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Abstract 

Background The tumor‑adipose microenvironment (TAME) is characterized by the enrichment of adipocytes, 
and is considered a special ecosystem that supports cancer progression. However, the heterogeneity and diversity 
of adipocytes in TAME remains poorly understood.

Methods We conducted a single‑cell RNA sequencing analysis of adipocytes in mouse and human white adipose 
tissue (WAT). We analyzed several adipocyte subtypes to evaluate their relationship and potential as prognostic 
factors for overall survival (OS). The potential drugs are screened by using bioinformatics methods. The tumor‑pro‑
moting effects of a typical adipocyte subtype in breast cancer are validated by performing in vitro functional assays 
and immunohistochemistry (IHC) in clinical samples.

Results We profiled a comprehensive single‑cell atlas of adipocyte in mouse and human WAT and described their 
characteristics, origins, development, functions and interactions with immune cells. Several cancer‑associated adi‑
pocyte subtypes, namely  DPP4+ adipocytes in visceral adipose and  ADIPOQ+ adipocytes in subcutaneous adipose, 
are identified. We found that high levels of these subtypes are associated with unfavorable outcomes in four typical 
adipose‑associated cancers. Some potential drugs including Trametinib, Selumetinib and Ulixertinib are discovered. 
Emphatically, knockdown of adiponectin receptor 1 (AdipoR1) and AdipoR2 impaired the proliferation and invasion 
of breast cancer cells. Patients with AdipoR2‑high breast cancer display significantly shorter relapse‑free survival (RFS) 
than those with AdipoR2‑low breast cancer.

Conclusion Our results provide a novel understanding of TAME at the single‑cell level. Based on our findings, several 
adipocyte subtypes have negative impact on prognosis. These cancer‑associated adipocytes may serve as key prog‑
nostic predictor and potential targets for treatment in the future.
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Background
Adipose tissue is a highly metabolic organ that regulates 
energy balance in the body. In the context of cancer, adi-
pose tissue can be found in close proximity to tumors and 
tumors can grow in the vicinity of or metastasize to adi-
pose tissue, which helps to form a unique tumor micro-
environment called TAME. TAME link tumor growth 
with obesity and other metabolic disorders [1]. Different 
types of non-malignant cells are present in the TAME, 
mainly containing endothelial cells, adipocytes, immune 
cells, and other stromal cells. These stromal cells interact 
with malignant cells and contribute to tumor progres-
sion, metastasis, angiogenesis and therapeutic resistance. 
Mechanistically, the complex and dynamic pathways like 
deposition of extracellular matrix, metabolic regulators, 
cytokine responses and immunological states are respon-
sible for tumor development.

WAT is the type of fatty tissue found at anatomic sites. 
The major WAT depots are classified according to their 
anatomic location as either subcutaneous adipose tis-
sue (SAT) or visceral adipose tissue (VAT). Adipocytes, 
as the most dominant component of WAT, are consist of 
mature adipocytes and adipose stem and progenitor cells 
(ASPCs), which are the cells that give birth to mature 
adipocytes [2]. Similarly, adipocytes are the predomi-
nant component in the TAME, in which tumor cells co-
opt adipocytes, converting them into cancer-associated 
adipocytes (CAAs) [1]. CAAs have been proved to play 
tumor-promoting role in diverse type of cancers [3–5]. 
CAAs create a tumor-favoring ecosystem via supplying 
high-energy metabolites, recruiting immunosuppres-
sive cells, impairing the functions of T cells and activat-
ing angiogenesis with endothelial cells [6]. Hence, CAAs 
display the potential value as a prognostic factor and 
therapeutic target. For example, in the case of pancreatic 
cancer, the transformation of adipocytes into CAAs has 
been demonstrated to enhance malignant traits through 
the expression of SAA1[4]. Likewise, in breast cancer, 
CAAs exert a tumor-promoting effect by releasing mul-
tiple adipokines such as leptin and adiponectin [3, 6]. 
However, the heterogeneity and plasticity of CAAs in 
type-specific cancer remain unclear. Likewise, the defini-
tive origin of CAAs and potential crosstalk between 
CAAs and other TAME components during cancer pro-
gression requires further investigation.

The advent of single-cell RNA sequencing (scRNA-
seq) has provided unprecedented opportunities to iden-
tify and characterize the components of WAT based on 
mouse and human models. Since the mature adipocytes 
are incompatible with traditional single-cell approaches. 
An alternative strategy named single-nucleus RNA 
sequencing (snRNA-seq), which can capture mature 
adipocytes, has also been used to describe WAT [7, 8]. 

Meanwhile, increasing scRNA-seq strategies have been 
developed to profile the characteristics of cancer cells 
and their micro-ecosystem. However, the potential com-
position, interrelationship, and generalized characteriza-
tion of CAA at single-cell resolution remain lacking.

To address these outstanding questions, we con-
ducted a comprehensive single-cell atlas of adipocytes 
in mouse and human WAT. We systematically mapped 
the adipocyte subpopulations and subsequently revealed 
molecular profiles of several type-specific CAAs. The 
potential drugs are further screened. Finally, we depicted 
the tumor-promoting effects of  ADIPOQ+CAAs on 
malignant behaviors of breast cancer by performing 
functional assays in vitro and prognostic analysis in clini-
cal samples. In conclusion, our systematic investigation 
of CAAs and their subtypes across cancers at single-cell 
resolution highlights the possible plasticity and hetero-
geneity of CAAs in cancer biology and proposes a future 
treatment target.

Methods
scRNA‑seq and snRNA‑seq datasets
The snRNA-seq datasets of mouse visceral adipose tis-
sue cells were acquired from the Gene Expression Omni-
bus (GEO) database (GSE160729 and GSE176171) [8, 9]. 
The scRNA-seq datasets of human visceral adipose tissue 
cells were acquired from the GEO database (GSE189783, 
GSE136229 and GSE129363) [10]. The snRNA-seq 
datasets of mouse subcutaneous adipose tissue cells 
were acquired from the GEO database (GSE180589, 
GSE133486 and GSE176171) and ArrayExpress database 
(E-MTAB-6677) [8, 11–13]. The scRNA-seq datasets of 
human subcutaneous adipose tissue cells were acquired 
from the GEO database (GSE155960, GSE128890, 
GSE129363 and GSE176067) [8, 10, 14, 15].

scRNA‑seq and snRNA‑seq data processing
The scRNA-seq and snRNA-seq data were processed for 
quality control, dimension reduction and unsupervised 
clustering by following the workflow in Seurat [16]. Each 
sample was individually quality checked, and cells were 
filtered to ensure good gene coverage, a consistent range 
of read counts and low numbers of mitochondrial reads. 
At least 200 and no more than 6000 detected gene were 
required for each cell. No more than 15% mitochondrial 
reads were allowed per cell. Due to the multiple sources 
of the data, they used different cell dissociation and 
handling protocols, library-preparation technologies or 
sequencing platforms. All of these factors result in batch 
effects, in which the expression of genes in one batch 
differs systematically from that in another batch. Thus, 
to integrate data from different datasets, we performed 
per-cell size-factor normalization for each sample while 
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per-gene z-score scaling across cells were not performed. 
Subsequently, a batch effect correction algorithm, fast-
MNN, was applied to correct the batch effect among 
datasets. The fastMNN was conducted by using the Run-
FastMNN function from the SeuratWrappers package of 
R with default parameters [17]. On the basis of the fast-
MNN result, downstream analyses including dimension-
ality reduction and clustering were conducted using the 
Seurat package of R.

Pathway enrichment
Seurat function FindAllMarkers with the Wilcox test was 
used to identify differentially expressed genes (DEGs) for 
each cell subpopulation. Genes with p value < 0.05 and 
log2 fold change > 0.5 were considered as DEGs. DEGs 
were used as input into the ClusterProfiler package of 
R to conduct KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway enrichment analyses. The visualiza-
tion of the results was conducted by ggplot2 package of 
R.

Pseudo‑time analysis
To determine the dramatic translational relationships 
among each subpopulation, we applied the pseudo-time 
analysis with Monocle2 using DDR-Tree and default 
parameters [18]. Positive marker genes for each sub-
population were used. Based on the pseudo-time analy-
sis, branch expression analysis modelling was applied for 
branch fate determined gene analysis.

Transcription factor analysis
The Dorothea resource was used to infer transcription 
factor (TF) activity [19]. We chose ‘A’, ‘B’ and ‘C’ high-
confidence TF selection. Viper scores were computed 
on the regulons. We computed the mean and standard 
deviation values of the scaled viper scores per severity 
group for the comparison of TF score activities. TFs were 
ranked according to the variance of their correspond-
ing viper scores. The highly variable scores per severity 
group (n = 150 TFs in total) were kept for visualization of 
their corresponding scores.

Cell–cell interaction analysis
Cell–cell interaction analyses was performed by using 
CellChat R package [20]. We followed the official work-
flow and default parameter settings to load the adipocyte 
and immune cell population into CellChat after quality 
inspection and normalization. The built-in CellChatDB.
mouse database was used as a reference for screening 
receptor-ligand interactions. The number and strength 
of potential ligand-receptor interactions between cells 
were calculated using computeCommunProb, compute-
CommunProbPathway and aggregateNet functions with 

standard parameters. The interaction scores were esti-
mated between cell types. The number of ligand-receptor 
pairs between every two cell types was shown in the form 
of heatmap. The weights/strength of ligand-receptor 
pairs between every two cell types was shown in the form 
of circos plot.

Deconvolutions of bulk RNA‑seq transcriptomics
DWLS (Dampened weighted least squares) estimation 
method was used to deconvolute predicted cell fractions 
from a number of bulk transcript profiling datasets [21]. 
The Cancer Genome Atlas (TCGA) expression matrices 
and clinical information were obtained from UCSC Xena 
[22]. The TCGA samples were grouped by predicted cell 
scores. Once the estimated proportion of a subtype is 
larger than 0.5, that sample will be placed into the group 
of representing the subtype. Group mixture contained 
samples with multiple subtype components.

Survival analyses
Differences in survival among groups were assessed 
using Kaplan–Meier analysis and log-rank test statistics 
using the survival and survminer R packages. In addition, 
patients in TCGA cohort were separated into low-expres-
sion and high-expression groups based on the best cutoff 
calculated by the survminer package of R. Univariate and 
multivariate Cox regression analysis was performed in 
TCGA breast cancer cohort using the coxph function in 
survival package of R. The forest plots were conducted by 
the ggforest function in ggplot2 package of R.

Drug sensitivity prediction
Drug response of each TCGA breast cancer sample was 
estimated based on GDSC2 (Genomics of Drug Sen-
sitivity in Cancer) and CTRP2 (Cancer Therapeutics 
Response Portal) database by using the R package Onco-
Predict [23]. Pearson’s correlation of inhibitor response 
(measured by IC50) with each of the four adipocyte sub-
type scores was calculated. All drugs displayed in the 
heatmap showed a significant correlation with at least 
one subtype.

Cell culture and reagents
The human  breast cancer cell lines ZR751, MCF-7 
and MDAMB-231 cells were obtained from American 
Type Culture Collection (ATCC, Shanghai). The human 
breast cancer cell lines ZR751, MCF-7 and MDAMB-231 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% FBS and 1% penicil-
lin–streptomycin in a humidified 37  °C incubator with 
5% CO2.
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Western blot assay
Cells or tissues are lysed in RIPA lysis buffer containing 
a mixture of intact protease and phosphatase inhibitors. 
A total 30 µg of protein per grouped sample was loaded 
onto SDS-PAGE gels and subsequently transferred onto 
PVDF membranes. Then the membranes were loaded 
and incubated with primary antibodies (AdipoR1, Adi-
poR2 and tubulin) at 4  °C for overnight. The membrane 
was then incubated with horseradish peroxidase-conju-
gated secondary antibody for 2  h at room temperature. 
At last, Images were captured with ChemiDocTM Imag-
ing System. The primary and secondary antibodies used 
for WB were from Thermo Fisher Scientific.

Transwell assay
The migration and invasion ability of MDA-MB-231 
cells were analyzed using a 24-well transwell cham-
ber with polycarbonate membranes and matrigel. Cells 
were inoculated in the upper chambers with serum-free 
DMEM, and the lower chamber was filled with 10% FBS. 
Cells that passed through the membranes were fixed with 
paraformaldehyde and dyed with Crystal Violet after 
incubating for 48 h. The cells in the lower chambers were 
photographed and counted.

Flow cytometry
The fraction of cells undergoing cell death in response 
to shRNA lentivirus was quantified by flow cytometry 
using an Annexin V-FITC/PI Apoptosis Kit (Elabscience 
Biotechnology). All procedures were conducted accord-
ing to the manufacturer’s instructions. Last, the data was 
recorded by Beckman Coulter CytoFLEX and analyzed 
using the CytExpert software.

Relative growth assay
Relative growth rates were estimated by the MTT assay. 
Approximately 5 × 103 cells were seeded in 96-well plates 
with 100 µl medium each well.

Patients
We collected 83 pre-operative fasting blood sample from 
patients who were prepared for surgical treatment of 
breast disease at Renmin Hospital of Wuhan University 
between November 2016 and October 2017. The serum 
levels of adiponectin were measured using an enzyme-
linked immunosorbent assay. We collected 113 patients 
who underwent surgical treatment at Renmin Hospital 

of Wuhan University between January 2010 and January 
2014 and were diagnosed with invasive breast cancer by 
conventional pathology. This study was approved by the 
Ethics Committee of Renmin Hospital of Wuhan Uni-
versity. Written informed consent was obtained from all 
patients.

IHC assay
The tissue samples were fixed, paraffin-embedded, 
dewaxed, rehydrated, and antigen retrieval. Then sam-
ples were stained with AdipoR1 and AdipoR2 antibody 
at 4  °C overnight, followed by incubation in secondary 
biotinylated antibody for 30  min at 37  °C, and finally 
visualized with DAB solution and counterstained with 
hematoxylin. Finally, photographs were taken under an 
optical microscope. Five representative images at 40× 
magnification was acquired for quantitative analysis by 
using ImageJ software.

Statistical analysis
Statistical analyses were applied using GraphPad Prism 
(version 8.0). All experiments were performed at least 
three times independently. The results are presented as 
means ± SD. We used t test to compare data from two 
groups. Multiple comparisons between groups were 
performed using the Tukey’s multiple comparison test 
or Mann–Whitney U test. We used the Kaplan–Meier 
method to estimate survival probabilities for RFS and OS, 
and variables were compared using the log-rank test. In 
the quantitative analysis graphs, a single asterisk (*) indi-
cated p < 0.05, two asterisks (**) indicated p < 0.01, and 
three asterisks (***) indicated p < 0.001.

Results
A single‑cell atlas of mouse and human WAT 
To comprehensively understand the cellular composition 
of the TAME, we compiled a single-cell transcriptional 
atlas of mouse and human WAT samples (Fig. 1A). Our 
atlas included scRNA-seq data from 48 human samples 
(nineteen VAT samples and twenty-nine SAT samples) 
and snRNA-seq data from 46 mouse samples (eight-
een VAT samples and twenty-eight SAT samples) [7, 8, 
10–14]. After rigorous quality filtering of each sample, 
we sought to integrate the datasets into four groups: 
mouse VAT (mVAT), human VAT (hVAT), mouse SAT 
(mSAT) and human SAT (hSAT). Next, we conducted 
MNN integrations across the datasets to reduce the 

(See figure on next page.)
Fig. 1 A single‑cell atlas of mouse and human WAT. A Schematic of workflows for the scRNA‑seq/snRNA‑seq analysis of mouse and human WAT. 
B UMAP visualization of 121,349 nuclei from mouse VAT showing nine major cell types. C UMAP visualization of 53,152 cells from human VAT 
showing seven major cell types. D Violin plots of marker genes for each cell population in the mouse and human VAT datasets. E UMAP visualization 
of 158,977 nuclei from mouse SAT showing nine major cell types. F UMAP visualization of 144,965 cells from human SAT showing seven major cell 
types. G Violin plots of marker genes for each cell population in the mouse and human SAT datasets
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Fig. 1 (See legend on previous page.)
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batch effects [17]. The resulting quality-controlled VAT 
single-cell atlas included 121,349 single nuclei and 53,152 
single cells that were clustered based on canonical lin-
eage markers and visualized using uniform manifold 
approximation and projection (UMAP) plots. Clustering 
analysis and marker gene annotation revealed distinct 
clusters, including mature adipocytes, ASPCs, endothe-
lial cells, epithelial cells, mesothelial cells, and immune 
cells (T cells, B cells and myeloid cells) (Fig. 1B–D). In the 
single-cell atlas of SAT, low-quality filtering left 158,977 
single nuclei and 144,965 single cells. The initial cluster-
ing visualized by UMAP and marker gene annotation 
revealed major cell populations, including mature adi-
pocytes, ASPCs, vascular cells (pericytes and endothelial 
cells), epithelial cells, mesothelial cells and immune cells 
(T cells, B cells and myeloid cells) (Fig. 1E–G). The distri-
bution of cell types among the mVAT, hVAT, mSAT, and 
hSAT atlases did not exhibit significant differences. How-
ever, since mature adipocytes cannot be distinguished 
using scRNA-seq approaches, they were hardly found in 
the hVAT and hSAT atlases [8].

Landscape of the adipocyte population in mouse 
and human WAT 
Next, we conducted detailed analyses of adipocyte popu-
lations (including ASPCs and mature adipocytes) in both 
VAT and SAT. Previous studies in mice suggested that 
ASPCs can be classified into three robust populations 
[24]. The first population, adipose stem cells (ASCs), is 
the most stem-like population in nature and marked by 
the expression of stem-related genes, such as Pi16, Dpp4 
and Adamts16 [15]. The second population, preadipo-
cytes (PreAs), expresses several adipogenesis-related 
genes, such as Lpl and Plin2. Preadipocyte is in a cell 
state committed toward adipogenesis [25]. The third 
population, adipogenesis regulators (Aregs), is defined by 
the expression of F3 (encoding CD142) and is capable of 
inhibiting the adipogenic differentiation of other ASPCs 
[26]. Mature adipocytes are considered to be essentially 
uniform in function, although some recent studies do not 
share this belief.

VAT contains distinct subpopulations of adipocytes
In mVAT, we detected seven distinct subpopulations of 
ASPCs (marked by Pdgfra) and three subpopulations 
of mature adipocytes (marked by Plin4). Based on the 
previous conclusions and newly generated gene expres-
sion profiles, we annotated the seven ASPC subpopula-
tions as mA1:  Pparg+PreA (Pparg, Fgf10, Frem1), mA2: 
 Fabp4+PreA (Fabp4, Cd36), mA3:  Dpp4+ASC (Dpp4), 
mA4:  Rgs6+ASC (Rgs6, Adamts16) mA5:  B2m+ASC 
(Ly6a, B2m), mA6:  Fmo2+Areg (Fmo2 and Gria4) and 
mA7:  Mgp+Areg (Mgp and Clec11a) (Fig. 2A, B). We also 

identified three subpopulations of mature adipocytes as 
 Cfd+,  Lep+, and  Prune2+ mature adipocytes by the upreg-
ulated expression of their marker genes (Additional file 1: 
Fig. S1A, B). Compared to mouse adipocytes, human adi-
pocytes exhibit greater individual variability and less het-
erogeneity. Subclustering of human adipocytes revealed 
three populations, including hA1:  CIDEC+PreA, hA2: 
 PTN+PreA and hA3:DPP4+ASC (Fig. 2C, D). Aregs and 
mature adipocytes were not detected.

Obesity is known to profoundly impact the abundance 
and gene expression of adipocytes. Thus, we investigated 
the distribution of each subpopulation between high-fat 
diet (HFD) and normal control diet (NCD) mVAT sam-
ples (Fig. 2E, Additional file 1: Fig. S1C). The comparison 
analysis revealed that HFD-induced obesity resulted in an 
increase in the relative number of mA1, mA2 and mA7 
cells, whereas the relative number of mA3 and mA6 cells 
was decreased (Fig. 2E). Notably, mature adipocytes were 
more influenced by diet than ASPCs were, as the relative 
proportions of  Cfd+adipocytes were vastly reduced after 
HFD feeding, whereas the opposite trend was observed 
for  Lep+adipocytes (Additional file 1: Fig. S1C). Notably, 
all adipocyte subpopulations were present in the majority 
of samples, suggesting that these subtypes are stable and 
do not reflect sample-specific variation.

A critical inquiry is whether adipocyte subpopula-
tions have distinct functions. To address this question, 
we first explored the function of each subpopulation 
by performing pathway enrichment analysis (Fig.  2F). 
The three subpopulations of mature adipocytes have 
relatively few specific markers, and their features were 
found to be generic. We focused on subpopulations 
mA1–mA7 for a more detailed analysis. Both mA1 and 
mA2 expressed high levels of mature adipocyte marker 
genes, but they differed in function. The mA1 subpop-
ulation was uniquely enriched for the Hippo signaling 
pathway, suggesting a dedifferentiated status of adipo-
cytes. The Hippo pathway is known to mediate a shift of 
adipocytes from energy storage to extracellular matrix 
remodeling in adipose tissue fibrosis [27]. In compari-
son, mA2 adipocytes were characterized by enrich-
ment of ferroptosis, apoptosis, cholesterol metabolism, 
and the PPAR signaling pathway. Among the ASC 
subpopulations, including mA3-5, mA3 was uniquely 
enriched in the TGF-beta signaling pathway, indicat-
ing an immune-related feature. M2-like macrophages 
in adipose tissue inhibit adipocyte progenitor prolifera-
tion via the TGF-beta signaling pathway [28]. Further-
more, mA4 was enriched in the phospholipase D and 
apelin signaling pathways, while mA5 features enrich-
ment for gap junction. Compared with mA7, mA6 was 
more distinctly enriched in the mTOR signaling path-
way, the relaxin signaling pathway and the CGMP-PKG 
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signaling pathway (Fig.  2F). To further examine the 
potential trajectories of adipocyte subpopulations, we 
found that mA4 is the precursor of adipogenic commit-
ment, as mA4 gradually differentiates into mA3, which 
in turn gives rise to mA1, mA2, and mA6. Interestingly, 
adipocytes from HFD-induced obese mice were fully 
distributed in the right arm, while others were situ-
ated in the left arm (Additional file 1: Fig. S1A). Since 
only a small proportion of the adipocytes in the right 
arm were derived from the left arm, we hypothesized 
that obesity directly influence origin subpopulations, 
including mA3 and mA4. Finally, we asked whether TFs 
contribute to the phenotypic state of these subpopu-
lations (Fig.  2H). It has been reported that transcrip-
tional diversity decreases during differentiation [29]. 

Our results confirmed that mA3 and mA4, rather than 
mA5, showed increased transcriptional diversity, con-
sistent with their earlier differentiation state. However, 
the Areg subpopulation mA7 also showed increased 
transcriptional diversity, which suggested a dediffer-
entiation potential [30]. In addition, Smad3, an impor-
tant contributor to the maintenance of WAT, is active 
in mA1 cells [31]. mA2 highly express Etv4, which has 
been reported to enhance morphological differentia-
tion in preadipocytes [32] (Fig. 2H).

In human adipocytes, the proportion of hA2 was 
increased samples from type 2 diabetes patients, whereas 
the proportion of hA1 was reduced (Additional file 1: Fig. 
S1E). We identified the DEGs of each subpopulation 
and performed KEGG pathway enrichment. The results 

Fig. 2 Landscape of the adipocyte population in mouse and human VAT. A UMAP visualization of inferred ASPCs from mouse VAT identified seven 
adipocyte subpopulations. B Dot plot of marker genes for each cell subpopulations in mouse ASPCs. C UMAP visualization of inferred adipocytes 
from human VAT identified three adipocyte subtypes. D Dot plot showing marker genes for each cell subpopulations in human adipocytes. 
E Relative proportions of cell subpopulations in mouse ASPCs from HFD mouse (n = 11) or NCD mouse (n = 8). F Dot plot showing the pathway 
enrichment of each cell subpopulation in mouse ASPCs using KEGG datasets. G Pseudo‑time trajectory of cell subpopulations in mouse ASPCs. (H) 
Heatmap showing the highly variable TF activities among the cell subpopulations in mouse ASPCs.
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showed large functional differences among the three sub-
populations. For example, the hA1 subpopulation was 
characterized by the enrichment of fatty acid degrada-
tion and regulation of lipolysis in adipocytes, which can 
explain the reason for its reduction in diabetes patients 
(Additional file 1: Fig. S1F).

SAT contains distinct subpopulations of adipocytes.
Following a similar procedure, we identified six distinct 
subpopulations of ASPCs and two subpopulations of 
mature adipocytes in mSAT (Fig.  3A). Remarkably, all 
adipocyte subpopulations, with the exception of mA7 
and  Prune2+mature adipocytes in mVAT, were present 
in mSAT, indicating the robustness of these subtypes. 
We also identified four subpopulations of human adipo-
cytes, namely, hA1:  DEPP1+PreA, hA2:  KCND2+PreA, 
hA3:DPP4+ASC, and hA4:  ADIPOQ+Adipocyte (Adi), 

based on their distinct gene expression patterns (Fig. 2C, 
D). Notably, hA1 and hA2, both expressing APOD 
and F3, were classified as PreA. While hA1 specifically 
expressed DEPP1, hA2 expressed KCND2 and KAZN. 
hA3 was identified as ASC based on the expression of 
PI16 and DPP4. Of particular interest was the hA4 sub-
population, which exhibited gene expression patterns 
that are typically associated with mature adipocytes, such 
as ADIPOQ, LPL, and FABP4 (Fig. 3C, D).

Interestingly, the comparison of the samples with 
normal and obese states revealed that HFD-induced 
obesity leads to a significant elevation in the relative 
number of mA1 and mA4 cells, accompanied by a sub-
stantial decrease in the proportion of mA2 and mA5 
cells (Fig.  3E). Moreover, we observed a diet-dependent 
shift in the adipocyte subtypes within mature adipocytes 
(Additional file 2: Fig. S2A–C).

Fig. 3 Landscape of the adipocyte population in mouse and human SAT. A UMAP visualization of inferred ASPCs from mouse SAT identified six 
adipocyte subpopulations. B Dot plot of marker genes for each cell subpopulations in mouse ASPCs. C UMAP visualization of inferred adipocytes 
from human SAT identified three adipocyte subtypes. D Dot plot showing marker genes for each cell subpopulations in human adipocytes. 
E Relative proportions of cell subpopulations in mouse ASPCs from HFD mouse (n = 6) or NCD mouse (n = 22). F Dot plot showing the pathway 
enrichment of each cell subpopulation in mouse ASPCs using KEGG datasets. G Pseudo‑time trajectory of cell subpopulations in mouse ASPCs. 
H Heatmap showing the highly variable TF activities among the cell subpopulations in mouse ASPCs.
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An important question is whether the functional 
properties of adipocyte subpopulations are consist-
ent between mSAT and mVAT. To address this ques-
tion, we performed pathway analysis for markers of each 
subpopulation (Fig.  3F). mA1 was uniquely enriched 
in Fc gamma R-mediated phagocytosis, while mA2 was 
enriched in apoptosis, the TNF signaling pathway and 
the IL-17 signaling pathway. Among the ASCs, includ-
ing mA3-5, the mA4 subpopulation was characterized by 
enrichment in the calcium signaling pathway, gap junc-
tion, and apelin signaling pathway. mA5 was uniquely 
enriched for antigen processing and presentation, sug-
gesting an immune-related feature. mA6, the only Areg 
subpopulation, was highly enriched in the relaxin signal-
ing pathway and Wnt signaling pathway (Fig. 3F). Next, 
we performed a cell trajectory analysis of adipocyte sub-
populations (Fig. 3G). The results suggested that mA5 is 
the most stem-like subpopulation in mSAT. mA5 cells 
can transition through the first branch point to become 
either mA3 and mA4 cells or and then these cells can 
through the second branch point to differentiate into 
mA6 cells. Eventually, they give rise to the mA1 and mA2 
PreA subpopulations (Fig. 3G). Finally, we carried out TF 
analysis of these subpopulations (Fig. 3H). In the results, 
mA1 showed a relatively particular transcriptional state. 
Bhlhe22, Zeb2, and Zfp263 were uniquely active in the 
mA1 subpopulation. In addition, Atf6, Esr1 and Rreb1 
were enriched in the mA2 subpopulation (Fig. 3H).

For human adipocytes, the difference in the propor-
tion of subpopulations between samples from obese and 
lean individuls is minimal. However, obese individuals 
showed a relatively higher proportion of hA4, and type 2 
diabetes patients exhibited a higher proportion of hA4 as 
well (Additional file 2: Fig. S2D). To gain further insight 
into the unique functions of each subpopulation, we con-
ducted a thorough analysis of DEGs and subsequently 
performed KEGG pathway enrichment. Our findings 
revealed substantial functional divergence among the 
three subpopulations, as illustrated in Additional file  3: 
Fig. S3E. The hA4 subtype was uniquely enriched in the 
PPAR signaling pathway, fatty acid metabolism, AMPK 
signaling pathway, propanoate metabolism insulin 

signaling pathway, and regulation of lipolysis in adipo-
cytes (Additional file 3: Fig. S3E).

In summary, we have identified the full range of adipo-
cyte subtypes in mice and presented the molecular pro-
file of each adipocyte subtype in humans. These findings 
provide valuable insights into the interactions among 
components in TAME and provide a foundation for fur-
ther studies on the roles of individual subpopulations in 
metabolic diseases.

Communications between adipocyte subpopulations 
and immune cells
Adipocyte subpopulations communicate with diverse 
mediators derived from components within the TAME, 
especially immune cells [33–35]. Thus, we extracted 
the immune cell populations from mVAT and mSAT to 
further understand the intricate interplay between adi-
pocytes and immune cells. Reclustering of the immune 
cell-derived nuclei from mVAT (n = 34,698) resulted in 
nine subpopulations (Fig. 4A). We performed differential 
expression analysis and annotated three subpopulations 
as macrophages (expressing Adgre1 and Mrc1), while the 
remaining six subpopulations were annotated as mono-
cytes (expressing Fn1), dendritic cells (expressing Flt3), 
neutrophils (expressing  Csf3r and Klra2), mast cells 
(expressing  Cpa3 and Kit), T cells (expressing  Themis 
and Skap1), and B cells (expressing  Ms4a1 and Ighm) 
(Fig.  4A, B). To annotate the macrophage subpopula-
tions, we compared their expression profiles to recent 
macrophage classification studies. We found that the 
 Lgals3+macrophage subpopulation expressed high lev-
els of Lpl and Plin2, consistent with the lipid-associated 
macrophages (LAMs) that emerge during HFD feed-
ing and play a part in the clearance of dead adipocytes 
[7, 36].  Folr2+macrophages are very similar to tissue-
resident macrophages which have been found to reside 
in the perivascular part of tissues, including WAT [7]. 
 Cd163+macrophages expressed a relatively high level of 
Cd163, suggesting an immunosuppressive feature [37].

Analysis of the frequency of each cell type in mVAT 
samples from mice fed either a NCD or a HFD revealed 
an increased proportion of  Lgasls3+macrophage in 

Fig. 4 Communications between adipocyte subpopulations and immune cells. A UMAP plot showing 9 major immune cell types in mouse VAT. 
B Dot plot of marker genes for each immune cell types in mouse VAT. C Relative proportions of immune cell types in mouse VAT from HFD mouse 
(n = 11) or NCD mouse (n = 8). D Heatmap showing the number of the ligand‑receptor pairs between each immune cell type and adipocyte 
subpopulation in mouse VAT. E Circos plot showing the weights/strength of interactions between ligands and receptors across cell types 
in mouse VAT. The size of nodes denotes the weights/strength of pairs involved in each cell type, and the thickness of the line is proportional 
to the weights/strength of the pairs between two nodes. F UMAP plot showing 9 major immune cell types in mouse SAT. G Dot plot of marker 
genes for each immune cell types in mouse VAT. H Relative proportions of immune cell types in mouse SAT from HFD mouse (n = 6) or NCD mouse 
(n = 22). I Heatmap showing the number of the ligand‑receptor pairs between each immune cell type and adipocyte subpopulation in mouse 
SAT. J Circos plot showing the weights/strength of interactions between ligands and receptors across cell types in mouse SAT. The size of nodes 
denotes the weights/strength of pairs involved in each cell type, and the thickness of the line is proportional to the weights/strength of the pairs 
between two nodes

(See figure on next page.)



Page 10 of 20Liu et al. Journal of Translational Medicine          (2023) 21:470 

Fig. 4 (See legend on previous page.)



Page 11 of 20Liu et al. Journal of Translational Medicine          (2023) 21:470  

samples from HFD-induced obese mice, from almost 
nonexistent to the most abundant subpopulation. 
In contrast, the proportion of  Folr2+macrophages, 
 Cd163+macrophages, monocytes, B cells and T cells 
decreased in the HFD mouse samples (Fig.  4C). Given 
the significant transition in the distribution and composi-
tion of immune cell types within VAT, we next explored 
to what extent such changes influenced cell communi-
cation. Then, we investigated the interactions between 
ligands and receptors across all immune cells and adi-
pocytes. We found that the number of ligand-receptor 
pairings between immune cells and adipocyte subpopu-
lations was significantly larger in  Folr2+macrophages 
(Fig.  4D), but that the strength of the interactions 
between Lgals3 + macrophages and adipocytes, especially 
mA1 and mA3, was stronger (Fig. 4E) [20].

Following similar steps, we reclustered the immune 
cells derived from the mSAT samples (n = 19,169). We 
annotated nine immune cell subpopulations that were 
consistent with those annotated from the mVAT sam-
ples (Fig. 4F, G). However, a comparison of the immune 
cell composition between the normal and HFD-induced 
obese states revealed a decrease proportion of of 
 Lgals3+macrophages and  Folr2+macrophages (Fig.  4H). 
And we found that the number of ligand-receptor pair-
ings between immune cells and adipocytes was sig-
nificantly larger in mA5 and mA6 across all adipocyte 
subpopulations, especially the mA5:   B2m+ASC subpop-
ulation (Fig.  4I). Strong signals were detected between 
mA4/mA5 and  Lgals3+macrophages, as well as between 
mA1 and  Cd163+macrophages (Fig. 4J).

Our findings are consistent with previous studies show-
ing that macrophages are the primary immune cells types 
in WAT. Additionally, we found that  Folr2+macrophages 
act similarly in both visceral and subcutaneous adipose 
tissue, but the interaction between  Folr2+ macrophages 
and adipocytes is not strong and is reduced by obesity. 
Furthermore, we observed that other communication 
patterns showed significant depot-specific variance.

Deconvolution analyses predicted the cancer‑associated 
adipocyte subtypes
We next investigated whether the human TAME retains 
evidence of adipocyte subtype diversity and which sub-
type presents tumor-promoting CAA in tumors. To this 
end, deconvolution analyses were conducted on bulk 
RNA-seq cohorts of cancer patients from TCGA using 
the DWLS algorithm [21, 38, 39].

To assess the hVAT adipocyte subtypes, we esti-
mated individual subtype proportions in pancreatic 
cancer (PAAD) and kidney clear cell carcinoma (KIRC) 
patients using our single-cell signatures. Samples from 
TCGA were divided into four groups based on individual 

subtype proportions, including hA1, hA2, hA3, and 
Mixture. The group Mixture comprised samples with 
multiple subtype components. The PAAD cohort con-
tained 36.46%, 46.42%, 7.73%, and 9.39% of group hA1, 
hA2, hA3, and Mixture, respectively (Fig. 5A). The group 
hA3 was associated with a poor OS in pancreatic cancer 
(Fig. 5B). Additionally, to verify the independent effect of 
each subtype, we grouped the samples by the estimated 
scores of each subtype and performed survival analysis. 
In the PAAD cohort, the hA2 subtype was associated 
with a promising prognosis, whereas hA3 was associated 
with a poor prognosis (Additional file 3: Fig. S3A). In the 
KIRC cohort, hA1 was the dominant subtype, found in 
52.16% of the samples, and 16.78%, 7.81%, and 23.36% 
of samples exhibited hA2, hA3 and Mixture (Fig.  5C). 
Thereinto, compared with group hA1, the group hA2 was 
associated with a worse OS (Fig. 5D). In a separate vali-
dation of each subtype, the hA1 subtype was associated 
with a promising prognosis, whereas hA2 and hA3 were 
associated with a poor prognosis (Additional file  3: Fig. 
S3B).

In the case of hSAT adipocyte subtypes, melanoma and 
breast cancer (BRCA) cohorts from TCGA were selected 
as models. Following the same rules, all melanoma cases 
were categorized into five groups, including hA1, hA2, 
hA3 hA4, and Mixture (Fig.  6A). Compared to group 
hA1, group hA4 was associated with worse survival 
(p = 0.0032) (Fig.  6B). In a separate validation of each 
subtype, the hA1 subtype was associated with a promis-
ing prognosis, whereas the hA3 and hA4 subtype were 
associated with a poor prognosis (Additional file  4:  Fig. 
S4A). Likewise, all of the breast cancer cases were divided 
into five groups (Fig.  6C). For survival analysis, group 
hA4 was associated with the worst survival (p < 0.0001) 
(Fig. 6D). In addition, to verify the independent effect of 
each subtype on survival, we performed survival analy-
sis by gene signature score grouping. The hA1 and hA3 
subtypes were associated with a promising prognosis, 
whereas the hA4 subtype was associated with a poor 
prognosis in breast cancer (Additional file  4:  Fig. S4B). 
The results from Cox regression analyses further con-
firmed that the hA4 subtype acted as an independent risk 
factor for breast cancer (Additional file 4: Figs. S4C, 6E).

The hA4 subtype had a significantly worst prognosis in 
both the melanoma and breast cancer cohorts. Thus, we 
speculated on the potential drugs targeting the hA4 sub-
type in breast cancer based on the drug sensitivity data 
from the GDSC2 [40] and CTRP2 [41] datasets (Fig. 6F). 
We found that the hA4 subtype was more sensitive to 
drugs such as SCH772984, trametinib, selumetinib, 
PD0325901, ulixertinib, mitoxantrone, and foretinib and 
resistant to drugs such as sapitinib, afatinib, lapatinib, 
OSI-027, ULK1_4989, acetalaxm and ipatasertib. The 
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hA1 subtype possessed a similar drug sensitivity status to 
that of the hA4 subtype (Fig. 6F). Using the CTRP2 data-
set, several drugs sensitive to the hA4 subtype were also 
indentified (Additional file 4: Fig. S4D).

In summary, we provided insights into identify-
ing CAA subtypes in four typical cancer types. The 

 DPP4+ASC subtype is associated with a poor prognosis 
in PAAD and KIRC patients, while the  ADIPOQ+Adi 
subtype is linked to poor survival in melanoma and 
BRCA patients. The current findings suggest that 
trametinib, selumetinib, and ulixertinib may be useful 

Fig. 5 Deconvolution analyses in PAAD and KIRC cohorts. A Bar plot showing the estimated proportion of three visceral adipocyte subtypes 
in each TCGA PAAD sample. B Kaplan–Meier survival curve for TCGA pancreatic cancer cohort in four groups. P value was calculated with log‑rank 
test. Log‑rank p value < 0.05 was considered as statistically significant. C Bar plot showing the estimated proportion of the three visceral adipocyte 
subtypes in each TCGA KIRC sample. D Kaplan–Meier survival curve for TCGA KIRC cohort in four groups. P value was calculated with log‑rank test. 
Log‑rank p value < 0.05 was considered as statistically significant

Fig. 6 Deconvolution analyses in melanoma and BRCA cohorts. A Bar plot showing the estimated proportion of the three subcutaneous adipocyte 
subtypes in each TCGA melanoma sample. B Kaplan–Meier survival curve for TCGA melanoma cohort in five groups. P value was calculated 
with log‑rank test. Log‑rank p value < 0.05 was considered as statistically significant. C Bar plot showing the estimated proportion of the three 
subcutaneous adipocyte subtypes in each TCGA breast cancer sample. D Kaplan–Meier survival curve for TCGA breast cancer cohort in five groups. 
P value was calculated with log‑rank test. Log‑rank p value < 0.05 was considered as statistically significant. E Forest plots for multivariate regression 
of clinical factors and adipocyte subtypes in TCGA breast cancer datasets. F Pearson’s correlation of GDSC2 drug response (measured by IC50) 
with each of the four subcutaneous adipocyte subtype scores reveals drug resistance (blue) or sensitivity (red)

(See figure on next page.)
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drugs for targeting the hA4 subtype in breast cancer 
patients.

AdipoR1 and AdipoR2 mediated breast cancer progression
The above analyses demonstrated that the proportion 
of the  ADIPOQ+Adi subtype was elevated in obese and 
diabetes patients and was associated with poor survival 
in breast cancer and melanoma patients. To further 
investigate its regulatory mechanism, we focused on adi-
ponectin (encoded by ADIPOQ) receptors, specifically 
AdipoR1 and AdipoR2 (encoded by ADIPOR1 and ADI-
POR2) [42].

First, we screened breast cancer cell lines in the Can-
cer Cell Line Encyclopedia (CCLE) dataset from DepMap 
[43]. The results showed that the MCF7 and ZR-751 cell 
lines had high expression of both ADIPOR1 and ADI-
POR2 (Additional file 5: Fig. S5A). However, in the gene 
dependency datasets obtained by the CRISPR screen, 
the survival/proliferation of the cell line MDA-MB-231, 
rather than MCF7 and ZR-751, depended on ADIPOR1 
(Fig. 7A). Consequently, we selected the MDA-MB-231, 
MCF7, and ZR-751 cell lines for our in vitro experiments. 
Our results from western blot analysis showed that sh-2 
was more effective in reducing the protein level of Adi-
poR1, while sh-3 was more effective in reducing the pro-
tein level of AdipoR2 (Fig.  7B). To validate the role of 
AdipoR1/2 in breast cancer cell viability, we conducted 
MTT assays in the three cell lines. The results indicated 
that the knockdown of AdipoR1/2 reduced proliferation 
in the MDA-MB-231cell line, but not in the MCF7 and 
ZR-751 cell line (Fig.  7C). As a result, we selected the 
MDA-MB-231 cell line for downstream analyses.

Flow cytometry analysis revealed that the knockdown 
of AdipoR1/2 promoted cell death in the MDA-MB-231 
cell line (Fig. 7D). We then investigated the effect of Adi-
poR1/2 on the invasiveness of breast cancer cells. Tran-
swell assays results suggested that cell invasiveness was 
significantly suppressed after the knockdown of AdipoR1 
or AdipoR2 (Fig. 7E). Moreover, we validated our conclu-
sion in clinical breast cancer samples. We analysed sam-
ples from 113 preoperative breast cancer patients and 
performed IHC to evaluate the level of AdipoR1 and Adi-
poR2. The IHC results showed that the levels of AdipoR1 
and AdipoR2 varied among patients. We then divided the 

patients into AdipoR1/2 negative and AdipoR1/2 positive 
groups based on the estimated IHC score (Fig. 7F). Sur-
vival analysis between these two groups showed that Adi-
poR2 was significantly associated with poor RFS in breast 
cancer patients (P = 0.011). Moreover, AdipoR1 also 
showed a negative association with RFS, but the associa-
tion was not significant (Fig. 7H). We also validated this 
finding using the METABRIC breast cancer cohort [44]. 
The expression of both ADIPOR1 and ADIPOR2 was sig-
nificantly associated with poor OS (Additional file 5: Fig. 
S5B). Finally, we obtained blood serum samples from 83 
preoperative breast cancer patients and found that the 
level of adiponectin was lower in the overweight group 
(BMI: 25-29.9) than in the normal group (BMI: 18.5–
24.9), but the difference was not significant (p = 0.13) 
(Additional file 5: : Fig. S5C).

In summary, our findings provided evidence for the 
positive regulation of AdipoR1 and AdipoR2 in tumor 
proliferation and invasion in  vitro and demonstrated 
an association between AdipoR1/2 and poor survival in 
both IHC samples and public datasets. These results sug-
gest that the  ADIPOQ+CAAs exert a tumor-promoting 
effect through AdipoR1 and AdipoR2.

Discussion
This study presents a comprehensive and impartial analy-
sis of the cellular landscape within the adipocyte fraction 
of mouse and human WAT, thereby enabling us to deline-
ate the in vivo developmental trajectories and character-
ize the features of adipocyte subpopulations. Based on 
our adipocyte atlas, we identified cancer-promoting sub-
types in TAME using deconvolution approaches. The sig-
nificance of our study lies in the potential of these CAA 
subtypes to serve as key prognostic predictors and poten-
tial targets for the treatment of adipose-associated can-
cers. Furthermore, we investigated the tumor-promoting 
mechanism of  ADIPOQ+CAAs, which provides a deeper 
understanding of the role of adipocytes in cancer pro-
gression and provides new insights for the development 
of targeted therapies.

Recent studies have made substantial contributions 
to our understanding of adipocyte heterogeneity [7, 8]. 
By integrating multiple datasets, our single-cell atlas 
reveals a diverse range of adipocyte subpopulations with 

(See figure on next page.)
Fig. 7 AdipoR1 and AdipoR2 regulates of breast cancer progression. A Scatter plot showing the CRISPR gene dependency of ADIPOR1 
and ADIPOR2 in breast cancer cell lines. B Western blot analysis showing the effect of knockdown by three shRNA sequences in cell line 
MDA‑MB‑231. C Quantitative analysis showing the proliferation of cell line MDA‑MB‑231, MCF7 and ZR‑751 after knockdown of AdipoR1 
and AdipoR2. D Flow cytometry results and quantitative analysis showing the cell death level of cell line MDA‑MB‑231 after knockdown 
of AdipoR1 and AdipoR2. E Transwell assay result and quantitative analysis showing the invasion ability of cell line MDA‑MB‑231 after knockdown 
of AdipoR1 and AdipoR2. The number of cells stained by crystal violet under the view of microscope represents the invasiveness of cancer cells. 
F Representative immunohistochemical images of AdipoR1 and AdipoR2 in breast cancer patients. G Kaplan–Meier survival curve for breast cancer 
patients in AdipoR1/2 positive or negative group. P value was calculated with log‑rank test. Log‑rank p value < 0.05 was considered as statistically 
significant
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enhanced robustness. Our analyses identified two PreA, 
three ASC, two Areg, and three mature adipocyte sub-
populations in the mVAT depot, with  Rgs6+ ASCs being 
the origin of adipogenesis. Differently, we identified two 
PreA, three ASC, one Areg, and two mature adipocyte 
subpopulations in the mSAT depot, with  B2m+ ASCs 
serving as the precursor of adipogenesis. What can reach 
a consensus is that the  Pparg+PreA subpopulation was 
the endpoint of adipogenesis in both depots. The origin, 
composition and distribution of white adipose depots 
can be substantially different and are influenced by fac-
tors such as location, temperature, age, sex, and meta-
bolic disorders such as obesity or diabetes. Several recent 
studies have focused on the composition and develop-
ment of the adipocyte population under various condi-
tions [2, 9, 10, 14, 45–47]. For instance, some studies have 
demonstrated that intrinsic features of ASCs drive the 
depot-selective ASC hierarchy and de novo adipogenesis, 
potentially explaining why adipogenesis in the cells from 
HFD-induced obese mice was influenced from the outset 
in our mVAT atlas. Given the abundance of subpopula-
tions and high-quality sequencing data, we conducted a 
more in-depth analysis of the mouse datasets. While we 
found only three or four subpopulations in the human 
adipocyte population, the mouse WAT atlas will serve as 
a valuable reference for further enriching the adipocyte 
map in humans.

Therefore, our objective was to investigate the immune 
cell population, with a specific focus on macrophages in 
adipose tissues. Our findings are consistent with previ-
ous reports indicating that macrophages are the pre-
dominant immune cell type in WAT. In particular, we 
discovered that  Folr2+macrophages exhibit similar 
functions in both visceral and subcutaneous adipose tis-
sue. We observed a substantial number of interactions 
between  Folr2+macrophages and adipocytes, although 
the strength of these interactions varied. Additionally, 
we identified significant depot-specific differences in 
other interactions. For example, the interactions between 
 Lgals3+macrophages and adipocytes appeared strong 
in VAT, while further investigation is needed to under-
stand the interactions between  Cd163+macrophages 
and adipocytes in SAT. Multiple studies have confirmed 
the involvement of these cells in the TAME through cel-
lular and animal experiments. It has been reported that 
depletion of LAMs characterized by the expression of 
Lgals3 in the TAME synergistically enhances the antitu-
morigenic effects of anti-PD1 therapy [36]. Furthermore, 
 CD163+macrophages were found to be located around 
adipocytes in breast cancer tissues, and their recruit-
ment and polarization were mediated by the upregulated 
expression of CCL2 and CCL5 in the TAME [37].

Third, during the identification of CAAs in different 
cancer types, we observed depot-specific variations in 
the function of each subtype. For example,  Dpp4+ASCs, 
a subtype found in both visceral and subcutaneous adi-
pose tissues, exhibit distinct roles in different cancers. 
We suggest that  DPP4+ASCs play a tumor-promoting 
role in cancers associated with VAT. However, in breast 
cancer,  DPP4+ASCs do not serve as an independent risk 
factor for survival. Additionally, in subcutaneous adi-
pose-associated cancers such as breast cancer and mela-
noma, the  ADIPOQ+Adi subtype was associated with 
poor survival outcomes. Unfortunately, we did not detect 
the  ADIPOQ+Adi subtype in the hVAT depot, so we can-
not confirm its effect on tumorous associated with VAT. 
Furthermore, we did not investigate the potential rela-
tionship between adipocyte subtypes and other clinical 
variables, such as lymph node status, metastasis status, 
pathologic stage, and drug resistance. Previous studies 
have demonstrated the significant impact of adipocytes 
on breast cancer progression, including promoting tumor 
proliferation, migration, and invasion [48]. Adipocytes 
may also contribute to the growth of estrogen receptor-
positive tumors through the upregulation of aromatase 
expression [49].Additionally, adipocytes may play a role 
in reducing the efficacy of endocrine and chemotherapy 
treatments, such as tamoxifen and doxorubicin [50, 51]. 
Considering the tumor-promoting properties of CAAs, 
our focus was to explore potential targeted treatment 
strategies. Specifically, we conducted a drug sensitivity 
prediction among the four adipocyte subtypes in breast 
cancer patients and identified potential therapeutic drugs 
that may target  ADIPOQ+CAAs. Among these drugs, 
trametinib, selumetinib, and ulixertinib have been found 
to inhibit tumor development by targeting the MAPK 
signaling pathway. However, these drugs are not yet 
widely used in the clinical management of breast cancer. 
It is important to note that these drugs target different 
proteins: trametinib and selumetinib are MEK inhibitors, 
while ulixertinib is an ERK inhibitor that directly inhibits 
the MAPK signaling pathway by targeting the ERK pro-
tein [52, 53]. We also explored another treatment strategy 
targeting CAAs at a macroscopic level. Calorie restriction 
mimetics, such as the IGF1 receptor and isobacachal-
cone, are drugs that mimic the effects of calorie restric-
tion. These drugs can not only help with weight loss but 
also enhance immune surveillance in the TAME, making 
them potential treatments targeting CAAs [54–56].

Ultimately, our aim was to investigate the potential 
mechanisms underlying the cancer-promoting effects 
of  ADIPOQ+CAAs. Adiponectin, which is encoded by 
ADIPOQ, is secreted by adipocytes and exerts various 
biological effects. Several studies have suggested that 
adiponectin has a protective effect against breast cancer 
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[57]. It has been demonstrated that adiponectin induces 
autophagic cell death in breast cancer through activation 
of the AMPK-ULK1 axis, which is regulated by STK11/
LKB1. Additionally, adiponectin triggers breast cancer 
cell death through fatty acid metabolic reprogramming 
[58, 59]. However, not all studies support this notion, as 
some have found that obesity and decreased adiponectin 
levels are associated with a higher risk of breast cancer. 
Adiponectin may act as a growth factor in estrogen recep-
tor-positive breast cancer cells by stimulating cell growth 
through the MAPK signaling pathway [60]. Neverthe-
less, in our study, we did not find a significant correlation 
between serum adiponectin levels and BMI. This finding 
led us to hypothesize that the high level of adiponectin in 
TAME, rather than in serum, may contribute to the can-
cer-promoting effect mediated by  ADIPOQ+CAAs and 
AdipoR1/2. Therefore, further research and exploration 
are necessary to fully understand the role of ADIPOQ 
and AdipoR1/2 in breast cancer.

Although our study provided valuable insights into 
the heterogeneity and functional diversity of adipocytes 
in the TAME, there are some limitations that should be 
acknowledged. First, we did not directly apply snRNA-
seq to CAAs, which may have limited the identification of 
some CAA subtypes that only exist in the TAME. Second, 
our study focused solely on the adipocyte population in 
WAT, and the characteristics and functions of adipocytes 
in other tissues, such as brown adipose tissue, have yet 
to be explored. Investigating the heterogeneity of adipo-
cytes in other tissues may provide important insights into 
their contribution to cancer development. Third, we did 
not investigate the clinical significance of other adipocyte 
subtypes, such as the  DPP4+ASC subtype. Last, while 
our study identified AdipoR1/2 as potential therapeutic 
targets in breast cancer, we did not perform in vivo vali-
dation of their effects. Further studies utilizing animal 
models and clinical trials are needed to validate the effi-
cacy of AdipoR1/2 as therapeutic targets and to explore 
their potential use in breast cancer treatment.

Conclusions
To sum up, our study provides a perspective that 
increases our understanding of TAME and enables a 
deeper exploration of the role of CAAs in cancers. These 
CAAs may become key prognostic predictors and pos-
sible targets for potential treatments in the future. To 
ensure the comprehensiveness and scientific rigor of our 
conclusion, we have several ideas for our future work. 
First, we will continue to investigate the roles and mecha-
nisms of other adipocyte subtypes in breast cancer to 
understand their potential contributions. Additionally, 
we will study the roles of these adipocyte subtypes in 
other types of cancer. Second, we will focus on verifying 

the feasibility of  ADIPOQ+CAAs as a potential target for 
breast cancer treatment, and validate the drugs predicted 
by our in vivo and in vitro experiments, aiming to provide 
feasible treatment options for future clinical practice. 
Finally, we will further explore the signaling pathways 
by which ADIPOR1/2 promotes breast cancer to better 
understand the impact of adipocytes on breast cancer.
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Additional file 1: Figure S1. Supplementary figure for landscape of the 
adipocyte population in mouse and human VAT. A UMAP visualization of 
inferred mature adipocytes from mouse VAT identified three adipocyte 
subpopulations. B Feature plot of marker genes for each cell subpopula‑
tions in mouse mature adipocytes. C Relative proportions of cell subpopu‑
lations in mouse mature adipocytes from HFD mouse (n = 11) or NCD 
mouse (n = 8). D Pseudo‑time trajectory of cell subpopulations in mouse 
ASPCs marked by diet status. E Relative proportions of cell subpopulations 
in human adipocytes from diabetic (n = 4) or non‑diabetic human (n = 15). 
Fot plot showing the pathway enrichment of three cell subpopulations in 
human adipocytes using KEGG datasets.

Additional file 2: Figure S2. Supplementary figure for landscape of the 
adipocyte population in mouse and human SAT. A UMAP visualization of 
inferred mature adipocytes from mouse SAT identified two adipocyte sub‑
populations. B Feature plot of marker genes for each cell subpopulations 
in mouse mature adipocytes. C Relative proportions of cell subpopula‑
tions in mouse mature adipocytes from HFD mouse (n = 6) or NCD mouse 
(n = 22). D elative proportions of cell subpopulations in human adipocytes 
from obese (n = 23) or lean human (n = 6). E Relative proportions of cell 
subpopulations in human adipocytes from diabetic (n = 5) or non‑diabetic 
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human (n = 24). F Dot plot showing the pathway enrichment of four cell 
subpopulations in human adipocytes using KEGG datasets.

Additional file 3: Figure S3. Supplementary figure for deconvolution 
analyses in PAAD and KIRC cohorts. A Kaplan–Meier survival curves for 
TCGA PAAD cohort group by visceral adipocyte subtype score. P value 
was calculated with log‑rank test. Log‑rank p value < 0.05 was considered 
as statistically significant. B Kaplan–Meier survival curve for TCGA KIRC 
cohort group by visceral adipocyte subtype score. P value was calculated 
with log‑rank test. Log‑rank p value < 0.05 was considered as statistically 
significant.

Additional file 4: Figure S4. Supplementary figure for deconvolution 
analyses in melanoma and BRCA cohorts. A Kaplan–Meier survival curves 
for TCGA melanoma cohort group by subcutaneous adipocyte subtype 
score. P value was calculated with log‑rank test. Log‑rank p value < 0.05 
was considered as statistically significant. B Kaplan–Meier survival curve 
for TCGA BRCA cohort group by subcutaneous adipocyte subtype score. 
P value was calculated with log‑rank test. Log‑rank p value < 0.05 was 
considered as statistically significant. C Forest plots for univariate regres‑
sion of adipocyte subtypes in TCGA BRCA cohort. D Pearson’s correla‑
tion of CTRP2 drug response (measured by IC50) with each of the four 
subcutaneous adipocyte subtype scores reveals drug resistance (blue) or 
sensitivity (red).

Additional file 5: Figure S5. Supplementary figure for deconvolution 
analyses in melanoma and BRCA cohorts. A Scatter plot showing the 
expression of ADIPOR1 and ADIPOR2 in breast cancer cell lines. B Kaplan–
Meier survival curve for METABRIC cohort group by the level of ADI‑
POR1/2. P value was calculated with log‑rank test. Log‑rank p value < 0.05 
was considered as statistically significant. C Boxplot showing the blood 
adiponectin level in patients with different BMI.
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