with MSC 
scores and survival. As shown in Fig.  3B, there was a 
strong correlation between the brown module and MSC 
scores. A total of 245 genes were identified in this module 
and the correlation coefficient of the brown module and 
the MSC scores reached 0.81 (Fig. 3C).

Building the MSC‑related gene score prognostic model
To further explore the relationship between MSC phe-
notypes and clinical traits, univariate Cox regression 
analysis was used to select genes related to prognosis, 
based on Brown module. Thirteen of 245 genes (P < 0.05) 
related to prognosis were finally defined as candidate 
genes to define the MSC score (Additional file 11). Multi-
variate Cox regression analysis was conducted to identify 
genes significantly associated with OS and three genes 
(MMP17, AKAP12, and PER1) were used to construct 

Fig. 3 Identification of the set of MSC-scores-related genes in TCGA-OV cohort. A Soft threshold (β) filtering that includes scale independence 
and mean connectivity. Scale-free topological fitting index was set as 0.9, and the first number to reach 0.9 is the soft threshold (β = 6). When β = 6, 
the network connectivity is suitable and keep stable. B Correlation between module eigengenes and clinical traits (survival status and MSC-scores). 
The color of bar represents the correlation coefficient, and the value in bracket are P value. C Scatter plot of the module eigengenes related 
to the MSC-scores in the brown module. D Kaplan–Meier analysis of low- and high-risk score groups in TCGA-OV cohort. E The 1-year, 3-year 
and 5-year discrimination index (ROC curve and AUC values) of the prognostic risk model in TCGA-OV cohort. ROC receiver operating characteristic, 
AUC  area under the curve
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the prognostic model (Additional file 12). In accordance 
with risk scores obtained using the ’predict’ function, 
the patients were classified into the low-risk and high-
risk prognostic groups. Subsequently, Kaplan–Meier 
analysis showed that the group with a high MSC-related 
risk score had poorer prognosis than a low risk score 
(Fig. 3D). To verify model prediction efficiency, the ROC 
curve and AUC values were adopted, which presented a 
predictive advantage for the 3- and 5-year AUC for OS 
(Fig. 3E). The C-index, another discriminatory power for 
prediction models, characterized this model as less accu-
racy, with a value of 0.58 (Additional file  13). The gene 
expression heatmap, the distribution of risk scores, and 
the OS of TCGA-OV patients are shown in Additional 
file 16: Fig. S3A.

Validation of the MSC prognostic model using GEO 
datasets
To determine the consistency of this prognostic gene sig-
nature, a total of 565 samples were extracted for valida-
tion from five different datasets. There were significant 
differences in survival advantages between the low- and 
high-risk groups, which were in consistent with that in 
the TCGA cohort (Fig. 4A, B). Furthermore, the 3- and 
5-year AUC were slightly higher than the 1-year AUC 
in the Affymetrix datasets, indicating superior long-
term survival (Additional file  16: Fig. S3C). However, 
the 5-year AUC value in the Agilent data was lower 
than the 1- or 3-year AUC (Additional file 16: Fig. S3B). 
According to the results of AUC, the C-index indicated 
that the model in the validation cohorts had relatively 
low veracity (Additional file  13). Additional file  16: Fig. 
S3D, E show that cases with high expression of MMP17, 
AKAP12, and PER1 were characterized by high risk and 
poor prognosis.

Immune or stromal cell infiltration signature in diverse 
grouping
MSC can also act as an immunosuppressor in cancers by 
releasing soluble factors in the TME [43], which may be 
related to a poor prognosis of the mesenchymal pheno-
type of SOC. For different MSC phenotypes, high-risk 
scores indicated the presence of abundant infiltration of 
immunocytes with inhibitory activity, such as immature 
dendritic cells and regulatory T cells (Fig.  4C). Except 
for tumor-associated immunosuppressive cells, immu-
nity inhibition factors were also differentially expressed 
(Fig.  4D; Additional file  16: Fig. S4A). MSCs have been 
reported to secrete immunomodulatory factors that 
influence other immune or stromal cells, such as trans-
forming growth factor-beta (TGF-β1) on macrophages, 
vascular endothelial growth factor receptor 2 (KDR) 

in endothelial cells, and galectin-9 (LGALS9) in T cells 
[44–46].

Variable mesenchymal‑related genetic characteristics
To explore latent genomic variants present in each risk 
groups, CNV, HRD, TMB, neoantigen load, CTA scores, 
and ITH were studied. According to a meta-analysis 
of tumor immune expression signatures [30], the CNV 
included both the number of segments and the fraction 
of genome alterations, both of which showed a higher 
frequency in the low-risk group (Fig.  5A; Additional 
file 16: Fig. S4B). HRD provided an opportunity to opti-
mize the use of PARPi for the treatment of patients with 
high-grade SOC. In our scoring system, there was a nega-
tive correlation between risk scores and HRD (Fig.  5B). 
Unlike HRD, high MSC-related risk scores corresponded 
to more robust TMB (Fig. 5C). Subsequently, an explicit 
evaluation of the top 20 mutant genes of ovarian neo-
plasm was conducted for the risk score subgroups. As 
shown in Fig. 5D–E, the high-risk group tended to have 
more mutations commonly reported for OC. However, 
there was no statistical difference between the other 
three genetic parameters and the risk scores (Additional 
file 16: Fig. S4C–E).

Application of the prognostic model in immune 
checkpoint blockade cohort
Anti-PD-1/PD-L1 antibodies have been included in the 
therapeutic guidelines for some cancers, including mel-
anoma, non-small cell lung cancer, and clear cell renal 
carcinoma [47]. To validate this model in  response to 
immune therapy, 51 patients with advanced melanoma 
who received anti-PD-1 therapy were considered in the 
assessment [48]. Using a universal calculation formula, 
the samples were given specific scores and were stratified 
into two groups. The Kaplan–Meier analysis revealed that 
the high-risk score group exhibited poor OS outcomes 
(Fig.  6A; Additional file  16: Fig. S5). With regard to the 
therapeutic response, patients who responded to treat-
ment had a tendency for lower risk scores and a larger 
number of non-responders to treatment were in the 
high-risk group, indicating that the low-risk group was 
more likely to benefit from anti-PD-1 therapy (Fig.  6B, 
C). To illustrate the merit of the prognostic model based 
MSC-score, the efficacy of PD-L1 or PD-1 expression sta-
tus, tumor-infiltrating lymphocytes (TILs), mutational 
burden, and immune gene signatures, which previously 
described as biomarkers for anti-PD-1 treatment, was 
also evaluated in GSE91061. PD-1 expression, 8 kinds of 
TILs and tumor mutational burden are capable of pre-
dicting the overall survival of SOC (Additional file  16: 
Fig. S6). PD-1 expression, 8 kinds of TILs and tumor 
mutational burden did not show better predictive power  
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Fig. 4 Validation of prognostic model in GEO datasets and immuno-related analysis in TCGA-OV cohort. A Kaplan–Meier analysis 
of low- and high-risk score in GSE17260 and GSE53963 of GPL6480. B Kaplan–Meier analysis of low- and high-risk score in GSE26712, GSE14764, 
and GSE23554 from GPL96.  (C) Abundant infiltration of immunocytes  and (D) expression of immunosuppressive factors with statistic difference 
in TCGA-OV cohort. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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than MSC-score-based clustering for the evaluating PD-1 
therapy response (Additional file 16: Fig. S7).

Evaluation of the prognostic model of MSC scores 
in the patients treated with bevacizumab
Except for their immunosuppressive activity, MSCs can 
enhance angiogenesis by producing high levels of growth 
factors or cytokines that stimulate angiogenesis [43]. In 
TCGA training set, samples with high MSC risk scores 
had a higher proportion of gene expression associated 
with proangiogenic factors (Fig. 6D). The specific corre-
lation of MSCs with angiogenesis was evidenced in the 
dataset treated with bevacizumab and the expression 
pattern were similar to that of TCGA cohort. (Fig.  6E; 
Additional file 16: Fig. S8A). Furthermore, patients with 
high MSC risk scores and who had received standard 
chemotherapy (carboplatin plus paclitaxel) were associ-
ated with a significantly worse prognosis than the other 
three groups (Fig.  6F), denoting that compared to the 

chemotherapeutics and bevacizumab combination, con-
ventional chemotherapy alone achieved a poor prognosis 
in patients with the mesenchymal phenotype, therefore, 
the addition of bevacizumab to chemotherapy should be 
considered.

Nomogram construction to identify predictive prognostic 
factors
To explore the independence of the risk model, the ’sur-
vival’ program was used to show that the MSC-related 
model was robust in predicting OS in patients with 
SOC (Fig.  7A, B). The nomogram with four variables 
(HRD, FIGO stage, age, and MSC risk scores) was con-
structed to provide guidance on prognosis of patients 
with SOC. Patients with higher HRD and risk scores, 
later FIGO stage, and older age, had a lower probability 
of long-term survival (Fig. 7C). The ROC curve and the 
C-index showed that the discrimination of this nomo-
gram obviously increased  under the  application of the 

Fig. 5 Genetic characteristics with statistical significance and correlation with risk score in TCGA-OV cohort: A Fractional changes of copy number 
variation (CNV). B Homologous recombination defects (HRD). C Tumor mutation burden (TMB). R means correlation coefficient. The top 20 mutant 
genes in the (D) low-risk group and (E) high-risk group
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prognostic model containing MSC scores (Additional 
file 16: Fig. S8B; Additional file 13). The calibration plots 
show a prominent conformity between the nomogram 
prediction and actual observation in terms of the 1- and 
3-year survival rates in the cohort (Additional file 16: Fig. 
S8C–E). The clinical impact with DCA showed that the 
nomogram had the highest net benefit at threshold prob-
abilities between 0 and 60% (Fig. 7D), demonstrating this 
nomogram superiority over a single prognostic factor.

Expression of PER1, AKAP12 and MMP17 genes using 
quantitative real‑time polymerase chain reaction
On comparison of the expression of PER1, AKAP12, and 
MMP17 in TCGA with that in the GTEx dataset, the 
levels of the three genes were higher in normal ovarian 

tissues than in cancer tissues (Fig.  7E–G). RT-PCR was 
performed on human normal ovarian epithelial cells and 
human OC cells. The result confirmed that AKAP12 and 
MMP17 were overexpressed in IOSE 80 cells, while PER1 
expression is highest in SKOv3 cells (Fig. 7H).

Expression of prognostic genes in human SOC tissues
To explore the protein expression of PER1, AKAP12 
and MMP17 in SOC, IHC staining was performed. As 
shown in Fig. 8A, B, the expression of PER1, AKAP12 
and MMP17 was located in the cytoplasm of tumor 
cells. In SOC with metastasis, the staining intensity 
of PER1, AKAP12 and MMP17 was stronger than that 
in SOC without metastasis (Fig.  8A). And the differ-
ence of PER1, AKAP12 and MMP17 was statistically 

Fig. 6 Application of MSC-related prognostic model in therapy cohorts. A Kaplan–Meier analysis of low- and high-risk score in GSE19061. B 
The risk scores of different response groups of GSE19061. C The proportion of patients with response to anti-PD-1 immunotherapy in different 
risk groups. D Expression of pro-angiogenic factors in the TCGA cohort. E Expression of pro-angiogenic factors in GSE140082. F Overall survival 
in GSE140082 with different treatments. High: high-risk group; Low: low-risk group. Standard treatment: carboplatin plus paclitaxel chemotherapy. 
Bevacizumab treatment: carboplatin plus paclitaxel chemotherapy plus Bevacizumab. CR complete response, PR partial response, SD stable disease, 
PD progressive disease
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significant and correlation analysis showed that metas-
tasis was positively correlated with PER1, AKAP12 and 
MMP17 expression (Tables  1 and 2). In TCGA and 
GEO cohorts, the advanced FIGO stages implied high 
risk score (Figure S9) and FIGO stages were classi-
fied according to metastasis.   PGCCs, a type of cancer 
stem cells with more invasion and metastasis ability, 
obtained higher risk scores than the control group 
(Fig. 7K), albeit the varied expression of PER1, AKAP12 
and MMP17 in HEY and SKOv3 cell lines (Fig.  7I, J). 
However, the differences between the expression and 
other parameters including age and tumor size were 
not statistically significant (Additional files 13, 14). In 
addition, PER1, AKAP12 and MMP17 expression were 

associated with the malignant degree of SOC. SOCs 
with poor differentiation had the strongest staining 
intensity of PER1, AKAP12 and MMP17 and SOCs 
with well differentiation had the weakest staining inten-
sity (Fig. 8B, C).

Discussion
OC is the most lethal gynecological malignancy. The inci-
dence of OC has globally increased from 1990 to 2019 
[49]. The neighboring environment of the tumor, namely 
the TME, comprises both cellular and non-cellular com-
ponents. The former includes immune cells and stromal 
cells, such as T/B lymphocytes, dendritic cells (DC), 
tumor-associated macrophages (TAM), myeloid-derived 

Fig. 7 Construction of the nomogram of SOC-related characteristics in TCGA-OV cohort and validation of the expression of PER1, AKAP12 
and MMP17. (A) Univariate Cox analysis and (B) multiple Cox regression on clinicopathological parameters. C The nomogram of independent 
parameters, including risk score, age, FIGO stage and HRD score to predict 1-, 3-, and 5-year OS of SOC. D Consistency validation of the nomogram 
with DCA. E–G The expression of PER1, AKAP12, and MMP17 between cancer and normal ovary in the TCGA and GTEx data set. H Comparison 
of the amount of PER1, AKAP12, and MMP17 between IOSE80 and the OC cell lines HEY and SKOv3. I, J Relative content of PER1, AKAP12, 
and MMP17 in HEY and SKOv3 cell lines and their PGCCs. K Risk scores for HEY and SKOv3 cancer cells and their PGCCs. PER1 period circadian 
regulator 1, AKAP12 a-kinase anchoring protein 12, MMP17 matrix metallopeptidase 17, DCA decision curve analysis, TCGA  the Cancer Genome Atlas, 
GTEx Genotype-Tissue Expression. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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suppressor cells (MDSC), CAFs, and MSCs [50]. For 
example, functional T cells of different phenotype, 
quantity, and location distribute with different tumor 
immune cell phenotypes. The immune-excluded phe-
notype was characterized by less activated/exhausted 
CD8 + GZMB T cells and enrichment of predysfunctional 

CD8 + GZMK T cells and of resting CD4 + T cell popula-
tions. In contrast, activated CD4 + T cells and regulatory 
T cells were detected in the infiltrated tumor [51]. TAMs 
are a heterogeneous cell population and broadly classi-
fied into pro-inflammatory M1 and anti-inflammatory 
M2 macrophages. In OC, M2 macrophages comprise 

Fig. 8 Immunohistochemical staining in paraffin-embedded human SOC. A PER1, AKAP12, and MMP17 IHC staining in SOC without (a, c, e) 
and with (b, d, f). metastasis. B PER1, AKAP12, and MMP17 IHC staining in well differentiation (a, d, g), moderate differentiation (b, e, h) and poor 
differentiation (c, f, i) SOC. C Histograms showed (a) PER1 (b) AKAP12 (c) MMP17 staining intensity in SOC with well differentiation, moderate 
differentiation and poor differentiation. And the weakly positive represents negative and light yellow staining, positive represents yellow staining, 
and strongly positive stands for brown staining

Table 1 Staining index of PER1, AKAP12 and MMP17 among 
SOC samples

Staining index Mann–Whitney 
U test

SOC without 
metastasis

SOC with metastasis Z value P Value

PER1 6.75 ± 3.77 8.94 ± 3.28 − 1.84 0.06

AKAP12 7.46 ± 3.99 10.00 ± 2.47 − 2.08 0.038

MMP17 6.58 ± 3.17 9.44 ± 3.28 − 2.32 0.02

Table 2 Correlations between PER1, AKAP12 and MMP17 
expression and metastasis characteristics in SOC patients

Staining index Correlation analysis

SOC without 
metastasis

SOC with metastasis Pearson 
coefficient

P value

PER1 6.75 ± 3.77 8.94 ± 3.28 0.298 0.056

AKAP12 7.46 ± 3.99 10.00 ± 2.47 0.352 0.022

MMP17 6.58 ± 3.17 9.44 ± 3.28 0.411 0.007
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39% of the immune cells and are associated with adverse 
clinical outcomes [52]. Single cell spatial analysis dis-
closes intimate interactions of exhausted  CD8+ T cells 
and PD-L1+ macrophages that are considered mecha-
nistic determinants of response to niraparib and pem-
brolizumab treatment, which are PARP and immune 
checkpoint inhibitors, respectively [53]. Among stro-
mal cells, CAFs originate from MSCs or by transdiffer-
entiation of other cells. With the expression of specific 
molecules and receptors, CAFs promote angiogenesis, 
metastasis, and infiltration of immunosuppressive cells, 
thus fueling tumor growth and progression [54]. SOC 
stromal fibroblasts exhibit intrinsic resistance to PARPi 
and increased further after PARPi administration [55]. 
Except for the PARPi response, patients with high CAF 
infiltration exhibit chemoresistance and contribute to the 
insensitivity to immunotherapy [54, 56, 57]. Similarly, the 
increased dispersion of MSCs in SOCs tends to shorten 
survival and attenuates the response to immunother-
apy of patients in our study.

In terms of the clinical relevance, the expression of 
MSC markers and the existence of soluble factors derived 
from MSCs are negatively correlated with the progno-
sis of patients. CD105 + MSCs were associated with a 
reduced OS of patients with brain neoplasm, lung can-
cer, and gastric cancer [58–60]. MMP9 and IL-6 are 
secreted proteins of MSCs. High expression of MMP9 
has been associated with low survival rates in lung ade-
nocarcinoma [61]. Patients with high IL-6 levels have 
significantly a poorer survival rate than those with low 
IL-6 levels [62]. The exosomal microRNAs released by 
MSCs were positively related to survival time in colorec-
tal, myeloid leukemia, nasopharyngeal carcinoma, and 
glioma [63–66].

Essentially, MSCs exert immunomodulatory effects 
on both innate and adaptive cells through cell-to-cell 
contact and paracrine activity, including T cells, natu-
ral killer (NK) cells, and DCs. Induction of regulatory T 
cells (Tregs) is a main mechanism of immunosuppres-
sion by MSCs. MSCs can convert conventional T cells (T 
convs) to Forkhead box P3 (Foxp3) expressing Tregs [67]. 
Foxp3 is a transcription factor that inimitably defines 
Tregs and is a requirement for Tregs differentiation [68]. 
The immature dendritic cells are a subset of dendritic 
cells that selectively promote the proliferation of Tregs, 
and both take part in immunosuppressive activity [69]. 
Moreover, mature DCs co-cultured with MSCs skew to 
immature status and show a reduced stimulatory activ-
ity on T cells [70]. Therefore, in our study, patients with 
the mesenchymal phenotype tended to have an immu-
nosuppressive state characterized by a richness of Tregs 
and immature DCs, and responded poorly to anti-PD-1 
therapy. However, there are other immunoeffector cells 

that assembled in the high-risk score group. NK cells are 
innate cytotoxic lymphocytes and MSCs modulate their 
inhibitory effects on cell proliferation, altered cytotoxic-
ity and cytokine production, and induction of apopto-
sis by MSC secreted cytokines such as prostaglandin E2 
(PGE2), indoleamine 2,3-dioxygenase (IDO), TGF-β1, 
IL-6, and nitric oxide (NO) [71]. In our study, NK cells 
were enriched in the high MSC risk score group. This 
change largely resulted from the fact that there was het-
erogeneity among NK cells, and  CD56bright NK cells and 
 CD56dim NK cells are two main subsets of circulating 
human NK cells.  CD56bright NK cells are more immature 
and are more enriched in the tumor, and exhibit more 
limited cytotoxicity responses compared to  CD56dim NK 
cells [72], which is likely to occupy the majority of the 
mesenchymal phenotype of OC. In addition, Wan et  al. 
revealed that the unique bispecific anti-programmed cell 
death protein 1 (PD-1)/programmed death-ligand 1 (PD-
L1) antibody induced NK cells to transition from inert to 
more active and cytotoxic phenotypes, implicating NK 
cells as the key missing component of the current ICB-
induced immune response in SOC [73].

With the exception of the prognostic response to ICB, 
our MSC score system is able to provide guidance for 
anti-angiogenesis therapy. As for patients with high-risk 
scores, standard chemotherapy plus angiogenic inhibi-
tor is superior to chemotherapy alone. Stefani et al. found 
that low-dose irradiated MSCs showed antiangiogenic 
properties and infiltrated predominantly the perivas-
cular niche, leading to rejection of established tumors 
[74]. MiR-16, a microRNA targeting VEGF, was enriched 
in MSC-derived exosomes and partially resulted in an 
antiangiogenic effect in breast cancer cells [75]. The MSC 
score system was a prospective marker for the adminis-
tration of PARPi. The higher the risk scores, the lower 
the number of defects in homologous recombination, for 
which repair deficiency is closely associated with sensi-
tivity to PARPi therapy in epithelial OC [76, 77]. There-
fore, patients with a mesenchymal phenotype may not be 
suitable for treatment with PARPi.

In our validation experiment, three genes related to 
poor outcomes were prone to accumulate in the healthy 
ovary and in epithelial cells. However, the PER1 content 
is distinct between HEY and SKOv3 cells, which may be 
explained by the role of TP53. TP53 in HEY cells is wild-
type and in SKOv3 cells is deleted. PER1 knockdown 
influences pancreatic cancer cell lines with mutated 
TP53, but does not alter cells containing wild-type TP53 
[78], the reason for this finding is that p53 represses PER1 
transcription [79]. MSCs can act directly on metastasis of 
tumor through production of pro-metastatic cytokines or 
regulation of epithelial-mesenchymal transition [80, 81]. 
Not only in SOC, the elevated proteins of PER1, AKAP12 
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and MMP17 are also associated with the migration and 
invasion in triple-negative breast cancer, melanoma and 
colon cancer [82–84].

Because of its multipotency, low immunogenicity, easy 
accessibility and ethical advantage compared to pluripo-
tent stem cells or embryonic stem cells, MSCs are desir-
able candidates for in degenerative and inflammatory 
diseases, auto-immune diseases, such as joint injury, atopic 
dermatitis, and multiple sclerosis [85]. Infrapatellar fat 
pad-derived mesenchymal stem cells, proximal to the knee 
joint and similar to adipose cells, own proliferation and 
differentiation potential independent of age and promote 
hyaline-like cartilage formation without integration into 
the surrounding cartilage [86]. Currently, there are several 
phase I/II and III clinical trials involving immunomodu-
latory MSCs aimed at treating graft-versus-host disease 
and tumors. In combination with ganciclovir, genetically-
modified autologous MSC were found to be safe and 
tolerable in patients with advanced gastrointestinal adeno-
carcinoma [87]. A similar trial confirmed that allogeneic 
MSC infusions showed safety and feasibility in patients 
with prostate cancer [88]. Another trial in which endovas-
cular superselective intraarterial (ESIA) MSC infusions 
loaded with an oncolytic adenovirus Delta-24 (MSC-D24) 
were used to treat glioblastoma is currently underway [89]. 
The direction of treatment for MSCs mainly includes the 
delivery of various anticancer biological agents or suicide 
genes using an extracellular vesicle derived from MSCs 
[90, 91]. However, we have to face the possibility about 
the latent pro-metastasis functions and the promotion 
of immune evasion if anticancer agents or suicide genes 
in MSCs cannot function. In addition, MSCs combined 
with drug nanoparticles were used to induce the death 
of cancer cells. The conjugation forms between MSCs 
and nanoparticles include MSCs loading nanoparticles, 
nanoparticles attached to MSCs surface, nanoparticles 
coated with MSCs membrane, and vectors of anti-tumor 
genes in MSCs [92]. Because of tumor tropism of MSCs, 
the conjugation between MSCs and nanoparticles solved 
the problem of low target specificity and minimized side 
effects of conventional medicine. However, the toxicity of 
nanoparticles and the uncertainty of pharmacokinetics are 
still existent, including accumulation in organs followed by 
inflammation or binding with blood constituent followed 
by coagulation [93]. If these disadvantages about the safety 
of MSCs, nanoparticles or drugs can be solved, MSC may 
gradually be applied in clinical practice.

Conclusions
Using a comprehensive transcriptomic analysis of  genes 
characterizing MSCs, this study constructed an MSC-
related prognostic model that could separate patients 
into two groups. The high-risk group was associated 

with a worse prognosis, a different immunosuppressive 
phenotype, and a weak response to anti-PD-1 treatment. 
There was also instructive significance of this sorting sys-
tem for anti-angiogenesis therapy.
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