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Abstract 

Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiother-
apy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this 
group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical 
outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of 
vital importance for cancer patients to obtain a better prognosis.

Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) 
and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most 
significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other 
types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expres-
sion level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and 
repopulation ability of key gene knockdown cells.

Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes 
(LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prog-
nosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other 
five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation 
resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radia-
tion treatment compared with the control groups.

Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colo-
rectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients under-
going radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopula-
tion, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression.
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Introduction
With the improvement of global average standard of liv-
ing and the ability to diagnosis and treatment, colorectal 
cancer has gradually become the third most common 
tumor in past few decades [1, 2]. The risk factors may 
be related to obesity, lifestyle and genetic factor [1, 2]. 
Except for the improvement of diagnosis, the reason for 
the rise of incidence rate has not been fully understood 
[1, 2]. The treatment of colorectal cancer revolves around 
surgery. Depended on the stage of the disease, strate-
gies may be combined with chemotherapy, radiotherapy, 
biological therapy, and immunotherapy [2]. As a key 
component of local treatment for colorectal cancer, radi-
otherapy, especially in neoadjuvant therapy of rectal can-
cer, aims to reduce local recurrence and improve survival 
for patients [2]. However, it is frequently observed in 
clinical practice that recurring lesions are more resistant 
to radiation than primary tumor and tend to proliferate 
faster. The reason may be that a group of special tumor 
cells were generated during the treatment process, which 
may exhibit resistance to radiation therapy and ultimately 
lead to treatment failure, tumor progression and poor 
prognosis in patients.

The above-mentioned phenomenon is a manifestation 
of tumor plasticity, which is probably related to cancer 
stem cells (CSCs), making tumor adapt to adverse envi-
ronments including anti-cancer treatments induced 
stress, and being observed as therapeutic resistance and 
tumor progression eventually [3–5]. In other words, 
some tumor cells have undergone phenotypic evolution 
or natural selection (therapeutic-resistant subtypes that 
already existed in the early stages of tumorigenesis but 
were not dominant) under the pressure of treatment [3, 
6]. There were also theories describing the treatment-
resistant tumor cells as persistent cells or slow cycling 
cells [7–10]. These cells could escape treatment stress 
and enter a dormant phase during treatment to stop pro-
liferation. When treatment was stopped, they re-entered 
the proliferative cycle and led to tumor recurrence, being 
a major component of treatment-resistant pool. Recently, 
there were also theories calling this process adaptive 
evolution, in which tumor cells increased mutations and 
responded to stress, and healthy subclones were screened 
[11]. This phenomenon has been described in therapy of 
several kinds of cancer, e.g., targeted therapy of lung can-
cer [12], hormone therapy of prostate cancer [13], immu-
notherapy and targeted therapy of melanoma [14]. These 
theoretical models all point to a group of residual drug-
resistant cells, which become the source of therapeutic 
resistance and mediate tumor cells repopulation after 
anti-tumor therapy when sensitive cells died. Although 
radiotherapy is rarely used as an intervention in these 
theoretical models, the course of some colorectal cancer 

patients suggest that radiotherapy may also produce a 
group of radiation resistant cells which participate in 
tumor recurrence (tumor cell repopulation). Therefore, 
searching for biomarkers involved in radiotherapy resist-
ance is of great significance for judging the treatment 
effect and tumor progression.

Given that some colorectal cancer patients have simi-
lar phenomena, from tumor regression after radiother-
apy to recurrence (radiation tolerance), we focused our 
attention on radiation-resistance of colorectal cancer in 
this research. By studying the relationship between radi-
ation-resistance and tumor repopulation, we explored 
some key genes that played a part in both of them, so as 
to predict the prognosis of colorectal cancer. In addition, 
we verified these genes in other types of tumors and in 
virto experiments to determine the reliability in predict-
ing radiation-resistance and tumor progression.

Materials and methods
Project selection and data collection
In order to acquire the necessary data for this study, we 
used the public functional genomics data repository, 
Gene Expression Ominibus. By setting “colorectal can-
cer”, “radiation” and “resistance” as three keywords for 
obtaining desired project, we enrolled series GSE97543 
as our mainly analyzing dataset eventually [15]. In this 
project, gene expression of radiation resistant colorec-
tal cell line and its control group were described, and 
all GEO data were downloaded through package “GEO-
query” of R software [16].

To further get gene expression and clinical data of 
patients, part of cases originated in TCGA (The Cancer 
Genome Atlas) program were involved. We collected 
gene expression data of colon, rectum and rectosig-
moid junction adenocarcinoma (TCGA-COAD, TCGA-
READ) cases, including 644 tumor samples and 51 
normal samples to search target genes with GSE97543. 
Meanwhile, radiation treated TCGA-CO/READ patients 
(n = 35) were set as training set. Patients who received 
external radiotherapy as only adjuvant therapy in BRCA 
(breast carcinoma, n = 38), LUAD (lung adenocarcinoma, 
n = 36), CESC (cervical squamous cell carcinoma and 
endocervical adenocarcinoma, n = 20), HNSC (head and 
neck squamous cell carcinoma, n = 95) and ESCA (esoph-
ageal carcinoma, n = 17) were introduced to be validat-
ing parts. All TCGA data, mRNA expression and clinical 
details were manually downloaded from the website and 
organized by R software.

Founding differential expression genes
Two R packages “limma” and “edgeR” were adopted 
to identify the differential expression genes (DEGs) in 
both databases [17, 18]. |Log2 fold change|≥ 1 and P. 
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value ≤ 0.05 were set as the selection criterion, which 
defined the scope of DEGs in two databases for further 
analysis. And volcano plots were draw by R packages 
“limma” and “ggplot2”. A gene annotation and analysis 
resource website, “Metascape” (https:// www. metas cape. 
org/), was utilized to cluster gene function and to enrich 
pathways related to DEGs [19].

Cox Regression analysis and construction of prognostic 
prediction mode
After acquiring 252 upregulated co-expression genes, 
which were candidates to construct radiation resist-
ance gene panel, between GSE97543 and TCGA-CO/
READ, we involved univariate Cox regression to pick 
out the most relevant genes with PFS (progression-free 
survival) of radiation treated colorectal patients with P. 
value < 0.06, which was set to prevent missing out clini-
cally significant genes that closely approached the con-
ventional significance level [20, 21].

Then, we developed a proportional hazards regression 
analysis (multivariate Cox model) by the following for-
mula using the result of univariate Cox regression.

In this equation, risk score is the mRNA expression 
of each key predictor genes (xi) multiplied by the coef-
ficient (Coefficienti), the latter came from multivariate 
Cox regression analysis. Using the median value of risk 
score that calculated by the formula before, the 35 TCGA 
patients in the training set were divided into two groups, 
high risk group and low risk group. Based on this group-
ing routine, we observed the expression levels of key 
genes in the two groups and established a survival anal-
ysis between PFS and risk score. ROC (receiver operat-
ing character) curves were implemented to evaluate the 
predictive ability of radiation resistance gene panel using 
R package “survivalROC”, and the AUC (area under the 
curve) values were calculated to visualize inspection 
capabilities.

In order to test whether risk score was an independent 
prognostic factor, we incorporated the age, gender, stage, 
T, N, M status and risk score of 35 TCGA patients into 
the multivariate Cox regression model, so as to exclude 
confounding caused by other clinical features. Further-
more, R package “rms” was used to make a nomogram 
model, showing above clinical information.

Testing the applicability of radiation resistance gene panel
Besides TCGA-CO/READ, we further chose patients 
who received radiotherapy as only adjuvant therapy from 
other TCGA projects to check validity of radiation resist-
ance gene panel. Logistic regression models were built by 

Risk score =
∑n

i=1
(Coefficienti × xi)

R package “glmnet”, and different gene combination mod-
els were listed. Several best models and their AUC values 
of different cancer types were displayed respectively.

WGCNA analysis
The R package, “WGCNA” (Weighted Gene Co-expres-
sion Network Analysis), was utilized to build a co-expres-
sion network targeting DEGs. This method aims to find 
co-expressed gene modules, and to explore the relation-
ship between gene networks and the phenotype of inter-
est, as well as the core genes in the network [22]. It is 
divided into two parts: expression cluster analysis and 
phenotypic correlation.

The specific method was that selecting patients who 
received radiotherapy in TCGA-COREAD, and incorpo-
rating the top ten thousand DEGs with the largest vari-
ance of these patients into the cluster analysis of gene 
expression. After clustering the samples and eliminat-
ing outliers, we determined the soft-thresholding power 
according to the algorithm, which was used to construct 
a scale-free co-expression network and determine gene 
modules. Each color represented a module, and each 
module contained genes with similar expression patterns. 
Dynamic tree cut analysis was developed to represent the 
classification of genes, and modules with high similar-
ity were fused to construct merged dynamic clusters. In 
addition, different modules were established the correla-
tion to two clinical traits, PFS and risk score, and mod-
ules that contained key radiation resistant genes were 
selected to carry out GO analysis.

Cell culture
Immortalized human colorectal tumor cell lines (HCT 
116 and HT-29) and 293  T cells used in this research 
were bought from cells bank of the Chinese Academy of 
Science (Shanghai, China). HCT 116, HT-29 and 293  T 
cells were seeded in completed DMEM medium (Wisent, 
China). 10% Fetal Bovine Serum (Wisent, China) and 1% 
Penicillin–Streptomycin (Wisent, China) were added to 
the completed DMEM medium. All cells were cultured in 
5%  CO2 at 37 ℃.

Cell Irradiation and colony formation assay
An X-Ray generator (Faxitron, USA) for laboratory was 
used to treat cells. And the dose rate was 3 Gy/min. HCT 
116 and HT-29 were seeded in six well culture dishes 
(100, 200, 1000, 2500 and 10,000 cells/well) and incu-
bated eight hours (overnight) until adherent before irra-
diation. After adherent, cells were treated with various 
doses (0, 2, 4, 6, 8 Gy) of X-Ray respectively. All cells were 
fixed by paraformaldehyde of 4% fortnight later. And 
then, they were stained by crystal violet. This experiment 
was repeated three times independently. Any colony that 

https://www.metascape.org/
https://www.metascape.org/
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contained fifty cells or more were counted and linear-
quadratic model in Graphpad Prism 8 was employed to 
calculate the surviving fraction.

Detection the expression level of mRNA by RT‑qPCR
Total mRNA was extracted by using RNA Easy Fast Cell 
Kit (Tiangen, China). cDNA was reversely transcribed 
from mRNA by using the RT Kit. Q-PCR was conducted 
by using TB Green Kit. Relative mRNA level was calcu-
lated by the formula 2 − △△CT. The experiments were 
repeated three times. Both kits mentioned above were 
from Takara, Japan. Specific primers information is clari-
fied in supplemental material. GAPDH, an internal refer-
ence gene, were used as a control for standardization.

ShRNA transfected and knockdown cell lines constructed
All shRNA sequences were got from MERCK website. 
When the confluence of 293  T cells in the cell culture 
dish reached 80–90%, we mixed the target plasmid con-
taining shRNA, tool plasmid psPAX2, pMD2.G and GFP 
fluorescent plasmid into the 400 μL Opti-MEM medium 
according to the protocol proportion, and then added the 
mixed system into 293 T cell culture medium. After 48 h, 
the virus solution from 293  T cells was obtained and 
added to HCT116 and HT29 cell culture medium with 
10 μg/mL polybrene. After another 48 h, the virus group 
cells and control group cells were treated with 1.5  μg/
mL purinomycin (the tool plasmid contained purino-
mycin-resistance gene to ensure that these cells success-
fully infected by the virus would not be killed). When the 
control cells were all killed by purinomycin, the surviv-
ing cells in virus group were thought to be successfully 
infected by the virus. Western Blot experiment was car-
ried out to detect the expression level of genes.

Western blot experiment
Cell protein was obtained by using cracking liquid to 
crack the cells. The obtained protein denatured by boil-
ing, and SDS-PAGE gel was used for electrophoresis 
to separate proteins with different molecular weights. 
After electrophoresis, SDS-PAGE gel and PVDF (poly-
vinylidene fluoride) paper were used to constructed gel-
matrix sandwich to transfer. After that, the PVDF paper 
was incubated successively with the first and second anti-
bodies, and exposed in developer to obtain the image of 
the target band. These experiments were repeated three 
times independently. The blank controls were wild type 
HCT116 and HT29 cells without any treatment. The 
negative control referred to two types of cells transferred 
into empty plasmids.

R Packages and statistic analysis
We conducted this research mainly based on R and R 
studio software. R packages employed include: “clus-
terProfiler”, “GEOquery”, “org.Hs.eg.db”, “HsAgilentDe-
sign026652.db”, “R.utils”, “rjson”, “jsonlite”, “reshape2”, 
“ggfortify”, “limma”, “edgeR”, “GOplot”, “stringr”, “ggplot2”, 
“dplyr”, “pheatmap”, “glmnet”, “survival”, “survminer”, 
“rms”, “cowplot”, “WGCNA”, “ROCR”, “survivalROC”. The 
difference in progress-free survival in different groups 
of patients was analyzed using log-rank test in Graph-
Pad Prism 8, and two tailed student’s t-test was used to 
compare mean values. * for P ≤ 0.05; ** for P ≤ 0.01; *** 
for P ≤ 0.001. Statistical significance was set at P ≤ 0.05 
in most conditions, and specific principles are n.s for not 
significant.

Results
Sequencing data analysis of radiation resistant cells 
and TCGA patients
In order to study the genes that played a key role in radio-
therapy resistance, we selected the dataset GSE97543 as 
the research object [15]. In this database, the radiation-
resistant human rectal adenocarcinoma cell line SW1463 
was established through repeated radiation exposure, 
named SW1463RES. Compared with control cells after 
4  Gy radiation, SW1463RES presented 710 upregulated 
genes and 1954 down-regulated genes, when cut-off val-
ues were set as |Log2 fold change|≥ 1 and P. value ≤ 0.05 
in DEGs analysis (Fig.  1a, Additional file  6: Table  S1). 
In order to clarify the function of the obtained upregu-
lated genes, we used the Metascape tool website to per-
form Gene Ontology (GO) analysis and pathway analysis 
on this group of genes, which primarily enriched in: (1) 
cell cycle related pathways (Cell cycle, Mitotic cell cycle 
process, Mitotic G2-G2/M phase, E2F pathway, FOXM1 
pathway, DNA IR-damage and cellular response via 
ATR); (2) DNA replication and repair related pathways 
(DNA replication, DNA biosynthetic process, DNA 
repair, Fanconi pathway and Homologous recombina-
tion repair); (3) stress response pathways (response to 
xenobiotic stimulus) (Fig.  1b). According to the results 
of enrichment analysis, radiation resistant SW146RES 
cells exhibited stronger DNA damage repair capabilities 
than control cells, which were in accordance with previ-
ous views [23, 24]. Because these genes that represented 
radio-resistance may promote tumor to recover from the 
stress state caused by X-Ray beam more quickly, they 
were inclined to lead tumor repopulation after radia-
tion. Therefore, we further conducted a DEGs analysis, 
tumor vs. normal tissue, in the TCGA-CO/READ data-
bases, and acquired 3669 upregulated genes while 5477 
down-regulated genes were spotted (Fig.  1c, Additional 
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file 7: Table S2). By using the Venn plot to intersect the 
upregulated genes of two groups, we finally found 252 
co-upregulated genes (Fig.  1d), and numerous similar 
pathways were enriched in cell cycle, DNA replication 
and repair (Additional file  1: Figure S1). The specific 
items we selected in the TCGA and GEO databases were 
listed in Fig. 1e, and the detailed process of how we used 
these genes expression data to build our practice was 
described through a visual flow chart (Fig. 1f ). These 252 
co-upregulated genes were considered as candidates for 
constructing the radiation-resistance gene panel.

Screening key radiation‑resistance genes related to clinical 
outcomes in colorectal cancer
To investigate the key genes that had the greatest 
impact on the prognosis of colorectal cancer patients 
who undergoing radiotherapy, we selected 35 colorec-
tal cancer patients who received radiotherapy in TCGA 
database to develop univariate and multivariate Cox pro-
portional hazard regression models (baseline information 

of patients in Additional file 8: Table S3). Among the 252 
co-expressed upregulated genes mentioned above, a total 
of five genes (LGR5, KCNN4, PTRH1, CENPH, TNS4) 
were considered to be associated with the patients’ PFS 
in the result of univariate Cox regression model. And 
among the five genes, LGR5, KCNN4, CENPH, and 
TNS4 were risk factors. Therefore, we further included 
those four genes in multivariate regression analysis to 
construct a gene panel related to radiation resistance. 
Then, we used coefficients in the multivariate Cox regres-
sion and the mRNA expression of key genes to establish 
a formula to calculate the risk score: Risk score = (CEN
PH*0.2551 + LGR5*0.05586 + KCNN4*0.02614 + TNS
4*0.01099). Hazard ratios superior to 1 indicates that 
patients with high expression of these four genes are 
more likely to develop tumor progression after receiving 
radiotherapy (Fig. 2a). The heatmap clarified the expres-
sion level of four genes in each single patient, and all 
35 patients were divided into two groups based on the 
median risk score, with 17 patients in high-risk group 

Fig. 1 Genetic profiling and overall design to explore radiation resistance and tumor repopulation. a Volcano plot of radiation resistant cells vs. 
control cells in GSE97543. |Log2 fold change|≥ 1 and P.value ≤ 0.05 were set as cut-off values. Red dots were recognized as upregulated genes, while 
blue as down-regulated ones in DEGs analysis. b 710 upregulated genes were imported into Metascape website for pathway enrichment analysis. 
c Volcano plot of tumor vs. normal tissues in TCGA-CO/READ database. Cut-off values and colors were same as before. d Venn diagram showed the 
intersection of the upregulated genes in the TCGA and GEO databases. 252 co-upregulated genes were spotted. e Details of the data included in 
this study. Resistant rectal adenocarcinoma cells and control cells included in GEO database were both treated by 4 Gy radiation. TCGA database 
contained colon and rectal adenocarcinoma patients. f Visualization of the overall experimental design. 252 co-upregulated genes were used to 
screen key genes to form a gene panel
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and the rest in low-risk group (Fig. 2b, c). As depicted in 
Fig. 2c, patients with higher risk scores after radiotherapy 
were more likely to occur tumor progression, and their 
median progression-free survival were relatively short. 
Specifically, when we constructed a progression-free sur-
vival curve on account of the expression of a single key 
gene, only one gene could obtain a statistically significant 
result (KCNN4, P = 0.0042, Additional file 2: Figure S2); 
but when we grouped patients according to risk score, 
high-risk group had a significantly higher progression 
rate in 3 years, 5 years and even longer periods than the 
low-risk group (P = 0.0001, HR = 6.402) (Fig.  2d), prov-
ing the superior performance of this prognostic model. 
Based on the radiation-resistance gene panel, ROC curve 
was introduced to reflect this model’s ability in predict-
ing prognosis, with the AUC of 1, 3 and 5- year curves 
reaching to 0.87, 0.94 and 0.9 respectively, which further 
indicated a reliable predictive ability (Fig. 2e).

In order to observe the relationship between remain-
ing clinical characteristics and risk score, we established 
a multivariate regression model (C index = 0.858), includ-
ing age, gender, stage, T, N, M levels and chemotherapy, 

which indicated that risk score had a significant asso-
ciation with PFS (P = 0.001) (Additional file  3: Figure 
S3A). The nomogram was utilized to sketch above men-
tioned results, combining the risk score and other clini-
cal records, and offered a quantitative tool to predict the 
probability of progression for each patient (Additional 
file 3: Figure S3B). What mentioned above suggested the 
independent prognostic function of risk score (Addi-
tional file 9).

Four genes as the best combination in predicting tumor 
progression
To further verify the reliability of the radiation-resist-
ance gene panel, we established a multivariate logis-
tic regression analysis to evaluate its efficacy to predict 
tumor progression after radiotherapy. This inspection 
method can reflect the relationship between gene panel 
and tumor progression more intuitively. By building a 
series of regression models with a single gene or combi-
nations with multiple genes, we compared the AUC val-
ues in various situations (Fig.  3a). Generally speaking, 
the AUC values of combinations with two or more key 

Fig. 2 Construction of radiation-resistance gene panel in CO/READ patients to predict prognosis. a Forest map of four candidate genes that can 
predict radiotherapy prognostic. b The heat map matrix showed the expression of four genes in 35 enrolled patients who were separated in two 
risk group by median score. Red-blue represented the level of expression from high to low. c Risk score and PFS distribution of enrolled patients. d 
Survival curves of the two groups were drawn based on PFS and follow-up time. e ROC curve validated the prognostic efficiency in one, three, and 
5 years. ROC, receiver operating characteristic. AUC, area under curve
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genes were higher than that of a single gene. The AUC 
value of a single candidate gene ranged from 0.513 for 
TNS4 to 0.755 for LGR5. Among the various combina-
tions, the one that included all four key biomarkers had 
the highest AUC value, 0.827, representing the best pre-
dictive ability (Fig. 3b). And Fig. 3c–e showed three com-
binations with AUC values slightly lower than the highest 
one, reaching 0.823, 0.817 and 0.801 respectively. The 
data obtained through the above regression models sup-
ported our hypothesis that four key genes were partici-
pated in radiation resistance of colorectal cancer patients 
and associated with poor PFS. They may also involve in 
past-radiotherapy tumor repopulation given the intimate 
connection between gene panel and PFS.

Applying WCGNA to link radiation‑resistant gene panel 
and clinical characteristics
After clarifying the reliability of the radiation resist-
ance gene panel in predicting the tumor progression of 

colorectal cancer patients after radiotherapy, we brought 
into the weighted gene co-expression network analy-
sis (WGCNA). In this way, we could further explain the 
correlation between gene panel, PFS and risk score, as 
well as clustering genes with similar expression patterns 
to key genes. And the top 10,000 DEGs with the largest 
variance employed in WGCNA were listed in Additional 
file 10: Table S5.

First, we set the scale free topology model fit R^2 
cutoff value to 0.9, and pick beta = 9 as the soft thresh-
old power, building a scale-free network analysis on this 
basis (Fig. 4a). By merging modules with similar expres-
sion profiles in the dynamic tree cut, we eventually got 
a merged one composed of 13 modules (Fig.  4b). The 
quantitative connection between each module and clini-
cal trials, PFS and risk score, was shown in Fig. 4c. Gen-
erally, PFS and risk score shown a negative correlation 
trend in post-radiotherapy colorectal cancer patients, 
providing evidence for the effectiveness of gene panel in 

Fig. 3 Radiation-resistance gene panel containing four key genes was the best prognostic prediction model. a All gene combinations and AUC 
values corresponding to each one calculated by multivariate logistic regression model. The model built by all four genes had the highest AUC value, 
representing the best prediction effect. b-d ROC curves of the best four combinations in predicting clinical outcomes of CO/READ patients after 
radiotherapy. AUC values were distributed between 0.801 and 0.827

(See figure on next page.)
Fig. 4 Validating the correlation between clinical trials and radiation resistance gene panel by weighted gene co-expression network. a Scale 
independence and mean connectivity were utilized to pick up the soft threshold of WGCNA (power = 9). b The top 10,000 genes of CO/READ 
patients who received radiotherapy were included to build cluster tree. Similar genes were clustered in gene modules represented by colors 
(dynamic tree cut), and similar modules were fused to form “merged dynamic”. c Heatmap matrix was used to indicate the relationship between 
gene modules and clinical trials. Gene modules were listed in rows, while PFS and risk score were listed in column. Correlation and P.value were 
marked in each grid. d Gene modules corresponding to the four genes, and a brief overview of gene functions. e–h Dot chart described pathways 
enriched by GO analysis. LGR5, KCNN4, TNS4 and CENPH were classified into greenyellow e, salmon f, brown g and grey h modules respectively. 
Gene counts expressed by dot size and P.value by color were listed next to each graph
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Fig. 4 (See legend on previous page.)
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forecasting radiation resistance and tumor repopulation. 
Four key genes in the gene panel were clustered into four 
different modules respectively (Fig. 4d). Detailed group-
ings and correlation index (Cor.) were as follows. KCNN4 
was clustered in salmon module with 0.119 risk score 
Cor. and − 0.05 PFS Cor., while TNS4 in brown module 
with 0.206 risk score Cor. and 0.036 PFS Cor. For these 
two genes, high risk score corresponded to a relatively 
negative outcome in PFS. Although LGR5 in green-yel-
low module (0.032 risk score Cor., 0.115 PFS Cor.) and 
CENPH in grey module (−  0.099 risk score Cor., 0.089 
PFS Cor.) were classified into the low risk score and 
good PFS outcome modules, the two should be risk fac-
tors according to hazard ratios in Cox regression models 
(Fig. 2a). Moreover, GO enrichment analysis was carried 
out on the genes in these four modules. And the results 
were mainly presented as cell cycle control related path-
ways and activation of immune related pathways caused 
by the release of intracellular substances in stress status 
after radiotherapy (Fig. 4e–h).

Validating the correlation of radiation‑resistance gene PANEL 
and tumor repopulation in other types of tumors and in vitro
In addition to establishing and testing gene panels in 
colorectal cancer patients, we selected patients in other 
TCGA projects and used a series of in vitro experiments 
to further illustrate the sensitivity and specificity of gene 
panels in predicting radiotherapy resistance and tumor 
repopulation. Among other types of tumors in the TCGA 
database, we chose BRCA (n = 38), LUAD (n = 36) and 
CESC (n = 20) patients who received radiotherapy as the 
only adjuvant treatment to further proof our hypothesis. 
Multivariate logistic regression analysis was established 
in patients of the three kinds of tumor as well, and gene 
combinations with top 5 AUC values of each cancer were 
listed in Fig.  5a, c and e. As for breast cancer patients 
who received radiotherapy, the predictive model contain-
ing all four genes reached to the highest AUC value, 0.974 
(Fig.  5b). Prognostic model without LGR5 worked best 
in LUAD patients, with an AUC value of 0.861 (Fig. 5d). 
In CESC patients, the highest AUC value of 0.745 was 
a model constructed by KCNN4 and TNS4 (Fig.  5f ). In 
HNSC and ESCA patients, the gene panel also showed 
acceptable predictive ability (Additional file 4: Figure S4).

Besides, two colorectal cancer cell lines, HT29 and 
HCT116, were selected for clonogenic formation assay. 
The results showed that the colony formation ability of 
HT29 was significantly higher than that of HCT116 after 
being exposed to various doses of radiation, which meant 
HT29 cells showed more resistant to radiation (Fig.  5g, 
Additional file 4: Figure S4). In parallel, the basic expres-
sion of radiation-resistance genes in two cells was gener-
ally consistent with our expectation, except that KCNN4 
had a higher baseline in HCT116 (Fig. 5h).

Radio‑sensitivity of gene knockdown colorectal cell lines
In order to further confirm the role of the four key genes 
we found in radio-sensitivity, we constructed four gene 
knockdown cell lines respectively by using shRNA, and 
HCT116 cell lines with better knockdown effect were 
selected through Western Blot experiments (Fig.  6a). 
Then, we carried out clone formation assay with these 
cells (Fig.  6b). Compared with the control cells trans-
fected with empty plasmid (NC shRNA), a decreased 
clonogenic ability of CENPH and LGR5 knockdown cells 
could be observed in the untreated group, while the abil-
ity of KCNN4 and TNS4 knockdown cells was not sig-
nificantly affected (Fig. 6c). However, when treated after 
8 Gy irradiation, CENPH knockdown cells could hardly 
form clone, and the other three gene knockdown cells 
could only form few clones (Fig.  6b). And the clono-
genic ability of all knockdown cells decreased unexpect-
edly after radiation treatment compared with the control 
groups (Fig.  6c). The same gene knockdown and clono-
genic assay for further validation were also carried out in 
Ht29 cells (Additional file 5: Figure S5).

Discussion
Resistance to therapy, which contributes a lot to poor 
prognosis of cancer patients, is an unavoidable part of 
cancer treatment, and this situation is most common in 
patients with recurrence and metastasis. Targeted ther-
apy and chemotherapy are the hardest hit areas for ther-
apy resistance and tumor relapse [25–27]. It is ordinary 
for tumor with a strong initial response to eventually 
develop into a drug resistant one [25]. Under the stimu-
lation of treatment, drug-resistance tumor cells that suc-
cessfully escape cytotoxicity become the dominant group 
in tumor repopulation [3, 6, 25]. Traditional theories 

Fig. 5 Validating in other TCGA patients with different tumors and colorectal cell lines. a, b The top five candidate gene combinations with AUC 
values in TCGA breast cancer patients (a), and ROC curve of the best prognostic model (BRCA, n = 38) (b). c, d The top 5 combinations in lung 
adenocarcinoma patients (c) and the best ROC curve (LUAD, n = 36) (d). e, f The top 5 combinations in cervical cancer patients (e) and the best 
ROC curve (CESC, n = 20) (f). g HT-29 and HCT 116 cells were used for clonogenic formation assay, and the results were displayed through a linear 
quadratic model. The experiment was repeated three times independently, and statistics were performed by two-tailed ANOVA test. **P ≤ 0.01; 
***P ≤ 0.001. h Detecting basic mRNA expression of four key genes in two kinds of cells by RT-qPCR. Each sample was repeated three times 
independently and standardized by GAPDH. ***P ≤ 0.001

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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believed that this group of cells acted as cancer stem cells 
(CSCs) to mediate tumor relapse through genetic pro-
cesses [28, 29], while recent research results used per-
sistent state or slow cycling state, a diapause-like slow 
proliferation state that mediates relapse through non-
genetic mechanisms, to describe this group of cells [7, 8, 
10, 30]. Similarly, some primary tumors that were origi-
nally sensitive to radiotherapy show resistance behav-
ior after recurrence in clinical practice, indicating that 
radiation resistant tumor cells are the culprit of tumor 
repopulation after radiotherapy. Therefore, our research 
focused on the role of radiation-resistance cells in tumor 
repopulation after radiotherapy (Additional file 11).

To explore this question, our attention focused on 
radiation resistant colorectal cancer cells, which were 
the consequent of repeated induction by radiation. In 
our previous research, we screened the targeted therapy 
dataset of lung cancer to predict the efficacy of radiother-
apy [31]. In this study, we used a radiation related dataset 
and conducted more complete experimental verifica-
tion. Through the integration and differential analysis of 
sequencing data from radiation resistant colorectal can-
cer cells as well as TCGA tumor and normal tissue data of 

colorectal cancer patients, the co-upregulated genes were 
spotted. While representing increased resistance to radi-
otherapy, this group of genes also represented a stronger 
tumor proliferation capability. Based on the TCGA train-
ing set of 35 colorectal cancer patients undergoing radio-
therapy, we developed a gene panel containing four genes 
by condensing these co-upregulated genes. And predic-
tive ability of the gene panel was validated through five 
different datasets and in vitro experiments, to make the 
verification process more convincing.

In this work, GO analysis of the obtained 710 upreg-
ulated genes in resistant cells clarified that cell cycle, 
DNA replication and repair pathways were significantly 
enriched, which indicated that resistant cells were timely 
and effective in dealing with DNA damage than sensitive 
cells (Fig.  1b). But whether faster recovery from DNA 
damage response meant stronger proliferative capacity 
was largely unknown. Therefore, we included the TCGA-
COREAD database (tumor vs. normal tissues) that could 
reflect tumor proliferation ability into the analysis, and 
found a total of 252 co-upregulated genes intersecting 
with GEO dataset, implying the tendency of radiation-
resistance cells to participate in tumor repopulation 

Fig. 6 Radio-sensitivity of gene knockdown HCT 116 cell lines. a Verification of gene expression in knockdown cells by Western Blot experiments. 
b Clonogenic assay results of untreated group and 8 Gy radiation group. c Analysis of Clonogenic assay. n.s. for P > 0.05, * for P ≤ 0.05, ** for P ≤ 0.01, 
*** for P ≤ 0.001



Page 12 of 15Song et al. Journal of Translational Medicine          (2023) 21:390 

(Fig.  1d). Enrichment analysis of these co-upregulated 
genes showed that pathways related to cytokinesis were 
activated (Additional file 1: Figure S1). This is consistent 
with previous studies on radiation resistant cells, which 
hold the view that cancer stem cells were more resist-
ant to radiation, especially manifesting in DNA dam-
age repair and ROS scavenging capabilities, and their 
stemness characteristics were closely related to acceler-
ated regeneration during or after treatment [24, 32, 33].

In order to further target the radiation-resistance genes 
closely related to tumor repopulation after radiotherapy, 
we used multivariate regression analysis to condense 252 
co-upregulated genes and established a prognostic pre-
diction system, which consisted of four key genes (LGR5, 
KCNN4, TNS4, CENPH), based on the TCGA colorectal 
cancer patients (Figs. 2 and 3). Meanwhile, four high-risk 
genes related to bad PFS were verified their prognostic 
ability in BRCA, LUAD, CESC, ESCA and HNSC patients 
(Fig. 5 and Additional file 4: Figure S4).

LGR5 (Leucine-rich repeat containing G protein-cou-
pled receptor), which is regarded as a marker of adult 
stem cells, is a gene encoding for a composition of the 
Wnt receptor complex [34, 35]. After activation, LGR5 
recruits the LRP receptor complex which can bind to 
Wnt ligand [36]. And β-catenin is then further accumu-
lated and transported to the nucleus binding with TCF/
LEF family of transcription factors, which induce the 
expression of Wnt target genes, including C-myc and 
cyclinD1, stimulating tumor cell proliferation, EMT and 
other processes [36]. These are confirmed in many stud-
ies. A recent study revealed that LGR5 + colon CSCs were 
responsible for driving tumor re-growth after ablation 
[37]. And LGR5 knockdown reduced tumor invasion and 
migration and blocked EMT by inhibiting the Wnt/β-
catenin pathway, in both breast cancer and glioma [38, 
39]. In another study about 5-Fu induced drug-resistant 
colorectal cancer cells, authors found that LGR5 + tumor 
cells were significantly enriched in pool of resistant cells 
by constructing an organoid model, which was similar 
to our analysis that LGR5 was highly expressed in radio-
resistant cells [40].

KCNN4, a potassium channel protein activated by 
Ca2 + , is implicated in the promotion of cell invasion 
and cell proliferation, and has been considered as a poor 
prognostic factor for thyroid cancer [41], pancreatic can-
cer [42, 43], lung cancer [44] and glioblastoma [45]. AP-1, 
as a transcription factor induced by various stress, pro-
motes the overexpression of KCNN4, which may depend 
on the Ca2 + /MET/AKT axis to exert its function [46]. It 
was reported that KCNN4 regulated calcium ion signals 
to influence the cell cycle arrest and promote the repair 
of damaged DNA in glioma, thereby increasing the radio-
resistance of tumors [45, 47]. What’s more, evidence 

also shown that KCNN4 was upregulated by PRL-3 to 
promote the proliferation of colorectal cancer cells, and 
contributed to the invasion and metastasis of colorec-
tal cancer by participating in the PRL-3 mediated EMT 
process [48, 49]. Various evidence indicates that KCNN4 
is an important factor in radiation resistance and tumor 
proliferation.

TNS4 is a focal adhesion molecule that belongs to the 
tensin family, and it is significantly up-regulated in a vari-
ety of gastrointestinal tumors and lung cancer [50–52]. 
It regulated cell survival, proliferation, and migration 
through increased MET protein stability in colorectal 
cancer [53]. Moreover, TNS4 expression was significantly 
increased in hepatocellular carcinoma and intrahepatic 
cholangiocarcinoma and was positively feedback-reg-
ulated by KRAS and SOX17 to stimulate migration and 
proliferation [54, 55]. In addition, TNS4 could inhibit 
the degradation of EGFR, a molecule related to tumor 
cell proliferation and apoptosis inhibition, through post-
translational modification, and prolonged its function 
[56]. These are in agreement with the higher survival and 
proliferation capacity of radiation-resistant cells in our 
research.

As one of the essential components of active kine-
tochore, overexpression of centromere protein H 
(CENPH) in human colorectal cancer was shown to be a 
major cause of chromosomal instability (CIN) [57]. This 
state is an important boost in driving tumor cells to pro-
duce anti-therapeutic mutations and promoting tumor 
evolution [58, 59]. And CENPH has been considered to 
be associated with tumor progression and poor progno-
sis in NSCLC [60], tongue cancer [61], esophageal can-
cer [62] and gastric cancer [63]. And the effect of CENPH 
may be highly related to Survivin, an inhibitor of apopto-
sis protein family, which helps tumor cells to survive and 
restore proliferation under harmful stress [61, 63]. Mean-
while, knockdown of CENPH retarded the growth of 
Hep3B, hepatic carcinoma cell, subcutaneous xenograft, 
and decreased the expression of Ki-67 and BCL-2 [64]. 
High expression of this gene in radiation-resistant cells 
probably indicates enhanced proliferation capability. A 
brief description of four key genes was shown in Fig. 4d.

There are still some limitations that need to be further 
improved in this study. Firstly, the gene panel needs to be 
validated in patient cohorts. The validation part of this 
study relies on TCGA clinical data and in  vitro experi-
ments, which cannot fully represent the complexity and 
heterogeneity of human tumors. Secondly, the possible 
mechanisms involved in key genes are needed to be clari-
fied. Research on mechanisms may throw light on these 
key genes to become therapeutic targets. To make up 
for these shortcomings in the future study, we hope to 
further include large sample size and well characterized 
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clinical patient cohorts to test the ability of the gene 
panel in predicting the prognosis of colorectal cancer 
patients receiving radiotherapy. Through real-world clini-
cal research, we will gain a more specific understanding 
of how the obtained gene panel will guide treatment deci-
sions. And through sequencing technology, tumor biopsy 
from patients can also help us understand mechanisms of 
radiation resistance and tumor repopulation.

Conclusions
In conclusion, through the sorting and analysis of the 
radiation resistance projects in the GEO database and 
tumor vs. normal tissue project in TCGA-COREAD 
database, we established a gene panel (LGR5, KCNN4, 
TNS4 and CENPH) in colorectal cancer patients receiv-
ing radiotherapy. It reflected the relationship between 
radiation- resistance and tumor repopulation, and was 
verified to be an acceptable indicator of prognosis for 
colorectal cancer. These molecules may become new tar-
gets to predicate tumor repopulation after radiotherapy 
for colorectal cancer patients.
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