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Abstract 

Background Heterozygous loss-of-function mutations in the progranulin (PGRN) gene (GRN) cause a reduction in 
PGRN and lead to the development of frontotemporal dementia (FTD-GRN). PGRN is a secreted lysosomal chaperone, 
immune regulator, and neuronal survival factor that is shuttled to the lysosome through multiple receptors, including 
sortilin. Here, we report the characterization of latozinemab, a human monoclonal antibody that decreases the levels 
of sortilin, which is expressed on myeloid and neuronal cells and shuttles PGRN to the lysosome for degradation, and 
blocks its interaction with PGRN.

Methods In vitro characterization studies were first performed to assess the mechanism of action of latozinemab. 
After the in vitro studies, a series of in vivo studies were performed to assess the efficacy of a mouse-cross reactive 
anti-sortilin antibody and the pharmacokinetics, pharmacodynamics, and safety of latozinemab in nonhuman 
primates and humans.

Results In a mouse model of FTD-GRN, the rodent cross-reactive anti-sortilin antibody, S15JG, decreased total sortilin 
levels in white blood cell (WBC) lysates, restored PGRN to normal levels in plasma, and rescued a behavioral deficit. 
In cynomolgus monkeys, latozinemab decreased sortilin levels in WBCs and concomitantly increased plasma and 
cerebrospinal fluid (CSF) PGRN by 2- to threefold. Finally, in a first-in-human phase 1 clinical trial, a single infusion of 
latozinemab caused a reduction in WBC sortilin, tripled plasma PGRN and doubled CSF PGRN in healthy volunteers, 
and restored PGRN to physiological levels in asymptomatic GRN mutation carriers.

Conclusions These findings support the development of latozinemab for the treatment of FTD-GRN and other 
neurodegenerative diseases where elevation of PGRN may be beneficial.

Trial registration ClinicalTrials.gov, NCT03636204. Registered on 17 August 2018, https:// clini caltr ials. gov/ ct2/ show/ 
NCT03 636204.
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Background
Frontotemporal dementia (FTD) is a rare, early-onset 
form of dementia with an estimated prevalence of 4 to 
22 per 100000 people aged younger than 64 years [1–3]. 
FTD is composed of several clinical phenotypes that 
manifest as changes in behavior, personality, language, 
cognitive skills, and motor function, and FTD is associ-
ated with synapse loss, gliosis, neuronal loss, and, ulti-
mately, gross atrophy in the frontal and temporal lobes of 
the brain [2, 4–6]. The disease progresses rapidly and is 
associated with an estimated life expectancy of 7–9 years 
after symptom onset [7].

A family history of FTD is present in 20–40% of cases, 
and 10% of cases are inherited in an autosomal domi-
nant pattern [8–11]. Most of the genetic component is 
accounted for by a mutation in 1 of 3 genes: progranulin 
(GRN), microtubule-associated protein tau, and chromo-
some 9 open reading frame 72 (C9orf72) [7]. GRN muta-
tions have been identified in approximately 10–23% of 
people with a family history consistent with autosomal 
dominant FTD and in approximately 3% of patients with 
FTD of apparently sporadic origin [12]. More than 100 
GRN-heterozygous loss-of-function (LOF) mutations 
have been identified [7, 13]. GRN mutations cause dis-
ease with a wide range of ages of onset and phenotypic 
variability, even within families [7, 13]. Though the clini-
cal presentation and age of onset are impacted by addi-
tional genetic modifiers such as TMEM106B [14–17], 
the disease penetrance approximates 100%, making GRN 
mutations causal for FTD [18–20].

Because progression to dementia is practically certain 
in GRN mutation carriers, it is imperative to develop 
effective treatments for FTD. Progranulin (PGRN) levels 
are 50% to 70% below normal in the plasma and CSF of 
both affected patients and asymptomatic GRN mutation 
carriers (aFTD-GRN) [21–23]. Thus, restoring PGRN 
levels to a normal range may be an effective therapeu-
tic approach for FTD caused by GRN LOF mutations 
(FTD-GRN).

Identified receptors for PGRN include sortilin [24, 
25], ephrin type-A receptor 2 [26], notch [27], epidermal 
growth factor receptor [28], and mannose 6-phosphate 
receptor (M6PR) and low-density lipoprotein receptor–
related protein 1 (LRP1), both of which bind PGRN in 
conjunction with the secreted protein prosaposin [29]. 
Sortilin binds extracellular PGRN and targets it for lyso-
somal degradation [25]. Polymorphic variants of the sor-
tilin gene (SORT1) have been linked to PGRN levels in 
serum, as well as to FTD susceptibility [24, 30, 31]. Fur-
ther, genetic ablation of Sort1 in mice led to 2- to three-
fold higher levels of PGRN, and knockdown of SORT1 in 
cultured HeLa cells has been shown to increase extra-
cellular PGRN [24, 25]. We therefore hypothesized that 

a molecule that blocks the sortilin-PGRN interaction 
and/or decreases sortilin levels would mimic the genetic 
ablation of Sort1. Accordingly, these actions would be 
expected to increase the levels of residual PGRN in GRN 
mutation carriers, restore PGRN back to physiological 
levels, and slow or halt the progression of FTD-GRN [32].

Latozinemab (AL001) is a recombinant monoclo-
nal antibody that binds specifically to sortilin, prevents 
sortilin-PGRN interactions, and facilitates a decrease in 
the levels of sortilin. Latozinemab increases the levels of 
PGRN in plasma and cerebrospinal fluid (CSF) and has 
the potential to slow disease progression in carriers of 
heterozygous LOF GRN mutations [32, 33], as well as in 
other neurodegenerative diseases where genetic muta-
tions reduce PGRN levels, such as Parkinson’s disease 
[34, 35], Alzheimer’s disease [36], amyotrophic lateral 
sclerosis [37, 38], and limbic-predominant age-related 
TDP-43 encephalopathy [39].

Here, we report a comprehensive assessment from ini-
tial drug discovery to a first-in-human study, detailing 
the pharmacology, pharmacokinetics (PK), and pharma-
codynamics (PD) of latozinemab. We first characterized 
the mechanism of action of latozinemab in vitro and then 
demonstrated target engagement of S15JG, a murine 
cross-reactive anti-sortilin antibody, and latozinemab 
in vivo in mouse and nonhuman primate studies, respec-
tively. These preclinical studies led to a first-in-human 
phase 1 clinical trial designed to evaluate the safety, tol-
erability, PK, and PD of a single infusion of latozinemab 
in healthy volunteers (HVs) and aFTD-GRN participants.

Methods
Antibody generation
Latozinemab (AL001) is a human monoclonal immu-
noglobulin (IgG) G1m17,1 kappa antibody generated 
against human receptor sortilin and derived from human 
germlines IGHV4-B and IGKV2-28. Latozinemab was 
generated and affinity-matured through collaboration 
between Alector and Adimab (Lebanon, New Hamp-
shire, USA) to optimize in vitro and in vivo activity and 
to ensure manufacturing development capability [40]. 
Three point mutations, L234 to A234, L235 to A235, and 
P331 to S331 (Kabat numbering system; L239L240 and 
P336 in sequential numbering), were made to the heavy 
chain to minimize effector functions, such as Fc gamma 
receptor binding, complement activation, and antibody-
dependent cell-mediated cytotoxicity (ADCC) [41–43]. 
Reduction of Fc gamma receptor binding, complement 
activation, and ADCC have been verified by Alector. 
Minimization of the effector functions is a desired char-
acteristic for latozinemab, which is intended for chronic 
administration to study participants and patients.
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In vitro cell‑based assays of latozinemab
Anti-sortilin antibody binding to human sortilin in 
HEK293T cells. A stable HEK293T cell line expressing 
human sortilin was established by viral infection of a pro-
prietary plasmid expressing human sortilin (GenScript 
Biotech, Piscataway, NJ). Cells were selected using hygro-
mycin resistance, and a high-expressing monoclonal cell 
line was established. Parental HEK293T cells were uti-
lized for control. For the binding assay, HEK293T cells 
were harvested by trypsinization, washed in PBS, and 
then counted and plated on 96-well plates at 1 ×  105 cells/
well. The plates were spun at 1400  rpm for 3  min, and 
latozinemab or control antibodies were added in fluores-
cence-activated cell sorting (FACS) buffer (PBS + 2% fetal 
bovine serum [FBS]) and incubated on ice for 1 h. Cells 
were subsequently centrifuged as before and washed 
thrice with FACS buffer. Cells were then incubated with 
goat anti-human phycoerythrin (PE)–conjugated sec-
ondary antibody (1:100; Southern Biotech, Birmingham, 
AL; cat. #2040–09, lot #C1316-Q487) in FACS buffer for 
30 min on ice. Cells were again washed thrice with FACS 
buffer and analyzed on an Intellicyt iQue® Flow Cytom-
eter (Essen BioScience, Inc., formerly Intellicyt Corpora-
tion, part of the Sartorius Group; Göttingen, Germany). 
Binding was measured as mean fluorescence intensity 
(MFI) of PE.

Cell-based competition assay for latozinemab anti-
body blocking of PGRN binding to sortilin. Recombinant 
human PGRN (AdipoGen Inc., San Diego, CA) was bioti-
nylated with an EZ-Link Micro NHS-PEG4 Biotinylation 
Kit from ThermoScientific™/Pierce™ (Waltham, MA) 
according to the manufacturer’s instructions. Sortilin-
expressing HEK293T cells or control cells were harvested 
and washed in PBS. Biotinylated human PGRN at 20 nM 
was added in PBS + 2% FBS with or without latozinemab 
or isotype control human antibodies and incubated on 
ice for 2  h. After washing cells thrice in PBS + 2% FBS, 
cells were incubated in streptavidin-allophycocyanin 
(APC; 1:100; eBioscience, San Diego, CA; cat. #17-4317-
82, lot #4303110) on ice for 30 min. The cells were then 
rewashed, resuspended in PBS + 2% FBS, and analyzed 
using an Intellicyt iQue Flow Cytometer. PGRN binding 
was measured as the MFI of APC of the sortilin-express-
ing cell population.

Interaction between surface sortilin expression and 
PGRN levels in the presence of latozinemab. Human U251 
cells (American Type Culture Collection, Manassas, VA) 
have detectable cell surface expression of human sorti-
lin and were utilized for measuring sortilin expression. 
U251 cells were plated at 3000 cells per well of a 96-well 
plate for 24  h, followed by incubation with latozinemab 
or isotype control antibodies for 48  h. Cells were har-
vested with trypsin, washed in PBS, and labeled with 

 Dylight™-650 conjugated anti-sortilin antibody S2-11-
650 (generated in-house). After cells were incubated with 
5 μg/mL of the fluorescently conjugated sortilin antibody 
S2-11-650 for 1  h on ice, cells were washed thrice in 
PBS + 2% FBS and binding was quantified using an Intel-
licyt iQue Flow Cytometer as MFI of APC.

PGRN levels were quantified from the supernatants of 
the treated cells using an enzyme-linked immunosorbent 
assay (ELISA) for human PGRN, according to the manu-
facturer’s instructions (AdipoGen Life Sciences, Inc., San 
Diego, CA; cat. #AG-45A-0019YEK-KI01). Optical den-
sities were measured at 450 nm using a BioTek Synergy 
HT Multi-Detection Microplate Reader (Winooski, VT). 
Data were analyzed using Microsoft Excel (Redmond, 
WA) and GraphPad Prism 9 (San Diego, CA).

In vivo assessment of an anti‑sortilin antibody in a mouse 
model of GRN haploinsufficiency
Animals and treatment. Grn+/− mice and wild-type (WT) 
littermate controls of both sexes, age 19 to 21  months 
at the start of experiment, were used (N = 42: 21 were 
male and 21 were female; there were 9–12 in each of 
the 4 genotype/treatment groups). Mice were on a con-
genic C57BL6/J background and were housed in venti-
lated cages in a barrier facility with 12:12 light cycles and 
ad libitum access to food and water. All experiments were 
approved by the Institutional Animal Care and Use Com-
mittee of the University of Alabama at Birmingham.

Mice underwent pretreatment social dominance test-
ing, in which WT and Grn+/− mice were paired to 
confirm the presence of the expected low dominance 
phenotype in Grn+/− mice. Treatment group assignment 
was stratified by winning percentage; both WT treatment 
groups had a mean pretreatment winning percentage of 
67% vs Grn+/− mice and both Grn+/− treatment groups 
had a mean pretreatment winning percentage of 33% vs 
WT mice. Mice were treated with weekly intraperitoneal 
(i.p.) injections of S15JG or isotype control at 40 mg/kg 
for 4 to 5  weeks (totaling 5 injections prior to testing). 
S15JG is a mouse cross-reactive anti-sortilin antibody 
that was used in the mouse studies because latozinemab 
is not cross-reactive to rodents. Like latozinemab, S15JG 
binds to the beta-propellor region of sortilin (also the 
binding site for progranulin [25]) but at a slightly differ-
ent epitope. Antibodies were coded so that the experi-
menter remained blind to treatment group during both 
injections and behavioral testing, with blind broken only 
after data analysis.

After treatment with S15JG, mice were retested for 
social dominance using the tube test, as previously 
described [44, 45] and detailed below. Following the 
behavioral studies, mice were administered antibodies 
for an additional 2  weeks before euthanasia, for a total 
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duration of 7 weeks of antibody administration. Terminal 
bleeds were collected and plasma PGRN and white blood 
cell (WBC) sortilin levels were assayed, as described 
below.

Tube test for social dominance. Each mouse was tested 
against 3 mice from the opposing group in a 3-round 
design. Tests were designed so that mice from each group 
were evenly assigned to each side of the tube to avoid 
an effect of tube position. In cases where one group was 
paired against multiple other groups, rounds were inter-
spersed to avoid an effect of testing order. Each mouse 
was limited to 6 rounds of testing per day to avoid test-
ing fatigue. The winning percentage of each mouse (num-
ber of wins/total number of matches) was calculated and 
analyzed by Mann–Whitney test. All analyses were con-
ducted with GraphPad Prism 9, with 2-tailed p values 
and α set at 0.05.

Microdialysis sampling. To evaluate the effects of an 
anti-sortilin antibody in the central nervous system 
(CNS), a separate group of mice were implanted in the 
medial prefrontal cortex with guide cannulas, and micro-
dialysis sampling was performed after a single injection 
of S15JG or vehicle. Specifically, guide cannulas (Amuza, 
Inc., San Diego, CA) were implanted in the medial pre-
frontal cortex of Grn+/− and WT mice 36 to 48 h before 
implantation of microdialysis probes. Cannulas were 
implanted using a stereotaxic frame (Stoelting Co., Wood 
Dale, IL) at 1.9  mm anterior to bregma, 0.4  mm lateral 
from the midline, and 1.0  mm below the surface of the 
skull. Mice were injected with either S15JG or control 
antibody (40  mg/kg, i.p.) 24  h before probe implanta-
tions and sampling. The antibodies were coded so that 
the experimenters were blind to treatment group until 
after sampling and analysis were complete. Microdialy-
sis probes with 2-mm membranes  (AtmosLM™, Amuza, 
Inc.) were implanted in the guide cannulas and perfused 
with artificial CSF (1.3  mM  CaCl2, 1.2  mM  MgSO4, 
3 mM KCl, 0.4 mM  KH2PO4, 25 mM  NaHCO3, 122 mM 
NaCl, pH 7.35) at 1 μL/min. To optimize fluid recovery 
and prevent protein binding to tubing, artificial CSF was 
supplemented with bovine serum albumin (BSA) solu-
tion (30% BSA, MilliporeSigma, Burlington, MA) at a 
final concentration of 4% [46, 47]. Probes were perfused 
using a push–pull system [48] consisting of a syringe 
pump (Amuza, Inc.) and a peristaltic pump (Amuza, 
Inc.). Based on preliminary experiments, collection of 
samples was delayed for 8  h after probe implantation 
to allow stabilization of PGRN levels in interstitial fluid 
(ISF). Samples were then collected in a refrigerated frac-
tion collector (FC-90; Amuza, Inc.) at 1-h intervals for 
16 h, so that samples were collected from 32 to 48 h after 
antibody injection. After collection was completed, ISF 
samples were stored at − 80 °C until analysis by ELISA.

PK/PD of latozinemab in nonhuman primates
Subjects. Twelve male cynomolgus monkeys (Macaca fas-
cicularis), ranging from 31 to 41 months old, were used 
as subjects. All procedures complied with the Animal 
Welfare Act, the Guide for the Care and Use of Labo-
ratory Animals, and the Office of Laboratory Animal 
Welfare.

Study design. Latozinemab was administered once 
via intravenous (i.v.) (bolus) injection on day 1 at a dose 
of 0  mg/kg (placebo), 5  mg/kg, 20  mg/kg, 60  mg/kg, or 
200 mg/kg. Blood samples (1 mL) were collected from the 
femoral vein on day 1 at pre dose, and again at approxi-
mately 0.17, 0.5, 1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 144, 
216, 312, 480, 648, 816, and 984 h post dose for plasma 
and WBCs. CSF samples (0.2 mL) were collected on day 
1 at pre dose, and again at approximately 0.5, 1, 2, 4, 6, 
8, 12, 24, 36, 48, 72, 96, 144, 216, 312, 480, 648, 816, and 
984 h post dose. ELISA was used to measure concentra-
tions of latozinemab and PGRN, as well as WBC expres-
sion of sortilin for PK and PD analyses.

First‑in‑human phase 1 study
Participants. Participants were eligible for inclusion if 
they met the following key criteria: males or nonpreg-
nant females; aged 18–65 years in the HV single ascend-
ing dose (SAD) groups or 18–80 years in the aFTD-GRN 
group; in good physical health on the basis of no clini-
cally significant findings; and aFTD-GRN individuals 
who knew their GRN mutation status. Participants were 
excluded from the study if they met any of the follow-
ing criteria, among others: known history of reactions 
to antibodies or fusion proteins; positive drug or alco-
hol results at screening; history of alcohol or substance 
abuse within the past 2 years; history of seizures, major 
depression, schizophrenia, schizoaffective disorder, bipo-
lar disorder, or dementia due to a condition other than 
FTD; history of cancer with exceptions; history of severe, 
clinically significant CNS trauma; or any other severe or 
unstable medical condition or abnormal clinical labora-
tory test.

Study design. Study AL001-1 (NCT03636204) was a 
multisite, first-in-human phase 1 study designed to eval-
uate the safety, tolerability, PK, and PD of latozinemab 
administered as a single i.v. dose in HVs or aFTD-GRN 
participants. Safety, tolerability, PK, and PD of latozin-
emab administered as multiple doses (MDs) were also 
assessed in a cohort of symptomatic carriers of GRN 
mutations causative of FTD (data not shown for MD 
cohort).

In the HV SAD groups, participants were randomized 
6:2 to latozinemab or placebo in 5 dose groups, includ-
ing 2, 6, 15, 30, and 60 mg/kg. The first HV SAD group 
was dosed at 2 mg/kg, with doses escalating up to 60 mg/
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kg in subsequent groups. The group of aFTD-GRN par-
ticipants (n = 6) was dosed at 60 mg/kg latozinemab after 
dose escalation was complete. On day 1, all participants 
received a single dose of their assigned treatment. Dur-
ing the follow-up period, participants returned for sched-
uled visits on days 2, 3, 6, 8, 13, 18, 25, 30, 43, 57, 85, and 
113. Safety assessments were made at all visits. Serum 
PK samples, PGRN plasma samples, and whole blood for 
WBCs were collected at predefined timepoints on days 1, 
2, 3, 6, 8, 13, 18, 30, 43, 57, 85, and 113. CSF samples were 
collected from all participants except HVs in the 2- and 
6-mg/kg dose groups on days-1 (the day prior to dosing), 
2, and 18.

Study endpoints. The safety endpoints included the 
incidence, type, and severity of adverse events (AEs), and 
the incidence of dose-limiting AEs (DLAEs) or AEs that 
led to study discontinuation. Additional safety endpoints 
included changes from baseline in clinical laboratory 
tests, electrocardiogram (ECG) assessments, vital signs, 
or antidrug antibodies, and any physical or neurologic 
abnormalities. PK endpoints included serum and CSF 
concentrations of latozinemab at specified timepoints, 
and PK parameters, including CSF:serum partition coef-
ficients. PD endpoints assessed changes in the levels of 
PGRN in plasma and CSF after dosing relative to base-
line concentration, and changes in sortilin expression in 
WBCs after dosing relative to baseline.

Statistics. For categorical variables, frequencies and 
percentages were presented. Continuous variables were 
summarized using descriptive statistics. For PK param-
eters, geometric mean and 95% confidence intervals were 
also presented. Unless otherwise specified, baseline was 
defined as the last non-missing assessment, including 
repeated and unscheduled measurements, prior to the 
start of study drug administration.

The mean concentration per timepoint for each dose 
group was summarized for serum and CSF PK samples. 
All serum and CSF concentration values below the limit 
of quantification (BLQ) were set to 0. Partition coeffi-
cients were calculated for each timepoint as the ratio of 
latozinemab CSF concentration to latozinemab serum 
concentration.

Descriptive statistics were used to summarize the PD 
endpoints. PGRN plasma concentrations and sortilin 
WBC concentrations that were BLQ were set to half the 
lower limit of quantification (LLOQ). Serum latozinemab 
concentration vs time was used to derive PK parameters 
by noncompartmental methods. PK parameters were 
summarized for the PK population using descriptive 
statistics.

Study approval. The study was conducted in accord-
ance with the general principles set forth in the inter-
national Ethical Guidelines for Biomedical Research 

Involving Human Subjects, International Council for 
Harmonisation Guideline for Good Clinical Practice, 
and the Declaration of Helsinki. The sponsor ensured the 
study complied with all local, federal, or country regula-
tory requirements as applicable.

The protocol and informed consent form were 
reviewed and approved by the institutional review board 
(IRB)/independent ethics committee (IEC) of each par-
ticipating clinical site prior to study initiation. All serious 
AEs (SAEs), regardless of causality, were reported to the 
IRB/IEC. Participants provided informed consent prior 
to study enrollment.

Bioanalytical and PD procedures
For the detection of latozinemab concentrations, recom-
binant human sortilin was diluted in coating buffer in 
96-well ELISA plates and incubated at 2–8 °C for 1 day. 
Diluted plasma (monkey), serum (human), or CSF (mon-
key or human) samples were added to the wells for 1–2 h 
at room temperature, followed by detection with horse-
radish peroxidase (HRP) conjugated goat antihuman 
IgG H + L monkey-adsorbed (monkey plasma or CSF), 
or biotinylated anti-AL001 with streptavidin-HRP A 
(human serum), or Pierce High Sensitivity Streptavidin-
HRP (human CSF). Antibody PK parameters were calcu-
lated using Phoenix WinNonlin software.

Concentrations of PGRN were quantified in plasma 
(all species), CSF (monkey and human), and ISF (mouse). 
PGRN levels were measured by ELISA following the 
manufacturer’s instructions for samples collected from 
mice (R&D Systems; cat. #DY2557) and monkeys (Adi-
poGen; cat. #AG-45A-0019YEK-KI01, lot #K2701611). 
For detection of PGRN in human, biological samples 
were diluted (1:40 for plasma and 1:4 for CSF) in ELISA 
buffer, added to the plate, incubated for 1 h at 37 °C, and 
then the plate was incubated with detection antibody and 
HRP-labeled streptavidin solution followed by a tetra-
methylbenzidine (TMB) substrate solution, with washes 
in between each incubation. PGRN levels in ISF samples 
were analyzed by ELISA (AdipoGen). Prior to analysis, 
ISF samples were diluted 1:1 with ELISA buffer, and then 
loaded onto ELISA plates and analyzed according to the 
manufacturer’s instructions. Absorbance was read on a 
Biotek Synergy LX plate reader. PGRN was quantitated 
relative to a standard curve run on each plate. Data were 
analyzed with GraphPad Prism 9.

To process WBCs from mouse and monkey samples, 
1  mL of ammonium-chloride-potassium (ACK) lysis 
buffer (Lonza) was added to 200 μL of whole blood, and 
then mixed and incubated on ice for 10 min. The sample 
was centrifuged at 500 xg for 10 min at 4 °C. The super-
natant was aspirated and the pellet was resuspended 
in 1  mL ACK lysis buffer for 5  min on ice. The sample 



Page 6 of 18Kurnellas et al. Journal of Translational Medicine          (2023) 21:387 

was recentrifuged at 500  xg for 10  min and the buffer 
was aspirated. The cycle was repeated until all red blood 
cells were lysed. For sortilin concentration, high-binding 
96-well ELISA plates were coated with anti-sortilin anti-
body (S2-11; 1 μg/mL) in PBS at 4 °C overnight. Diluted 
WBC samples were added to the wells for 1  h at room 
temperature. Wells were then incubated with goat anti-
human sortilin-biotinylated secondary antibody (0.1 μg/
mL; cat. #BAF3154, lot #WTJ016011; R&D Systems) 
for 1  h followed by streptavidin HRP (cat. #DY998, lot 
#P104876; R&D Systems) for 20 min. Pierce 1-Step Ultra 
TMB was used for visualization and the reaction was 
stopped with 2N sulfuric acid. For mouse and monkey 
studies, optical densities were measured at 450 nm using 
a BioTek Synergy HT Multi-Detection Microplate Reader. 
Data were analyzed using Excel and GraphPad Prism 9.

The concentration of sortilin in human WBCs was 
assessed as follows. The S2-11 human IgG1 was diluted 
in coating buffer, added to the plate, and incubated over-
night. The plate was washed and un-adsorbed sites were 
blocked with blocking buffer for 1–3 h. After washing the 
plate, lysed WBCs were diluted, dispensed onto the same 
plate, and incubated for 1 h. Then the plate was incubated 
with goat antihuman sortilin biotin, streptavidin-HRP A, 
and finally a working substrate solution, with washes in 
between each incubation.

Results
Latozinemab effectively binds sortilin with high affinity 
and blocks the interaction between PGRN and sortilin 
in vitro
Anti-sortilin antibodies were developed and tested for 
their ability to competitively block binding to PGRN in a 
cell-free assay. Blocking antibodies were further screened 
for their ability to induce sortilin degradation in a cell-
based assay, and antibodies that displayed dual function-
ality of competitive blockade and receptor degradation 
were selected for antibody engineering and further stud-
ies. A lead human antibody was affinity-matured and 
engineered with an inert IgG1 containing L234A/L235A/
P331S mutations of the heavy chain to minimize Fc 
receptor effector functions, and was subsequently termed 
latozinemab.

An HEK293T cell line stably transfected with human 
sortilin showed a binding curve  (KD) of 0.13 ± 0.029 nM 
for latozinemab (Fig.  1A), while no binding occurred 
on untransfected HEK293T cells (data not shown). 
Cell-based competition assay with biotinylated human 
PGRN in the presence or absence of latozinemab further 
demonstrated a dose-dependent blockage of biotinylated 
human PGRN binding (Fig. 1B).

We next determined whether latozinemab alters the 
endogenous levels of sortilin in human U251 cells. 
Latozinemab was found to reduce cell surface expres-
sion of sortilin in a dose-dependent manner, whereas 
cells treated with control isotype showed no appreci-
able change in sortilin expression (Fig. 1C). The maximal 
decrease in sortilin cell surface expression by latozin-
emab at 150  nM was 63.8%, with a half-maximal effec-
tive concentration of 0.105 ± 0.018  nM. Based on the 
calculated mean differences and standard deviations 
of the treatment groups at all doses tested, the percent 
decrease in sortilin cell surface levels from baseline was 
at least 30% more in the samples treated with latozin-
emab at 0.206 nM or higher doses, as compared to their 
respective isotype controls. To look for parallel changes 
in PGRN levels, PGRN was quantified from the super-
natants of the treated cells. Latozinemab elicited a dose-
dependent increase of PGRN of up to 2.17-fold (Fig. 1D). 
The mean differences and standard deviations for each 
dose were compared and demonstrated that extracellular 
PGRN levels were at least 30% higher from baseline with 
latozinemab at 0.023 nM or higher doses, as compared to 
isotype controls.

The murine cross‑reactive anti‑sortilin antibody S15JG 
increases PGRN levels in vivo and rescues a behavioral 
deficit in a mouse model of FTD‑GRN
To determine the target engagement and efficacy of 
S15JG, a mouse cross-reactive antibody that partly 
blocks the interaction of PGRN with sortilin and 
strongly decreases sortilin levels, WT and Grn+/− mice 
were used to model the PGRN haploinsufficiency that 
occurs in FTD-GRN [49]. Repeated injections of S15JG 
significantly reduced expression of sortilin in lysates from 
WBCs isolated from WT (77.6% reduction) and Grn+/− 
(74% reduction) mice relative to their control-treated 
counterparts (Fig.  2A). The levels of PGRN in control-
treated Grn+/− mice were 50% lower than control-treated 
WTs, as expected (Fig.  2B) [49]. The S15JG–induced 
decrease in sortilin levels (Fig.  2A) was accompanied 
by a 3- to fivefold elevation in plasma PGRN levels in 
both WT and Grn+/− mice, with PGRN being restored 
to above-normal levels in the S15JG–treated Grn+/− 
mice (Fig.  2B). To evaluate PGRN levels in the CNS, 
microdialysis sampling was used to measure PGRN in 
the ISF following a single injection of 40-mg/kg S15JG. 
PGRN levels in the ISF from S15JG–treated mice of both 
genotypes were ~ 3 times that of their control-treated 
counterparts (Fig.  2C), suggesting that anti-sortilin 
treatment can successfully restore PGRN in the brains of 
Grn+/− animals back to physiological levels.



Page 7 of 18Kurnellas et al. Journal of Translational Medicine          (2023) 21:387  

Grn+/− mice have been shown to display a behavioral 
phenotype in a social dominance assay [45]. In this assay 
(Fig. 2D), 2 mice are placed in a tube facing each other, 
and 1 of them must retreat for the mice to be able to exit 
the tube. The mouse that retreats is deemed the “loser.” 
Aged Grn+/− mice lose the majority of these matches 
when paired against WT controls, but restoring neuronal 
PGRN in these mice is sufficient to reverse the behavioral 
phenotype [44, 45].

To determine if S15JG can rescue this behavioral phe-
notype, 21-month-old Grn+/− mice and WT littermates 
were first tested to confirm the presence of the behavio-
ral phenotype. These mice were then treated with weekly 

i.p. injections of 40  mg/kg S15JG or an isotype control 
antibody for 4.5  weeks and then retested. As expected 
[44, 45], control-treated Grn+/− mice lost 70% to 80% of 
matches against control-treated WT littermates (Fig. 2E). 
However, when S15JG–treated Grn+/− mice were tested 
against control-treated WT littermates, the win rate 
increased to approximately 40% to 50% (Fig. 2F), with a 
loss of a statistically significant difference between the 
groups. This trend suggests that restoration of PGRN 
back to physiological levels in the aged mice can rescue 
the behavioral phenotype associated with PGRN haplo-
insufficiency that was observed in control-treated mice. 
We further tested S15JG–treated Grn+/− mice against 

Fig. 1 In vitro characterization of latozinemab. A Binding curve of sortilin-expressing HEK293T cells by latozinemab. n = 4 technical replicates 
for latozinemab, n = 5 technical replicates for isotype control. B Percentage of dose-dependent blocking of human PGRN binding to sortilin by 
latozinemab. n = 3 technical replicates for latozinemab, n = 2 technical replicates for isotype control. C Dose-dependent decrease in surface sortilin 
expression on U251 cells. n = 3 technical replicates for latozinemab, n = 2 technical replicates for isotype control. D Extracellular PGRN is increased 
relative to baseline (dashed line) in the presence of latozinemab. n = 3 technical replicates for latozinemab, n = 2 technical replicates for isotype 
control. All data represent the mean ± SD. 2–5 technical replicates shown for each experiment, each experiment was repeated N > 3, representative 
data are shown. PE, phycoerythrin; PGRN, progranulin
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control-treated Grn+/− mice and found that the S15JG–
treated Grn+/− mice behaved similarly to control-treated 
WT mice and won 70% to 80% of the matches against 
control-treated Grn+/− mice (Fig.  2G). Moreover, con-
trol-treated WT mice won similar numbers of matches 
against S15JG–treated WT mice (Fig.  2H), suggesting 
that S15JG does not lead to hyperactivity, aggression, or 
any other detectible adverse behavior in this test when 
PGRN levels are elevated above normal.

Latozinemab decreases sortilin levels in WBCs 
and increases PGRN levels in plasma and CSF 
of cynomolgus monkeys
To guide dosing parameters for a clinical trial, we 
next assessed the PK characteristics of varying doses 
of latozinemab in cynomolgus monkeys for up to 
41  days after a single injection. For plasma (Fig.  3A 
and Additional file  1: Table  S1) and CSF (Fig.  3B and 
Additional file  1: Table  S2) latozinemab measurements, 

Fig. 2 In vivo assessment of an anti-sortilin antibody in a mouse model of GRN haploinsufficiency. A Cell lysate sortilin levels and B plasma PGRN 
levels from WT and Grn+/− mice that received weekly i.p. injections of S15JG or isotype control for 4.5 weeks. C PGRN levels measured from ISF 
33–48 h post injection demonstrated a significant main effect of antibody treatment (P = 0.0089) by Mann–Whitney U tests. (A-C) N = 4–6 per group. 
All data represent the mean ± SEM. P values are by planned post hoc Tukey’s tests and are adjusted for multiple comparisons. D Schematic of social 
dominance test. E–H Ratio of the number of matches won by each animal in a given matchup. Male and female pairs were tested at 19–21 months 
of age (n = 9–12 per group). P values are by Mann–Whitney U tests. All data represent the mean ± SEM. Anti-sort, anti-sortilin antibody S15JG; Ctl, 
control; ISF, interstitial fluid; PGRN, progranulin
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the maximum observed concentration  (Cmax) and area 
under the concentration time curve (AUC) (including 
AUC from time 0 to time t and AUC from time 0 to 
infinity) increased as the dose was increased. CSF 
latozinemab concentrations were approximately 0.1% 
of those measured in plasma, as expected for CNS 
penetration of monoclonal antibodies [50].

Sortilin levels were decreased in isolated WBC lysates 
by all doses of latozinemab (Fig.  3C). The 60- and 200-
mg/kg doses resulted in an earlier and longer-sustained 
decrease in sortilin levels compared with the 5- and 
20-mg/kg doses (Additional file 1: Tables S3–S4). Across 
doses, sortilin levels were significantly decreased from 
baseline for 144–480  h post injection (Additional file  1: 
Table S3).

Maximal elevations of plasma PGRN levels across all 
doses of latozinemab were up to fourfold higher than 
baseline (Fig.  3D). The latozinemab-induced increase in 
plasma PGRN occurred as early as 6 h post injection for 
all doses but reached statistical significance at 24 h post 
injection (Additional file  1: Table  S5). Though the  Cmax 
for plasma latozinemab measurements increased as the 
dose increased (Additional file  1: Table  S1), the peak 
increase in plasma PGRN levels was similar for all doses 

(Fig.  3D and Additional file  1: Table  S6). However, the 
PGRN levels remained elevated above baseline for longer 
durations with the higher latozinemab doses (Fig.  3D 
and Additional file 1: Table S6). We also quantified CSF 
PGRN concentrations and found that latozinemab treat-
ment resulted in a 2- to threefold increase in CSF PGRN 
at the peak of the response (Fig. 3E). Although the 5-mg/
kg dose did not increase CSF PGRN above baseline lev-
els, all other doses led to a significant increase in CSF 
PGRN within 12–24  h post injection (Additional file  1: 
Table  S7). The duration of the latozinemab-induced 
increase lasted longer with increased doses (Fig. 3E and 
Additional file 1: Tables S7–S8).

A single infusion of latozinemab in HVs and aFTD‑GRN 
participants decreases WBC sortilin and increases plasma 
and CSF PGRN
The results of the preclinical pharmacology, PK, and PD 
studies prompted the start of clinical trials. AL001-1 
(NCT03636204) was a first-in-human phase 1 study 
designed to evaluate the safety, tolerability, PK, and PD 
of latozinemab. In the first part of the AL001-1 study, 
latozinemab was administered via i.v. infusion to HVs in 
a SAD design, including 2-, 6-, 15-, 30-, and 60-mg/kg 

Fig. 3 Latozinemab decreases sortilin levels in WBCs and increases PGRN levels in plasma and CSF of cynomolgus monkeys. A–B Plasma A and 
CSF B concentrations of latozinemab antibody as a function of time. C Sortilin concentrations measured as a function of time in WBCs. D–E Plasma 
D and CSF E PGRN levels measured as a function of time. Male monkeys, 24–50 months of age, were used (n = 3 per group). All data represent the 
mean ± SEM. Dashed lines in C-E indicate baseline. CSF, cerebrospinal fluid; PGRN, progranulin
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doses and placebo. In the second part of the study, latoz-
inemab was administered as a single dose of 60 mg/kg to 
aFTD-GRN participants that had 30% to 50% of the nor-
mal levels of PGRN. For PK endpoints, serum and CSF 
concentrations of latozinemab were measured at speci-
fied timepoints before and after infusion. For PD assess-
ments, changes from baseline in the levels of PGRN in 
plasma and CSF and in sortilin expression in WBCs were 
quantified.

Participants
A total of 56 participants were enrolled in the study, 
including 50 HVs who were randomly assigned to the 
SAD groups and 6 aFTD-GRN participants (Table  S9). 
All participants received a dose of study drug or placebo.

Baseline demographics and characteristics were gen-
erally similar across treatment groups for the HVs and 
aFTD-GRN participants (Additional file  1: Table  S10). 
Overall, the age of participants ranged from 19 to 
71  years. More males were enrolled than females, and 
most participants were White.

Pharmacokinetics
Following a single infusion of latozinemab at 2–60  mg/
kg in HVs, the overall shape of the mean serum 
concentration–time profiles for latozinemab were similar 
for each dose group, exhibiting mean peak exposures 
on day 1 (Fig.  4A). Measurable concentrations of 
latozinemab were seen for 30  days or longer in groups 
that received 30  mg/kg or greater. A similar serum 

Fig. 4 Pharmacokinetics of latozinemab in HVs and aFTD-GRN participants. A–B Mean ± SD serum concentrations of latozinemab plotted as a 
function of time for HVs in the SAD groups A and aFTD-GRN participants who received the 60-mg/kg dose B. For the HV SAD groups A, n = 4–13 
participants/group/timepoint, and for the aFTD-GRN group B, n = 8 at all timepoints, except for days 15 (n = 7 at 4 h post dose), 85 (n = 4), and 141 
(n = 3). C–D Mean ± SD CSF concentrations of latozinemab plotted as a function of time for HVs in the SAD groups C and aFTD-GRN participants D; 
note that CSF samples were not collected for HVs in the 2-mg/kg and 6-mg/kg dose groups. For the HV SAD groups C, n = 6 participants/group/
timepoint, except for the 60-mg/kg dose group prior to dosing (n = 13) and on day 13 (n = 5). For the aFTD-GRN group D, n = 5 at all timepoints, 
except for day 25 (n = 1). Nominal time after dose is relative to the end of infusion. Placebo-treated subjects were excluded from the PK population. 
aFTD-GRN, asymptomatic carrier of GRN mutations causative of frontotemporal dementia; CSF, cerebrospinal fluid; HV, healthy volunteer
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concentration–time profile was seen following a single 
infusion in aFTD-GRN participants (Fig. 4B). 

For HVs in the SAD groups, the mean CSF concen-
trations of latozinemab appeared to increase in a dose-
dependent manner, with the highest levels observed by 
day 3 for the 15- and 30-mg/kg dose groups and by day 
13 for the 60-mg/kg dose group (Fig. 4C). After reaching 
the maximum measured CSF concentrations of latozin-
emab, concentrations declined and approached levels 
near the lower limit of detection by day 42 for the 60-mg/
kg dose group. CSF levels of latozinemab in aFTD-GRN 
participants were similar to those seen in HVs receiving 
the same dose (Fig. 4D). CSF:serum partition coefficients 
were less than 1% (Additional file 1: Table S11).

Serum PK parameters demonstrated that mean total 
and peak exposures of latozinemab increased with 
increasing dose level in the SAD groups (Additional 
file  1: Table  S12), with approximately dose-proportional 
increased  Cmax whereas AUC values increased in a 
greater than proportional manner (Table S13).  Cmax val-
ues of latozinemab were attained ~ 1–3  h post dose for 
the HV SAD groups and ~ 1.5 h post dose for aFTD-GRN 
participants. PK parameters in aFTD-GRN participants 
were similar to those observed in HVs who received 
the same dose. In the HVs, clearance of latozinemab 
decreased with increasing doses of latozinemab, and the 
volume of distribution remained between 2.08 L and 3.15 
L (Additional file 1: Table S12).

Pharmacodynamics
To assess the effect of latozinemab on sortilin levels, we 
quantified the concentration of sortilin and total protein 
in human lysed WBCs. The percentage change from 
baseline in WBC sortilin levels decreased following a 
single administration of latozinemab in both HVs and 
aFTD-GRN participants (Fig.  5A, B, Additional file  1: 
Fig. S2, and Additional file 1: Table S14). The decrease in 
sortilin appeared to be dose-dependent in the HV SAD 
groups, with a more robust and longer lasting decrease 
observed in participants who received the higher doses 
(Fig.  5A).  An apparent increase in sortilin WBC levels 
(relative to baseline values) was observed after day 57, at 
which time there was no concomitant decrease in PGRN, 

but this was driven by 2 individuals who had abnormally 
low baseline sortilin values; these individuals’ post-
treatment absolute sortilin levels were similar to those 
of other participants (Additional file 1: Fig. S1). Thus, we 
do not believe there was a continuous increase in sortilin 
WBC levels 50 + days after treatment and that the sortilin 
results are consistent with the PGRN results.

Latozinemab administration resulted in an increase 
in plasma PGRN levels in the HVs (Fig.  5C), with the 
maximum percentage change from baseline in each of 
the SAD groups being significantly greater than that in 
the placebo-treated group (Additional file 1: Fig. S2 and 
Additional file 1: Table S15). Unlike the dose-dependent 
effect that was observed for peak serum latozinemab 
concentrations (Fig.  4A), the peak increase in plasma 
PGRN levels was comparable across doses (Fig. 5C). The 
increase in plasma PGRN that occurred in aFTD-GRN 
participants (Fig. 5D) was similar to that observed in HVs 
who received the same latozinemab dose. In addition, 
latozinemab increased CSF PGRN levels in both HVs 
and aFTD-GRN participants (Fig. 5E, F), with an appar-
ent dose-dependent increase in the HVs. The relative 
increase from baseline in CSF PGRN levels in the 15-, 
30-, and 60-mg/kg dose groups was significantly greater 
than in the placebo group on day 13 (Additional file  1: 
Fig. S2 and Additional file 1: Table S16).

Safety and tolerability
Overall, 32 of 50 HVs (64%) reported a total of 70 
treatment-emergent adverse events (TEAEs), with 
similar rates of TEAEs reported for participants treated 
with latozinemab (63.2%) or placebo (66.7%; Table  1). 
The majority of TEAEs were mild or moderate in severity 
and deemed not related to the study drug. Two HVs 
experienced an SAE (rhabdomyolysis), neither of which 
was considered related to the study drug; 1 case (in 
which the individual received placebo) was attributed 
to strenuous exercise and the other case (in which the 
individual received 60 mg/kg latozinemab) was suspected 
to be due to acute alcohol intoxication and recovery. No 
DLAEs or TEAEs led to study discontinuation in the HVs. 
The most frequently reported (≥ 10%) TEAEs (Table  2) 
were post–lumbar puncture syndrome (n = 9; 18%) 

(See figure on next page.)
Fig. 5 Latozinemab decreases sortilin in WBCs and increases PGRN levels in the plasma and CSF of HVs and aFTD-GRN participants. A–B Median 
percentage change from baseline in sortilin in WBCs from HVs who were administered a SAD of latozinemab A and from aFTD-GRN participants 
who received a single injection of 60-mg/kg latozinemab B. For the HV SAD groups A, n = 4–13 participants/group/timepoint and for the 
aFTD-GRN group B, n = 3–5 participants/timepont. C–D Median percentage change from baseline in PGRN levels in plasma from HVs C and from 
the aFTD-GRN group D. For the HV SAD groups C, n = 4–13 participants/group/timepoint and for the aFTD-GRN group D, n = 5 at all timepoints, 
except on days 2 (30 h post dose), 57, 85, and 113 (n = 3) E–F Median percent change from baseline in PGRN levels in CSF from HVs E and from the 
aFTD-GRN group F; note that CSF samples were not collected for HVs in the 2-mg/kg and 6-mg/kg dose groups. For the HV SAD groups E, n = 2–13 
participants/group/timepoint and for the aFTD-GRN group F, n = 5 at baseline and day 13 and n = 1 at day 25. Nominal timepoints are relative to 
the end of infusion. The percent change from baseline was calculated for each individual based on their own predose value. Dashed lines indicate 
baseline. aFTD-GRN, asymptomatic carriers of GRN mutations causative of frontotemporal dementia; HV, healthy volunteer; PGRN, progranulin
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Fig. 5 (See legend on previous page.)
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and puncture-site pain (n = 5; 10%). TEAEs generally 
occurred at a similar or lower incidence for participants 
in the latozinemab dose groups compared with the 
pooled placebo group, with no treatment- or dose-related 
trends observed for the frequency of TEAEs.

Four aFTD-GRN participants (66.7%) reported a total 
of 10 TEAEs (Table  1). All TEAEs in this group were 
mild in severity and the majority were not related to the 
study drug. One aFTD-GRN participant experienced 3 

treatment-related TEAEs (myalgia, lipase increased, and 
tachycardia). No aFTD-GRN participants experienced 
an SAE or a TEAE leading to early discontinuation. 
No individual TEAEs were reported by more than 1 
participant in the aFTD-GRN group.

Overall, no apparent differences or trends were 
observed among the groups in mean changes from 
baseline for hematology and coagulation, clinical 
chemistry, or urinalysis. Several participants experienced 

Table 1 Summary of TEAEs (safety population)

aFTD-GRN, asymptomatic carrier of GRN mutations causative of frontotemporal dementia; DLAE, dose-limiting adverse event; HV, healthy volunteer; SAD, single 
ascending dose; TEAE, treatment-emergent adverse event; SAE, serious adverse event
a  Post–lumbar puncture syndrome
b  Myalgia, lipase increased, and tachycardia
c  Rhabdomyolysis

Double‑blind, SAD HVs Open‑label

Latozinemab dose level aFTD‑GRN 
60 mg/kg 
(N = 6)Pooled 

placebo 
(n = 12)

2 mg/kg 
(n = 7)

6 mg/kg 
(n = 6)

15 mg/kg 
(n = 6)

30 mg/kg 
(n = 6)

60 mg/kg 
(n = 13)

Total AL001 
(n = 38)

Total 
(N = 50)

Any TEAE, n 
(%) [E]

8 (66.7) 2 (28.6) 5 (83.3) 4 (66.7) 5 (83.3) 8 (61.5) 24 (63.2) 32 (64.0) [70] 4 (66.7)

Any 
treatment-
related TEAE, 
n (%) [E]

1 (8.3)a 0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7)a 0 (0.0) 1 (2.6) 2 (4.0) 1 (16.7)b

Severity of TEAEs, n (%) [E]

Mild 0 (0.0) 0 (0.0) 2 (33.3) 1 (16.7) 0 (0.0) 3 (23.1) 6 (15.8) 6 (12.0) 4 (66.7)

Moderate 7 (58.3) 2 (28.6) 3 (50.0) 3 (50.0) 5 (83.3) 4 (30.8) 17 (44.7) 24 (48.0) 0 (0.0)

Severe 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Life-threat-
ening

1 (8.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (7.7) 1 (2.6) 2 (4.0) 0 (0.0)

Death 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Severity of treatment-related TEAEs, n (%) [E]

 Mild 1 (8.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7) 0 (0.0) 1 (2.6) 2 (4.0) 1 (16.7)

 Moderate 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Severe 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Life-threat-
ening

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Death 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Any SAE, n 
(%) [E]

1 (8.3)c 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (7.7)c 1 (2.6) 2 (4.0) 0 (0.0)

 Any 
treatment-
related 
SAE, n (%) 
[E]

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Any TEAE 
leading to 
discon-
tinuation, 
n (%) [E]

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 Any DLAE, 
n (%) [E]

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) NA
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clinical laboratory abnormalities, with no notable 
treatment- or dose-related trends and only 1 clinical 
abnormality deemed possibly related to treatment 
(increased lipase in 1 aFTD-GRN participant). Vital 
sign measurements throughout the study were generally 
similar to those observed at baseline, and no treatment or 
dose-related trends in ECGs were observed. One aFTD-
GRN participant experienced mild treatment-related 
tachycardia; no other vital sign TEAEs were considered 
treatment related.

Discussion
PGRN haploinsufficiency, as a result of a LOF GRN 
mutation, is a cause of FTD (FTD-GRN). Advances in 
human genetics helped to identify sortilin as a receptor 
for PGRN endocytosis and degradation, which is the pri-
mary determinant of PGRN levels. These advances sug-
gest that therapeutic efforts to treat FTD-GRN could 
target the sortilin-PGRN axis to prevent PGRN degrada-
tion and thereby elevate its level in the brains of individu-
als with FTD-GRN. Here, we describe the mechanism of 
action and target engagement of latozinemab, a monoclo-
nal antibody that blocks sortilin-PGRN interactions and 
targets the sortilin receptor for degradation in cell-based 
and animal studies. We further evaluated the safety pro-
file of latozinemab and demonstrated its target engage-
ment in a first-in-human phase 1 clinical trial with HVs 
and aFTD-GRN participants.

As proof of principle, we performed in vitro cell-based 
assays and found that latozinemab effectively binds 
sortilin with high affinity, blocks the interaction between 
PGRN and sortilin, and decreases sortilin levels on the 
cell surface. PGRN is a secreted lysosomal chaperone, 
neuronal survival factor, and immune regulatory 

molecule, and none of these functions have been shown 
to be affected by the absence of sortilin. First,  genetic 
ablation of Sort1 leads to chronic elevation of PGRN 
in the brain and serum [25], but does not prevent 
PGRN from entering the lysosomes through multiple 
alternative receptors [29], or from promoting neuronal 
survival [51]. Second, genetic ablation of PGRN is 
associated with  lysosomal abnormalities, inflammation, 
and neurodegeneration [52], whereas genetic ablation 
of Sort1 is not associated with such changes, and was 
in fact reported to protect mice from age- and injury-
dependent neuronal degeneration [53]. Third, PGRN 
that was engineered not to bind to sortilin is functional 
and capable of replacing endogenous PGRN in  vivo 
[54]. Fourth,  people with genetic variations that affect 
SORT1 levels were not reported to display  lysosomal 
abnormalities or neurodegeneration [24], unlike those 
with LOF mutations in GRN. PGRN was shown to still 
localize to the lysosome in the absence of sortilin through 
a pathway involving interactions with prosaposin, M6PR, 
and LRP1 [29, 55]. Although the evidence indicates 
that loss of sortilin does not contribute to lysosomal 
abnormalities, the role of PGRN on lysosomal function 
is crucial. Therefore, the effects of latozinemab on 
lysosomal biomarkers will be assessed in a phase 2 
clinical trial in FTD-GRN patients (NCT03987295).

While PGRN plays an important role in lysosomal 
function, the full-length protein has also been shown 
to have important neurotrophic and immunosuppres-
sive effects. Additionally, the protein is cleaved into 7 
individual granulins and a paragranulin whose ranges of 
activity have not been fully elucidated [56–58]. However, 
there is evidence that granulins have an important func-
tion in lysosomal activity. Granulin E and multi-granulin 

Table 2 TEAEs occurring in ≥ 5% participants overall

aFTD-GRN, asymptomatic carrier of GRN mutations causative of frontotemporal dementia; E, number of events reported; MedDRA, medical dictionary for regulatory 
activities; TEAE, treatment-emergent adverse event

Double‑blind, single‑ascending‑dose healthy volunteers Open‑label

Latozinemab dose level aFTD‑GRN 
60 mg/kg 
(N = 6)MedDRA 

preferred 
term
n (%) [E]

Pooled 
placebo 
(n = 12)

2 mg/kg 
(n = 7)

6 mg/
kg 
(n = 6)

15 mg/kg 
(n = 6)

30 mg/kg 
(n = 6)

60 mg/kg 
(n = 13)

Total AL001 
(n = 38)

Total (N = 50)

Post–lumbar 
puncture 
syndrome

2 (16.7) 0 0 1 (16.7) 3 (50.0) 3 (23.1) 7 (18.4) 9 (18.0) 1 (16.7)

Puncture site 
pain

2 (16.7) 0 0 0 0 3 (23.1) 3 (7.9) 5 (10.0) 0

Headache 0 0 0 0 3 (50.0) 1 (7.7) 4 (10.5) 4 (8.0) 0

Anemia 1 (8.3) 0 0 1 (16.7) 1 (16.7) 0 2 (5.3) 3 (6.0) 0

Vomiting 0 1 (14.3) 0 0 1 (16.7) 1 (7.7) 3 (7.9) 3 (6.0) 0
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peptides were shown to bind cathepsin D (CTSD) [59], 
an important lysosomal protease responsible for deg-
radation of various substrates. Granulin E has also been 
shown to enhance the conversion of pro-CTSD to mature 
CTSD, and to increase the activity of mature CTSD 
[60, 61]. DeMuynk and colleagues [62] also showed 
that granulin E can mediate the neurotrophic effects of 
PGRN, independent of its binding to sortilin. Although 
this provides evidence that PGRN and granulin E can 
function independently of sortilin, the study was limited 
in that it did not evaluate the impact of reduced sortilin 
on individual granulins, a point that can be addressed in 
future studies. This and other work assessing the role of 
individual granulin peptides in FTD-GRN may lead to a 
better mechanistic understanding of PGRN’s role in lyso-
somal function and neuronal protection. Beyond its pro-
tective role for neuronal and microglial function, PGRN 
has been implicated in tumorigenesis, but a causal link 
between increased PGRN and cancer is not clear. There 
are diverse signaling pathways affected by PGRN, which 
alone may not be necessary for tumorigenesis. Block-
ing the interaction between PGRN and sortilin was able 
to prevent lung metastasis and infiltration of cancer 
cells [63]. Moreover, the levels of PGRN in latozinemab-
treated FTD-GRN participants were similar to the levels 
observed in untreated, healthy individuals, which sug-
gests that this potential risk of latozinemab in FTD-GRN 
patients is low.

Here, we have shown that latozinemab or the mouse 
cross-reactive S15JG were able to cause a robust decrease 
in cell surface and total sortilin levels as well as a paral-
lel increase in PGRN levels in vivo. It is notable that we 
found increased PGRN levels across species in both the 
plasma and brain biofluid compartments post treat-
ment (ISF via microdialysis in rodents and CSF from 
primates and human). Treatment of aged Grn+/– mice 
for 1 month with S15JG reversed a behavioral phenotype 
associated with PGRN haploinsufficiency in these ani-
mals. Although this behavioral phenotype is apparent in 
the  Grn+/– mice , other dysfunction or pathology such as 
glial activation or accumulation of lipofuscin are not well 
defined. Arrant et  al. [45] identified abnormal signaling 
pathways and neuronal morphology that may explain this 
phenotype, which was not assessed in this study. Overall, 
the results suggest that latozinemab can effectively target 
the CNS and may be able to mitigate the neuropathologic 
effects of decreased PGRN levels in FTD.

Clinical data were consistent with the preclinical data 
from rodents and nonhuman primates. Latozinemab was 
generally well tolerated when administered as a single 
i.v. dose of 2, 6, 15, 30, or 60 mg/kg to HVs or as a single 
i.v. dose of 60 mg/kg to aFTD-GRN participants. TEAEs 
were reported at similar rates in the HVs and aFTD-GRN 

participants, and the majority were mild or moderate in 
severity. No participants experienced a DLAE or TEAE 
leading to early study discontinuation.

Conclusions
Latozinemab is being developed for the treatment of 
carriers of GRN mutations causative of FTD to reduce 
the rate of neurodegeneration by increasing levels of 
PGRN in the periphery and brain. Here, latozinemab 
elicited a long-lasting increase in PGRN in the serum 
and CSF of aFTD-GRN participants, and restored 
PGRN levels to those of HVs. Together, these findings 
demonstrate that the sortilin receptor is a viable target 
for PGRN-based therapy, particularly in patients who 
have PGRN deficiency leading to FTD, and support 
the continued development of latozinemab. Studies are 
ongoing to determine if latozinemab-induced eleva-
tions in PGRN levels can slow the progression of FTD-
associated neurodegeneration (NCT04374136).
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