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Abstract 

Background The therapeutic targeting of the tumor microenvironment (TME) in colorectal cancer (CRC) has not yet 
been fully developed and utilized because of the complexity of the cell–cell interactions within the TME. The further 
exploration of these interactions among tumor-specific clusters would provide more detailed information about 
these communication networks with potential curative value.

Methods Single-cell RNA sequencing, spatial transcriptomics, and bulk RNA sequencing datasets were integrated 
in this study to explore the biological properties of MFAP5 + fibroblasts and their interactions with tumor-infiltrating 
myeloid cells in colorectal cancer. Immunohistochemistry and multiplex immunohistochemistry were performed to 
confirm the results of these analyses.

Results We profiled heterogeneous single-cell landscapes across 27,414 cells obtained from tumors and adjacent 
tissues. We mainly focused on the pro-tumorigenic functions of the identified MFAP5 + fibroblasts. We demonstrated 
that tumor-resident MFAP5 + fibroblasts and myeloid cells (particularly C1QC + macrophages) were positively corre-
lated in both spatial transcriptomics and bulk RNA-seq public cohorts. These cells and their interactions might shape 
the malignant behavior of CRC. Intercellular interaction analysis suggested that MFAP5 + fibroblasts could reciprocally 
communicate with C1QC + macrophages and other myeloid cells to remodel unfavorable conditions via MIF/CD74, 
IL34/CSF1R, and other tumor-promoting signaling pathways.

Conclusion Our study has elucidated the underlying pro-tumor mechanisms of tumor-resident MFAP5 + fibroblasts 
and provided valuable targets for the disruption of their properties.

Keywords Single cell RNA-sequencing, Spatial transcriptomics, Colorectal cancer, Macrophages, Fibroblasts, MFAP5, 
C1QC

Introduction
Colorectal cancer (CRC) is one of the most common 
malignancies, with more than 1.9 million new cases and 
over 935,000 deaths reported globally in 2020 [1]. Mul-
tiple studies have investigated CRC pathogenesis. Many 
therapeutic strategies targeting cancer cells have also 
been developed. However, tumor cell-based treatment is 
still associated with multiple problems including tumor 
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metastasis, recurrence, and therapy resistance, which 
require further research [2]. The conceptual shift from a 
tumor cell-centered model to a tumor microenvironment 
(TME)-centric model broadens the field of tumor biol-
ogy. It also provides possible solutions for these problems 
[3, 4].

The tumor microenvironment is comprised of com-
plicated non-cancerous cellular components, including 
immune cells, fibroblasts, and endothelial cells, as well 
as acellular products, such as soluble factors and extra-
cellular matrix (ECM) [2]. Cancer-associated fibroblasts 
(CAFs) and tumor-infiltrating immune cells are the most 
common stromal cells observed within the TME. Recent 
studies have increasingly demonstrated the critical role of 
the extensive crosstalk between CAFs and immune cells 
in tumor development [5]. However, the previously deci-
phered tumor promotion or suppression mechanisms of 
CAF-immune cell interactions have not yet been fully 
elucidated and utilized in focused therapy because of 
limited technology in the past. With the rapid develop-
ment of single-cell RNA sequencing technology (scRNA-
seq), we can now determine the details of heterogeneous 
TME biological properties at single-cell resolution [6, 
7]. As scRNA-seq cannot be used to explore spatial tis-
sue architecture, we are still unable to precisely decipher 
complex cellular interactions that occur throughout the 
tissue space. Spatial transcriptomics technology (ST), 
which has emerged recently, enables the exploration of 
spatial gene expression and cellular arrangements within 
multicellular organisms. Therefore, the combination 
of single-cell technologies with spatial transcriptom-
ics could enable the detection of the heterogeneous cell 
population details as well as providing insight into spatial 
tissue organization [8, 9].

Interactions between CAFs and immune cells have 
been widely investigated previously. However, the iden-
tity of these cells still remains elusive because of the com-
plexity of the TME. Therefore, further study is required. 
Hence, in the present study, we utilized a multi-omics 
strategy, including scRNA-seq and ST, to comprehen-
sively analyze the crosstalk between tumor-infiltrating 
fibroblasts and myeloid cells involved in CRC. We par-
ticularly focused on the functions of the previously rarely 
investigated MFAP5 + fibroblasts, which were identified 
in CRC tissues. We observed that the TME alters the bio-
logical behavior of tumor-resident MFAP5 + fibroblasts, 
conferring them with a pro-tumor tendency. Through 
in-depth analyses, we also identified for the first time 
that the close localization of MFAP5 + fibroblasts and 
tumor-associated macrophages, especially C1QC + mac-
rophages (previously identified macrophages with 
pro-inflammatory role), [10] could facilitate the tumor 
invasive phenotype. We were also able to confirm that 

the mutual interactions between MFAP5 + fibroblasts 
and tumor-infiltrating myeloid cells prompt malignancy 
by activating pro-tumorigenic signaling pathways, such 
as the MIF/CD74 and IL34/CSF1R axes in myeloid 
cells, as well as enhancing the aggressive phenotypes of 
MFAP5 + fibroblasts through EGF and VISFATIN signals 
in a positive loop. Therefore, these cell–cell interactions 
could be targeted to develop an optimal strategy for CRC 
therapy.

Methods
Data sources
In this study, we integrated six independent public data-
sets that contained single-cell RNA sequencing data 
(downloaded from Gene Expression Omnibus (GEO) 
repository: https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE14 4735) [11], spatial transcriptom-
ics data (10X Genomics) (derived from a previous pub-
lished research at website: http:// www. cance rdive rsity. 
asia/ scCRLM/) [12], and four bulk transcriptomics of 
colon and rectal cancer (downloaded from TCGA cohort 
COAD and READ at website: https:// xena. ucsc. edu/; 
GSE14333 and GSE17536 cohorts were downloaded 
from GEO repository).

Single‑cell RNA sequencing analysis
The R (v4.0.5) package Seurat (v4.0.2) [13] was used to 
process the scRNA data. As dataset quality control had 
been performed in previous studies, we did not further 
filter the scRNA-seq data. The SCTransform method was 
used to normalize the data. The harmony method (v0.1.0) 
was applied to remove batch effects and integrate the 
Seurat objects into a single dataset [14]. The integrated 
data were subjected to a principal component analysis 
(PCA) algorithm to reduce the data dimensions. Find-
Neighbors and FindClusters were used to cluster cells 
with similar characteristics. A uniform Manifold Approx-
imation and Projection (UMAP) algorithm was used for 
data visualization.

Differential expression analysis, cell annotations 
and enrichment analysis
Differentially expressed genes (DEGs) of cell popula-
tions in scRNA-seq were identified using FindAllMark-
ers. Genes that were positively expressed in more than 
25% of the cells in each cluster were selected. Of which, 
canonical cell markers, top 20 DEGs of each cluster, and 
CopyKAT algorithm (infer tumor or normal epithelial 
cells) [15] were combined for cell annotations. In order to 
analyze the functions of each cluster, the R package clus-
terProfiler (v3.18.1) was used for GO enrichment analysis 
[16]. We set p < 0.05, |avg_logFC|> 1 as the cutoff criteria.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144735
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144735
http://www.cancerdiversity.asia/scCRLM/
http://www.cancerdiversity.asia/scCRLM/
https://xena.ucsc.edu/
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Spatial transcriptomics data analysis
The R package Seurat was also used for spatial transcrip-
tomics data (ST) processing and visualization. In order 
to normalize the ST data, we used the SCT method; the 
functions SelectIntegrationFeatures, PrepSCTIntegra-
tion, FindIntegrationAnchors, and IntegrateData were 
used to integrate the ST data. An unsupervised cluster-
ing method was subsequently used to cluster similar ST 
spots. Cell population annotations were based on hema-
toxylin and eosin staining (HE) sections and the highly 
variable genes in each cluster. Scores of cell-specific sig-
natures (top 20 DEGs) from scRNA-seq were calculated 
using two methods: ssGSEA algorithm and AddModule-
Score function. SpatialDimPlot and SpatialFeaturePlot 
were combined to visualize the cell expression level in the 
ST data.

Cell‑type infiltration analysis
In order to calculate the cell-type infiltration levels in ST 
data, TCGA cohort COAD, and READ, we integrated the 
top 20 DEGs identified in scRNA-seq as well as previously 
well-defined immune cell gene sets [17]. We also calcu-
lated the scores of M1/M2 signatures using the ssGSEA 
algorithm [18] with the GSVA package (v1.38.2) [19]. To 
visualize the spatial organization of MFAP5 + fibroblasts 
and C1QC + macrophages in ST slices, we scored the top 
20 DEGs of cell clusters using the AddModuleScore func-
tion. To comprehensively analyze the differential expres-
sion of MFAP5 between tumors and adjacent normal 
tissues in diverse cancer types, we used the online tool 
TIMER (https:// cistr ome. shiny apps. io/ timer/ [20].

Correlation analysis
Correlation analysis was performed to investigate the 
interactions between specific cells. The R packages 
ggstatsplot (v0.10.0) and corrplot (v0.92) were used 
for data analysis and visualization [21]. In addition, the 
online tool TIMER was used to establish the correlation 
between gene expression and immune infiltration levels 
in the colon and rectal cancer cohorts [20]. p < 0.05 was 
considered as statistically significant.

Survival analysis
In order to explore the role of specific cells in clinical 
diagnosis and prognosis, we used Survival (v3.2-10) and 
Survminer (v0.4.9) to conduct survival analysis on the 
COAD, READ, GSE14333, and GSE17536 cohorts. The 
cell population infiltration (the top 20 DEGs identified 
in scRNA-seq) was calculated using the ssGSEA algo-
rithm. The median was selected as the cutoff value to 
differentiate patients into distinct groups (high or low). 
The Kaplan–Meier survival curve was modelled using 

the function survfit. Subsequently, a Cox proportional 
hazards regression model was established to determine 
the independent risk factors. In addition, PrognoScan 
was used to explore the prognostic value of MFAP5 using 
three independent databases [22]. p < 0.05 was consid-
ered as statistically significant.

Cell‑to‑cell communications analysis using CellChat
The CellChat (v1.1.3) method was used to infer cell-to-
cell interactions between fibroblasts and myeloid cells 
and to build a regulatory network based on ligand-recep-
tor crosstalk [23]. We filtered out cell–cell communica-
tions that were expressed in fewer than 10 cells in certain 
cell groups. The netVisual function was used to visualize 
interaction patterns. When signaling pathways with more 
than one ligand-receptor pair were evaluated, we used 
the netAnalysis_contribution function to compute and 
visualize the contribution of each ligand-receptor pair to 
the overall signaling pathway. PlotGeneExpression was 
used to visualize the expression of ligands and receptors 
of certain signaling pathways in cell populations using 
violin plots. Non-negative matrix factorization (NMF) 
algorithms were considered when selecting the number 
of co-communication patterns in the CellChat object. 
This was after utilizing the identifyCommunication-
Patterns function, which was adopted to identify major 
signals for certain cell populations and general communi-
cation patterns. In addition, netAnalysis_teCentrality was 
used to calculate network centrality scores, and netAnal-
ysis_signalingRole_network was used for visualization. 
These were used to identify dominant senders, receivers, 
mediators, and influencers in certain inferred networks.

Immunohistochemical staining analysis
Immunohistochemistry (IHC) was performed to detect 
cell-type-specific protein expression in CRC. Tissue 
microarray (TMA) (Cat. No. IWLT-N-70C42) consisted 
of 35 pairs of tumor and para-tumor samples that were 
obtained from Wuhan Servicebio Technology Co., Ltd. 
TMA was first treated with a boiling antigenic repair 
solution (EDTA, pH9) for 15  min. Subsequently, 3% 
hydrogen peroxide was applied to inactivate endogenous 
peroxidases. Following that, the slices were blocked in 
3% BSA for 30  min. After adding primary antibodies 
(MFAP5, Rabbit, Cat. No. DF13146, Affinity, 1:50), they 
were stored for incubation overnight at 4 ℃. The follow-
ing day, the sections were washed three times with PBS 
and incubated with an HRP-conjugated secondary anti-
body (Cat. No. GB23303; Servicebio, 1:200) for 50  min 
at room temperature. Diaminobenzidine (DAB) was 
used as the chromogen and nuclei were stained with 
hematoxylin. Double immunohistochemical staining 
for MFAP5 (Rabbit, Cat. No. DF13146, Affinity, 1:100)/

https://cistrome.shinyapps.io/timer/
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CD163 (Mouse, Cat. No. EM1901-90, HuaBio, 1:100) and 
IL-34 (Rabbit, Cat. No. DF13820, Affinity, 1:100)/CSF1R 
(Mouse, Cat. No. EM1708-56, HuaBio, 1:100) was per-
formed while following the instructions of the immuno-
histochemical double staining kit (ZSGB-Bio, Cat. No. 
DS-0004). HRP/AP conjugated secondary antibodies 
were mixed for incubation for 30 min at room tempera-
ture, and DAB and AP-red were used as chromogens. 
In order to objectively quantify the protein expression 
of MFAP5 in tumors and adjacent normal tissues, the 
H-score was used as a semiquantitative indicator [24]. 
H-score (histochemistry score) is a histological scor-
ing method for processing immunohistochemistry. The 
number of positive cells and their staining intensity in 
each section are converted into corresponding numerical 
values to achieve the purpose of semi-quantitative tissue 
staining. H-Score = ∑(pi × i) = (percentage of weak inten-
sity × 1) + (percentage of moderate intensity × 2) + (per-
centage of strong intensity × 3), where pi represents the 
proportion of positive signal pixel area/cell number; 
i stands for coloring intensity. For data with H-score 
between 0 and 300, larger data indicate stronger com-
prehensive positive rate [25]. To compare the H-score of 
paired cancer tissues and para-cancer tissues, we applied 
paired-sample Wilcoxon test for statistical analysis, when 
we compared the H-score among different TNM stages, 
we used Wilcoxon test to compare the differential expres-
sion of MFAP5 in different TNM stages.

Multiplex immunohistochemistry assay
Multiplex immunohistochemistry (mIHC) method was 
used to detect three different antibodies in the sections. 
Primary antibodies included MFAP5 rabbit anti-human 
antibody (cat. No. DF13146, Affinity, 1:3000), C1QC rab-
bit anti-human antibody (Cat. No. BS-11337R; Bioss, 
1:200), and EPCAM mouse anti-human antibodies (cat. 
No. GB12274, Servicebio, 1:200). Cancer tissues or adja-
cent normal tissues used for the mIHC experiment were 
obtained from previously collected paraffin-embedded 
surgical specimens of patients with colorectal cancer, 
who had signed informed consent forms. A TSAPLus 
Fluorescence Triple Staining Kit (Cat. No. G1236-50T, 
Servicebio) was used to stain the primary antibodies. All 
the experimental procedures were performed according 
to the manufacturer’s instructions (Service Bio). On the 
first day, we repaired the antigen, inactivated endogenous 
peroxidases, blocked the antigen, and labeled the sections 
with the first primary antibody MFAP5 at 4 ℃ overnight. 
On the second day, after labeling with 488-TSA fluores-
cence (1:500), the tissue sections were treated with an 
antigenic repair solution. Subsequently, we repeated the 
previous steps and incubated the sections with two pri-
mary antibodies, C1QC and EPCAM at 4 ℃ overnight. 

On the third day, the sections were stained with CY3-
(1:200) and CY5-(1:200) and conjugated with second-
ary antibodies for 50 min. The nuclei were stained with 
DAPI.

Results
Single‑cell transcriptomics atlas of heterogeneous tumor 
microenvironment in CRC 
In order to define the heterogeneous single-cell land-
scapes of CRC, we used a previously published single-
cell dataset containing six paired samples from tumor 
core regions, border tumor regions, and matched normal 
mucosa [11]. A total of 27,414 cells were included in sub-
sequent analyses. These included 8254 cells from tumor 
core regions, 9424 cells from tumor border regions and 
9736 cells from adjacent normal tissues. The cell popula-
tions were defined into ten cell types based on previous 
well-defined gene markers [12, 26–31]: epithelial cells 
(n = 6243) were identified by high expression of KRT8 
and EPCAM; endothelial cells (n = 1573) express VWF 
and ENG; fibroblasts (n = 4498) exhibit high expression 
of DCN, COL1A1 and COL1A2; mast cells (n = 255) 
were marked by KIT; myeloid cells (n = 2613) were iden-
tified by LYZ expression [29]; T cells (n = 5757) were 
marked by CD3D and CD3E expression; cell popula-
tions with high expression of MS4A1 were identified as 
B cells (n = 1847); plasma cells (n = 3089) were identified 
by JCHAIN [31]; smooth muscle cells (n = 1070) were 
marked by ACTA2; and a small number of cells with a 
high expression of S100B were considered as enteric glial 
cells (EGCs, n = 469) (Fig.  1A–C and Additional file  1: 
Table  S1) [24]. The infiltration of the ten cell types was 
different in distinct tissues. We applied CopyKAT algo-
rithm to infer tumor cells from normal epithelial cells. As 
we had expected, the majority of tumor-derived epithelial 
cells are malignant tumor cells, while in matched nor-
mal mucosa only contains normal epithelial cells (Addi-
tional file 1: Fig. S1). B cells, myeloid cells, and T cells had 
higher infiltration levels in tumor regions (including core 
and border) than in normal tissues. However, plasma 
cells demonstrated lower infiltration in these regions. 
This could reflect the heterogeneous microenvironment 
and different stages of tumor progression (Fig. 1D).

Tumor‑specific microenvironment shapes the malignant 
properties of tumor‑associated MFAP5 + fibroblasts
Fibroblasts are the most abundant stromal cells. They are 
also considered the key cell type involved in regulating 
tumor progression [24]. Multiple studies have investigated 
the biological behavior of cancer-associated fibroblasts. 
However, because of the heterogeneity of the microenvi-
ronment, the identity of these cells remains elusive [24, 
32, 33]. In order to further clarify the heterogeneity of 
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fibroblasts, we combined the reported canonical fibro-
blast markers, functional enrichment, and highly vari-
able features of each cluster for cell annotation (Fig. 2A, B, 

Additional file 1: Figs. S2, S3, and Additional file 1: Tables 
S2, S3). MFAP5 + fibroblasts were characterized by high 
MFAP5 expression. Fibroblasts marked by a canonical 

Fig. 1 Single-cell transcriptomics atlas of heterogeneous tumor microenvironment in CRC. A UMAP plots of scRNA-seq profiled in this project 
faceted by tissue types (include tumor core, border and adjacent normal tissues). B Feature plots of canonical cell-type signatures expression in 
each cluster. C Heatmap visualizes the top 3 differentially expressed genes (DEGs) of each cellular population. D Cell infiltration level in diverse 
tissues (upper) or patients (lower) inferred by scRNA-seq
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Fig. 2 Tumor-specific microenvironment shaped the malignant properties of tumor-associated MFAP5 + fibroblasts. A UMAP plot of scRNA-seq of 
fibroblasts in CRC. B Violin plot shows the cell markers of specific fibroblast subclusters. C Stacked bar plot of inferred cell proportions of fibroblast 
subpopulations in different tissues. D UMAP plots of fibroblast subclusters faceted by tissue types (include tumor core, border and adjacent normal 
tissues). E Violin plot suggests that the MFAP5 is a fibroblast-specific signature in CRC. F Pan-cancer analysis of MFAP5 expression between cancer 
and para-cancerous tissues visualized by TIMER tool. G Kaplan–Meier survival plot indicates that CRC patients with high level of MFAP5 have worse 
clinical outcome in GSE14333 cohort. H IHC analysis show the existence of MFAP5 + fibroblasts in tumor and normal tissues. I Quantification of 
MFAP5 staining intensity in the tumor and normal sites with H-score, paired-sample Wilcoxon test used for statistical analysis. J Box plot shows the 
correlation between H-score and TNM stage, Wilcoxon test applied to compare the differential expression of MFAP5 in different TNM stages, p < 0.05 
as statistically significant
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fibroblast activation signature (FAP) were identified as 
FAP + fibroblasts [24]. Telocytes are known to express 
SOX6 and F3 [34]. We also identified a fibroblast sub-
type (FABP5 + fibroblasts) with high expression of FABP5 
and FABP4, which were co-expressed in microvascu-
lar endothelial cells [35]. Therefore, we speculated that 
FABP5 + fibroblasts were derived from endothelial cells 
which might have undergone an endothelial-to-mesenchy-
mal transition and acquired fibroblast-like phenotypes.

Next, we compared the grade of infiltration for each 
fibroblast subtype in distinct tissues and observed that 
FAP + fibroblasts mainly existed in tumor regions, includ-
ing the cancer core and border. In contrast, MFAP5 + and 
FABP5 + fibroblasts were notably present in normal tissues. 
This could be attributed to their different biological charac-
teristics (Fig. 2C, D) [36]. Moreover, it is worth noting that 
MFAP5 is a cell type-specific signature that is principally 
expressed in specific fibroblast subtypes residing in normal 
tissues (Fig.  2C–E). Subsequently, we applied the online 
tool TIMER [20] to investigate the pan-cancer differential 
expression of MFAP5 between tumor and normal tissues. 
The results demonstrated that MFAP5 was upregulated 
in almost all normal tissues of diverse tumor types, par-
ticularly in COAD and READ (Fig. 2F). We subsequently 
examined the association between MFAP5 + fibroblasts 
and clinical prognosis. We observed that the higher the 
expression of MFAP5, the poorer the survival outcome 
of patients with CRC across the three independent public 
cohorts (Fig.  2G and Additional file  1: Fig. S4). We then 
applied tissue microarray (TMA) of 35 pairs of CRC tis-
sues to confirm this (Fig. 2H). Our findings again suggested 
the higher expression of MFAP5 in normal tissues as com-
pared with that in tumor sites (Fig. 2I). The IHC analysis 
suggested that the higher the H-score, the higher the TNM 
stage (Fig.  2J), which implies stronger capability for inva-
sion and metastasis. However, there was no statistical dif-
ference, which could be attributed to the small sample size 
in TMA. We speculated that TME-specific factors, such as 
bioactive molecules, complicated intercellular interactions, 
and stimuli, contribute to the alteration of the biological 
properties of tumor-resident MFAP5 + fibroblasts confers 
these cells with a tumor-promoting tendency. However, 
this is not observed in normal-resident fibroblasts.

Multi‑omics analyses uncover the cell‑to‑cell 
communications between MFAP5 + fibroblasts 
and macrophages
The reciprocal interactions between fibroblasts and 
immune cells during cancer progression have been 
widely investigated during recent years [24, 37, 38]. 
Hence, we hypothesized that abnormal crosstalk between 
MFAP5 + fibroblasts and other tumor-infiltrating 
immune cells could be an important cause of the aber-
rant biological behavior demonstrated by MFAP5 + fibro-
blasts in the CRC microenvironment. In the present 
study, we used spatial transcriptomic data to assess the 
spatial organization of MFAP5 + fibroblasts and immune 
cells in CRC. Based on the HE stained sections and DEGs 
of each cluster, we annotated the spatial spots into five 
main clusters: tumor cells, fibroblasts, smooth muscle 
cells, epithelial cells, and lamina propria (Fig. 3A). First, 
we used the ssGSEA algorithm to score the signatures 
of MFAP5 + fibroblasts (top20 DEGs) and immune cells 
(well-defined gene markers, see details in Additional 
file 1: Table S4) [17] in ST (Fig. 3B). We detected the co-
enrichment of MFAP5 + fibroblasts and macrophages in 
the fibroblast region, whereas some adaptive immune 
cells such as B cells and T cells were scarce in the same 
regions (Additional file  1: Table  S5). We used another 
method, AddModuleScore, to score the enrichment of 
MFAP5 + fibroblasts. We observed that MFAP5 + fibro-
blasts mainly infiltrated fibroblast areas that were close 
to M2-phenotype macrophages (marked by CD68 and 
CD163) but opposite to anti-tumor T cells or B cells 
(Fig. 3C and Additional file 1: Fig. S5). We also scored the 
MFAP5 + fibroblasts and macrophages within the pub-
lic TCGA cohorts COAD and READ. Based on the cor-
relation analysis, a significant positive correlation could 
be verified between them (Fig.  3D). Finally, we exam-
ined the correlation between MFAP5 gene expression 
and immune cell infiltration and observed that among 
all immune cells, MFAP5 demonstrated the highest cor-
relation with macrophages (Fig. 3E and Additional file 1: 
Fig. S6). These results highlight the existence of extensive 
cell-to-cell interactions between MFAP5 + fibroblasts and 
macrophages, which may play a crucial role in regulating 
CRC progression within the TME.

Fig. 3 Multi-omics analyses uncover the cell-to-cell communications between MFAP5 + fibroblasts and macrophages. A Spatial images show 
the tissue architecture of CRC inferred by unsupervised clustering method. B Heatmap of immune cells and fibroblasts infiltration level scored 
by ssGSEA algorithm. C Gene expression of CD3D, CD8A, CD19, MS4A1, GZMA, GNLY, CD68, CD163 as well as MFAP5 + fibroblasts (top 20 
DEGs identified in scRNA-seq) in spatial organization of patient 2 (P2), red boxes mark the representative tumor region of CRC. D Scatter plots 
show the positive correlation between MFAP5 + fibroblasts and macrophages in COAD and READ cohorts. E Correlation analysis of MFAP5 and 
tumor-infiltrating immune cells shows the highest correlation between MFAP5 and macrophages calculated by TIMER tool

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Cell–cell interactions of MFAP5 + fibroblasts 
and C1QC + macrophages are associated with poor CRC 
prognosis
Myeloid cells are the leading tumor-infiltrating immune 
cells with tumor-suppressive or tumor-promoting func-
tions [10]. Reclustering of myeloid cells was classified 
into four myeloid cell subtypes and B cells  (MS4A1high 
and  CD79Ahigh) (Fig. 4A–D, Additional file 1: Fig. S7, and 
Additional file  1: Table  S6). Dendritic cells (DCs) with 
high expression of FCER1A and CD1C are recognized as 
cDC2 [10]. Macrophages with high expression of THBS1 

are characterized as THBS1+ [24]. In addition, classical 
SPP1 + macrophages were also identified with positive 
expression of SPP1 in our study [10, 24, 39]. We observed 
that tumor-associated macrophages highly expressing 
C1QC, C1QA, and C1QB (Fig. 4D and Additional file 1: 
Fig. S6) could be identified as C1QC + macrophages. This 
finding was similar to that observed in a previous study 
[10]. As analyzed previously, we demonstrated the close 
proximity of MFAP5 + fibroblasts and macrophages in 
CRC. However, the specific types of macrophages that 
interact with MFAP5 + fibroblasts remain unclear as yet. 

Fig. 4 Cell–cell interactions of MFAP5 + fibroblasts and C1QC + macrophages are associated with poor CRC prognosis. A UMAP plot of 
tumor-infiltrating myeloid cells colored by cell types. B UMAP plots of myeloid cells subclusters faceted by tissue types (include tumor core, border 
and adjacent normal tissues). C Stacked bar plot of myeloid cell proportions in different tissue types. D Violin plot of cell-specific signatures of 
myeloid cells. E Complex heatmaps exhibit the correlation between tumor-associated fibroblasts and myeloid cells in two independent cohort: 
COAD and READ, the correlation between MFAP5 + fibroblasts and C1QC + macrophages marked with red box. F Heatmap of fibroblasts and 
myeloid cells infiltration level scored by ssGSEA algorithm in ST. G Spatial transcriptomics images of MFAP5 + fibroblasts and C1QC + macrophages 
scored by AddModuleScore. H mIHC figures show the localization of MFAP5 + fibroblasts and C1QC + macrophages in tumor or normal tissues 
of Patient 1 and Patient 2, red arrows show the representative C1QC + macrophages, green arrows represent MFAP5 + fibroblasts (×40, 20 μm). I 
mIHC figures show the co-localization of MFAP5 and C1QC + macrophages in the tumor core or border regions in Patient 2, yellow arrows show 
the microfibrils adhered C1QC + macrophages (×20, 50 μm). J K–M plot shows survival analysis for both expression of MFAP5 + fibroblasts and 
C1QC + macrophages in TCGA-COAD, GSE14333 and GSE17536 cohorts
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Therefore, we used TCGA datasets to determine the cor-
relation between MFAP5 + fibroblasts and myeloid cells 
identified in our study. The results demonstrated a sig-
nificant positive correlation between the infiltration of 
MFAP5 + fibroblasts and C1QC + macrophages (Fig.  4E, 
Additional file  1: Tables S7, S8). The ST data were sub-
sequently analyzed to validate the relationship between 
these cells. Two algorithms, ssGSEA and AddModuleS-
core, were used to calculate the signature scores of these 
cells. The results indicated that MFAP5 + fibroblasts and 
C1QC + macrophages were co-enriched in the fibroblast 
region (Fig.  4F, G and Additional file  1: Table  S9). Fur-
thermore, the mIHC assay confirmed the co-localiza-
tion of MFAP5 + fibroblasts and C1QC + macrophages 
within the tumor regions. In contrast, there were few 
C1QC + macrophages around the MFAP5 + fibroblasts in 
normal tissues, suggesting that crosstalk between these 
cells mainly occurred in tumor tissues (Fig. 4H and Addi-
tional file  1: Fig. S8). MFAP5 is a protein coding gene 
which could remodel the ECM by the synthesis of elastic 
microfibrils [40]. We observed that MFAP5 + fibroblasts-
derived microfibrils could adhere to the C1QC + mac-
rophages in tumor border stromal region rather in tumor 
invasive margin (Fig.  4I and Additional file  1: Fig. S9). 
This was also reflected in ST slices (Fig.  4G and Addi-
tional file  1: Fig. S10). We hypothesized that this phe-
nomenon could facilitate its signal communication with 
C1QC + macrophages in border local stroma to a certain 
extent [5].

A previous study has reported that high infiltra-
tion of C1QC + macrophages results in high immune 
cell infiltration [41] and good prognosis, which could 
be attributed to the pro-inflammatory functions of 
C1QC + macrophages [10]. We assessed the clinical 
value of C1QC + macrophages in four independent CRC 
cohorts. We observed that patients with low infiltration 
of MFAP5 + fibroblasts and high levels of C1QC + mac-
rophages experienced better prognoses. In contrast, 
patients with high expression of both cell types demon-
strated poor outcomes in the three cohorts (Fig. 4I). After 
adjusting for sex, age, and pathologic stage using the 
Cox proportional hazard regression model, we observed 
that compared with the MFAP5 +  fibroblastshigh and 
C1QC +  macrophageshigh groups, patients with lower 
MFAP5 + fibroblast infiltration and higher C1QC + mac-
rophage infiltration demonstrated better prognoses 
(Additional file 1: Fig. S11). Hence, we hypothesized that 
aberrant signal communication between MFAP5 + fibro-
blasts and C1QC + macrophages promotes the tumor-
invasive phenotype to a certain extent. We carried out 
subsequent analyses to confirm this finding.

Fibroblasts‑myeloid cells based regulatory network detect 
tumor‑specific signaling pathways in CRC 
Multiple studies have demonstrated that far-ranging 
reciprocity exists between fibroblasts and myeloid cells. 
This reciprocity has far-reaching effects on the progres-
sion of cancers [5]. In order to clarify the cell–cell inter-
action mechanisms between these cells, we built separate 
intercellular communication networks between fibro-
blasts and myeloid cells in tumors (including the core 
and border) and normal tissues (Additional file 1: Tables 
S10–S13). As demonstrated in Fig. 5A, we observed that 
MFAP5 + and FAP + fibroblasts had the highest number 
of communications with other stromal and immune cells 
in the tumor, indicating their active biological proper-
ties. We observed that several pro-tumor signal pathways 
were primarily present between these cells, including 
MIF, FN1, TGF-β and COLLAGEN pathways (Fig.  5B). 
Outgoing communication pattern analysis also suggested 
a coordinated pro-tumor signaling pathway between 
FAP + and MFAP5 + fibroblasts, which have long been 
verified as a tumor-driven stromal population [41]. We 
extrapolated that MFAP5 + fibroblasts could drive tumor 
development by signal coordination with FAP + fibro-
blasts (Fig. 5C).

MIF signals are reportedly associated with the immu-
nological escape from the TME. Our study highlights 
that tumor-associated fibroblasts (especially FAP + and 
MFAP5 + fibroblasts) can secrete MIF, which binds to the 
corresponding receptor CD74 on macrophages to drive 
immunological escape. This results in an immunosup-
pressive microenvironment in CRC (Fig.  5D) [42, 43]. 
Inhibition of the fibroblast-mediated MIF-CD74 sign-
aling axis or the blocking of pro-tumor fibroblasts has 
the potential to eliminate tumor immunosuppression. 
Regarding the COLLAGEN pathway, we observed that 
MFAP5 + fibroblasts highly expressed collagen (encoded 
by COL1A1, COL1A2 and COL6A2 et  al.) to interact 
with the integrin receptors, CD44 and SDC1 of myeloid 
cells (Fig. 5D, E). This phenomenon indicates that fibro-
blast-released collagen may interact with the relevant 
receptors of myeloid cells to prompt the formation of the 
extracellular matrix (ECM). This results in a desmoplas-
tic niche, thus modulating tumor growth. In addition, 
tumor-specific MFAP5 + fibroblasts could also secrete 
FN1 and TGF-β to interact with certain receptors of mye-
loid cells to promote tumor progression (Fig. 5D and F) 
[24]. Overall, our findings emphasize that MFAP5 + fibro-
blasts and myeloid cells exhibit complicated intercellular 
interactions that aggravate tumor malignancy. The tar-
geting of tumor-specific cell–cell networks could be a 
promising strategy for CRC treatment.
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MFAP5 + fibroblasts modulate the phenotype 
of C1QC + macrophages through the IL34/CSF1R signal 
pathway
Macrophages are important innate immune cells that 
play a crucial role in maintaining homeostasis [44]. 
Macrophage proliferation and differentiation depend 
on the release of specific cytokines and growth fac-
tors, including Colony Stimulating Factor-1 (CSF1) and 

interleukins [44]. Our intercellular interaction analyses 
demonstrated that the CSF pathway is vital for cellular 
signaling in tumor-associated fibroblast-macrophage-
mediated regulatory networks in tumor tissues. We also 
observed that FABP5 + fibroblasts perform primary func-
tions on C1QC + macrophages in normal tissues through 
CSF1-CSF1R/IL34-CSF1R. However, in tumor tissues, 
C1QC + macrophages receive CSF signaling from both 

Fig. 5 Fibroblasts-myeloid cells based regulatory network detect tumor-specific signaling pathways in CRC. A The circle plots show the overview 
of cell–cell interaction numbers between fibroblasts and myeloid cells in tumor tissues (right) and normal tissues (left) respectively, the broader 
arrow, the more numbers of interactions. B Bar plot of tumor- or normal- specific signaling pathways between fibroblasts and myeloid cells inferred 
by CellChat, red color represents the signals that increased in normal tissues, and blue color represents the interactions increased in tumor tissues. 
C The river plot shows the outgoing communication patterns of certain cells in CRC tissue. D Dot plot of ligand-receptor (L-R) pairs of several 
tumor-specific pathways between fibroblasts (sources) and myeloid cells (receptors). E Bar plot shows the contribution of all L-R pairs in COLLAGEN 
pathway within the tumor tissue. F Heatmap shows dominant senders, receivers, mediators and influencers in TGFβ and FN1 signals of tumor 
inferred by network centrality score
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MFAP5 + and FABP5 + fibroblasts, suggesting an immu-
nomodulatory role in CRC (Fig. 6A–D). Moreover, when 
we visualized the expression of ligands and receptors of 
the CSF/IL34/CSF1R signaling axis, we observed that 
MFAP5 + fibroblasts in normal tissues mainly secreted 
CSF1 to interact with C1QC + macrophages. However, 
in tumors, MFAP5 + fibroblasts could only release IL-34, 
which is another cytokine that binds with C1QC + mac-
rophages through the receptor CSF1R (Fig. 6B). We sub-
sequently applied ST data to validate the existence of 
the IL34-CSF1R signal axis between these cells in CRC 
(Fig.  6E). Accumulating evidence demonstrated that 
IL-34 favors the differentiation of M2-phenotype mac-
rophages in diverse cancers by binding to CSF1R [44, 
45]. Our analyses (Fig.  6F) and previously published 
studies both suggest that C1QC + macrophages demon-
strate high score of M2 signature [46]. Double-staining 
IHC of MFAP5/CD163 and IL-34/CSF1R of continuous 
CRC slices suggested the existence of IL-34/CSF1R axis 
between MFAP5 + fibroblasts and M2-type macrophages 
(Fig.  6G). While this phenotype might be associated 
with tumor immune escape, we hypothesized that the 
change from CSF1 to IL-34 could be important during 
the MFAP5 + fibroblasts mediated promotion of tumor 
malignancy through the driving of the immune evasive 
phenotype of C1QC + macrophages. Moreover, IL-34 
depletion could be an optimal strategy to block this pro-
cess [45, 47]. In the future, in-depth basic research should 
be conducted to identify the key genes involved in this 
process and to develop new therapies to block this signal-
ing pathway and inhibit intra-tumor suppressive immu-
nity in CRC.

Reciprocally pro‑tumorigenic crosstalk 
between MFAP5 + fibroblasts and myeloid cells supports 
tumor progression
C1QC + macrophages are tumor-associated macrophages 
with complement activation, antigen processing and 
presentation [10]. However, the specific signaling net-
work that regulates the function of C1QC + macrophages 
remains unclear as yet. We demonstrated that 
MFAP5 + fibroblasts and C1QC + macrophages are 
closely related. We subsequently investigated whether 
MFAP5 + fibroblasts could modulate the immunomodu-
latory functions of C1QC + macrophages. We observed 

that MFAP5 + fibroblasts were the main senders that 
could release complement C3 to interact with the recep-
tors ITGAM/ITGB2, ITGAX/ITGB2, and C3AR1 of 
C1QC + macrophages in tumor tissues, thus activating 
the complement system (Fig.  7A–C). In order to con-
firm this phenomenon, we visualized the spatial expres-
sion of C3 in colorectal cancer. Our data suggested that 
C3 was co-localized with these cells (Fig.  7D). Hence, 
MFAP5 + fibroblasts might aberrantly activate the com-
plement system of C1QC + macrophages to regulate 
tumorigenesis, development, and metastasis [48–50].

In addition to the regulatory functions of 
MFAP5 + fibroblasts, we examined the signal commu-
nication mediated by myeloid cells. As demonstrated 
in Fig.  7E, EGF signaling was uniquely upregulated in 
tumor-localized MFAP5 + fibroblasts. Myeloid cells 
secrete epidermal growth factor family proteins (HBEGF, 
AREG, and EREG) that can bind to the EGFR receptor. 
This receptor is specifically expressed in MFAP5 + fibro-
blasts. It modulates downstream signal transduction 
pathways (Fig.  7F). EGFR overexpression has been rec-
ognized as a key factor in tumor growth, angiogenesis, 
metastasis, and therapy resistance [51, 52]. Therefore, 
the inappropriate activation of EGFR in tumor-localized 
MFAP5 + fibroblasts could partly account for its malig-
nant behavior. Furthermore, myeloid cells can transmit 
cancer-promoting signals to MFAP5 + fibroblasts via the 
NAMPT-ITGA5/ITGB1 pair (VISFATIN signaling path-
way) (Fig.  7G) [53, 54]. In summary, reciprocal interac-
tions between MFAP5 + fibroblasts and myeloid cells 
activate the immunosuppressive features of tumor-infil-
trating myeloid cells (especially C1QC + macrophages), 
in addition to enhancing the aggressive phenotypes of 
MFAP5 + fibroblasts through a series of cancer-associ-
ated pathways. This makes up a positive loop that pro-
motes tumor invasion in patients with colorectal cancer 
(Fig. 8).

Discussion
Recent studies have increasingly demonstrated the crit-
ical role of TME in CRC development, metastasis, and 
response to therapies [2]. Strategies to therapeutically 
target the TME are considered a promising approach for 
precise tumor treatment [55]. However, previous thera-
peutic strategies still fail to suppress tumor progression 

Fig. 6 MFAP5 + fibroblasts modulate the phenotype of C1QC + macrophages through the IL34/CSF1R signal pathway. A The hierarchy plots of 
CSF signaling pathway network indicate the regulation of MFAP5 + fibroblasts and FABP5 + fibroblasts on myeloid cells in normal or tumor sites. 
B Violin plot of IL34, CSF1, and CSF1R expression of tumor-specific fibroblasts and myeloid cells in distinct tissues (normal or tumor). C Heatmap 
shows dominant senders, receivers, mediators and influencers in CSF signals of tumor inferred by network centrality score. D Bar plot shows the 
contribution of all L-R pairs in CSF pathway within the normal tissue. E Spatial images localize the expression of IL34 and CSF1R which suggest 
that the co-localization of IL34 and CSF1R in CRC slices. F Heat map of M1/M2 phenotype scores of three identified tumor-associated macrophage 
subtypes. G Immunohistochemical double-staining of MFAP5/CD163 and IL-34/CSF1R using continuous slides of CRC tissues (×20, 50 μm)

(See figure on next page.)



Page 14 of 20Peng et al. Journal of Translational Medicine          (2023) 21:405 

Fig. 6 (See legend on previous page.)
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because of the complexity of TME components and far-
ranging intercellular interactions. There is an urgent 
need to identify the interactions among tumor-specific 
cell populations that perform important functions in 
CRC tissues. In recent years, with the emergence of sin-
gle-cell omics and spatial transcriptomics techniques, 
the details of TME biology have been explored in dif-
ferent cancer types. Many cell-to-cell communication 
networks have been associated with tumor malignancy 
[6]. Fibroblasts and myeloid cells are the most abundant 
stromal cells in solid tumors. These cells exhibit exten-
sive crosstalk with each other [7]. An in-depth under-
standing of these interactions could provide a basis for 
therapeutic schemes and drug development. Therefore, 
we integrated scRNA-seq, ST, bulk RNA-seq, and basic 
experiments to decipher the cell–cell interactions of 
fibroblasts and myeloid cells, both at single-cell resolu-
tion and spatial organization (Fig. 9).

Fibroblasts are heterogeneous clusters that have 
been identified in different tumor types, stages, and 
metastatic organs [32]. Recently, many novel fibroblast 
subclusters have been identified with diverse gene sig-
natures and functions. For example, we previously con-
firmed the existence of inflammatory-cancer-associated 
fibroblasts (iCAFs) and myo-cancer-associated fibro-
blasts (mCAFs) in CRC [38]. These have been con-
sidered as key factors for the remodeling of the TME 
into immunosuppressive niche [56, 57]. Other studies 
have identified other fibroblasts with a high expression 
of CD146 [58], α-SMA [59], FAP [24, 59] and Meflin 
[60], that exhibit tumor suppression or promotion ten-
dencies. In this study, we focused on the key role of 
newly identified MFAP5 + fibroblasts in CRC tissues. 
Although there is evidence that MFAP5 expression in 
the stroma is associated with bladder and breast can-
cer malignant behavior [40, 61], there is still a lack of 
direct evidence on how MFAP5 + fibroblasts mediate 
the remodeling of the TME in CRC. We explored the 
biological characteristics of MFAP5 + fibroblasts and 
observed paradoxical findings: MFAP5 + fibroblasts 
mainly exist in normal tissues. However, patients with 
higher infiltration of MFAP5 + fibroblasts in tumor 
regions experienced worse prognosis than those 
with lower infiltration. This suggests the existence of 
tumor-specific factors, such as cell-to-cell interactions, 

that could significantly impact the properties of 
MFAP5 + fibroblasts, thus prompting its pro-tumor 
role.

Accumulating evidence indicates that fibroblasts can 
interact with multiple immune components via the 
secretion of various chemokines, cytokines, and other 
biomolecules. This results in the formation of an immu-
nosuppressive niche that facilitates tumor immune 
escape [5, 24]. Ke et  al. [62] reported that MFAP5 was 
associated with immune infiltration in uterine leio-
myosarcoma. We investigated the relationship between 
MFAP5 + fibroblasts and multiple immune cells, includ-
ing both adaptive and innate immune cells. In order to 
ensure the authenticity of our results, we performed 
analyses on three independent databases and used dif-
ferent computational algorithms to explore this relation-
ship, both in spatial tissue architecture and bulk public 
cohorts. Our findings demonstrated a remarkable cor-
relation between MFAP5 + fibroblasts and macrophages 
for the first time. Our results suggest that fibroblasts 
can recruit monocytes and transform them into M2 
phenotype macrophages or induce immune inhibition 
via multiple key molecules [5]. This might explain the 
unfavorable physiologies of MFAP5 + fibroblasts. How-
ever, considering that macrophages are heterogeneous 
tumor-infiltrating immune cells and their functions are 
largely correlated with the context of the surrounding 
microenvironment [63], more studies are required to 
investigate the tumor-specific macrophage subclusters 
that MFAP5 + fibroblasts mainly interact with. This could 
provide a more direct target for pro-tumor subsets. Using 
bioinformatic analysis and experimental validation, we 
confirmed the close proximity of MFAP5 + fibroblasts 
to C1QC + macrophages in CRC tissues. Previous stud-
ies have demonstrated that C1QC + macrophages are 
enriched with inflammatory signatures [10] which might 
be associated with good clinical outcome [41]. Survival 
analysis demonstrated that patients with high infiltra-
tion of MFAP5 + fibroblasts and C1QC + macrophages 
experience shorter survival times than those with low 
expression of MFAP5 + fibroblasts and high expres-
sion of C1QC + macrophages. Fundamental experi-
ments also suggest that MFAP5 + fibroblast-derived 
microfibrils could attach to C1QC + macrophages in 
border stromal regions and prompt them to interact 

(See figure on next page.)
Fig. 7 Reciprocally pro-tumorigenic crosstalk between MFAP5 + fibroblasts and myeloid cells support tumor progression. A Heatmap of 
COMPLEMENT signal suggest the key role of MFAP5 + fibroblasts in regulating the functions of C1QC + macrophages and other immune cells in 
tumor. B Heatmap shows dominant senders, receivers, mediators and influencers in COMPLEMENT signals of tumor inferred by network centrality 
score. C Bar plot shows the contribution of all L-R pairs in tumor COMPLEMENT pathway. D Spatial transcriptomics visualize the C3 expression at 
spatial tissue architecture. E Dot plot shows the increased signals that tumor-infiltrating myeloid cells could secreted to target MFAP5 + fibroblasts. 
F Violin plot shows the expression of L-R pairs of EGF signaling pathway between fibroblasts and myeloid cells in normal (red color) or tumor (green 
color). G Heatmap shows dominant senders, receivers, mediators and influencers in VISFATIN signals of tumor inferred by network centrality score



Page 16 of 20Peng et al. Journal of Translational Medicine          (2023) 21:405 

Fig. 7 (See legend on previous page.)
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with MFAP5 + fibroblasts. These findings also prove 
that the interactions between MFAP5 + fibroblasts and 
C1QC + macrophages are important factors affect-
ing malignant tumor phenotypes and resulting in worse 
outcomes.

Considering the crucial role of MFAP5 + fibroblasts 
in tumor-driven signaling pathways in the TME, we 
performed intercellular interaction analysis to under-
stand the potential pro-tumorigenic mechanisms. 
Our results revealed several tumor-specific signals 
between MFAP5 + fibroblasts and myeloid cells, par-
ticularly C1QC + macrophages. This suggests that 
MFAP5 + fibroblasts could prompt the M2 phenotype of 
macrophages with the IL34/CSF1R axis [44], supporting 
the immunosuppressive niche through MIF/CD74 sign-
aling [43]. This also results in the formation of a des-
moplastic microenvironment via collagen pathways and 
other intercellular signaling that facilitates unfavorable 
conditions for anti-tumor immunity. In addition, the 
signal co-ordination between MFAP5 + fibroblasts and 
pro-tumorigenic FAP + fibroblasts [24, 32, 59] further 

supports the invasive CRC microenvironment. Recip-
rocally, activated myeloid cells regulate the activation 
of MFAP5 + fibroblasts in a positive feedback mode by 
secreting cancer-promoting ligands that contain EGF 
superfamily proteins and NAMPT. These communica-
tion patterns could be considered as new targets for 
future CRC treatment.

Our study has some limitations, including a small 
sample size. In this study, we investigated the biologi-
cal properties of MFAP5 + fibroblasts in cancer tis-
sues. However, our analyses were based only on a single 
tumor type. In addition, it is still not known whether 
MFAP5 + fibroblasts are conserved subclusters residing 
in distinct cancer types. Other studies have suggested 
that MFAP5 in the stroma is associated with cancer 
invasion in breast and bladder cancers. However, there 
is little direct evidence for the presence of such fibro-
blasts at single-cell resolution. Hence, further stud-
ies are required to elucidate the conserved features of 
MFAP5 + fibroblasts in various cancers.

Fig. 8 Cell-to-cell communication networks between MFAP5 + fibroblasts and tumor-infiltrating myeloid cells in CRC TME. In our analyses, we 
demonstrated that MFAP5 + fibroblasts have mutual interactions with C1QC + macrophages and other myeloid cells. In detail, MFAP5 + fibroblasts 
could release ligands include MIF, TGF-β, FN1 and Collagens to bind with corresponding receptors of myeloid cells so as to remodel the unfavorable 
conditions, besides, MFAP5 + fibroblasts could significantly interact with C1QC + macrophages through IL34/CSF1R and C3/C3AR1/(ITGAX + ITGB2)/
(ITGAM + ITGB2) axes to module C1QC + macrophages phenotype and its immunomodulatory functions in tumor tissues. Reciprocally, myeloid cells 
could also secrete various factors to reshape the malignant behaviors of MFAP5 + fibroblasts by the EGF and VISFATIN signals
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Conclusions
In this study, we combined scRNA-seq, ST, bulk RNA-
seq, and basic experiments to explore the detailed 
landscape of the CRC microenvironment from differ-
ent perspectives. Our results provide comprehensive 
information regarding the physiological functions of 
MFAP5 + fibroblasts, with emphasis on their cell-to-cell 
crosstalk with C1QC + macrophages and other tumor-
infiltrating myeloid cells. This could provide targeta-
ble strategies to overcome unfavorable conditions for 
patients with CRC.
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