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Abstract 

Docosahexaenoic acid (DHA) supplementation is recommended for women during pregnancy because of its neuro-
logical, visual, and cognitive effects. Previous studies have suggested that DHA supplementation during pregnancy 
may prevent and treat certain pregnancy complications. However, there are contradictions in the current related 
studies, and the specific mechanism by which DHA acts remains unclear. This review summarizes the research on the 
relationship between DHA intake during pregnancy and preeclampsia, gestational diabetes mellitus, preterm birth, 
intrauterine growth restriction, and postpartum depression. Furthermore, we explore the impact of DHA intake during 
pregnancy on the prediction, prevention, and treatment of pregnancy complications as well as its impact on offspring 
neurodevelopment. Our results suggest that there is limited and controversial evidence for the protective effect 
of DHA intake on pregnancy complications, with the exception of preterm birth and gestational diabetes mellitus. 
However, additional DHA supplementation may improve long-term neurodevelopmental outcomes in the offspring 
of women with pregnancy complications.
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Introduction
Today, the world is experiencing a demographic tran-
sition towards long-term subreplacement fertility [1]. 
The low fertility rate is undoubtedly an important rea-
son for the rapidly aging worldwide population [2], and 
this aging brings along a series of complex social prob-
lems [3]. Some countries have implemented policies to 
encourage childbearing, but these policies have resulted 

in an increase in advanced maternal age and the result-
ant high risk of pregnancy complications [4]. Therefore, 
increased attention to perinatal care, reduction in preg-
nancy complications, and improvement in adverse neo-
natal outcomes are the current goals of obstetricians and 
are essential for promoting social health and economic 
development.

To maintain normal physiological health, the body 
must intake various nutritional elements from food, 
especially glucose, fat and protein. Fat is the second-
largest source of dietary energy for human beings [5], 
and fatty acids (FAs), which are obtained through the 
metabolism of fat, not only serve as energy sources but 
also play an important role in maintaining normal cel-
lular physiology. Deficiencies or abnormal increases in 
FAs are associated with cardiovascular and neurode-
velopmental diseases [6]. N-3 long-chain polyunsatu-
rated fatty acids (n-3 PUFAs) are believed to play a 
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central role in brain function and neuronal membrane 
structure, and are also necessary for the development 
of the myelin sheath and retina [7]. Approximately 90% 
of n-3 PUFAs in the brain are composed of docosahex-
aenoic acid (DHA) [8], suggesting the importance of 
DHA in maintaining brain function. In recent years, 
increasing epidemiological and clinical evidence has 
proven the preventive or therapeutic effects of DHA in 
Alzheimer’s disease [9], attention deficit and hyperac-
tivity disorder [10], breast cancer [11], coronary heart 
disease [12] and some other diseases.

The importance of DHA is evident early in life. DHA 
is rapidly integrated into retinal and brain neural tis-
sue during the last three months of pregnancy [13] 
and plays a significant role in early fetal neurodevel-
opment. Remarkably, the fetus and placenta rarely syn-
thesize DHA autonomously [14]. Therefore, maternal 
DHA intake and placental transport function are criti-
cal for fetal DHA acquisition [15]. However, in some 
pregnancy complications, low maternal DHA levels 
[16, 17] or dysfunction in placental fatty acid trans-
port [18, 19] leads to DHA deficiency in the offspring, 
which may lead to long-term neurological disorders. 
Thus, women with pregnancy complications may ben-
efit from DHA supplementation. Additionally, healthy 
pregnant women and fetuses may also benefit from 
DHA supplementation due to its potential effects on 
neurodevelopment and its preventive effect on a vari-
ety of diseases [20]. However, there remain contra-
dictions in the current relevant clinical studies. For 
example, Colombo et al. found that prenatal DHA may 
positively affect infants’ attention and regulation [21], 
whereas Gould et  al. observed no benefit of prenatal 
DHA supplementation on child behavior; on the con-
trary, the results of Gould et  al. suggest an adverse 
effect of DHA on behavioral functioning [22]. Clarify-
ing the mechanism of action of DHA can help guide 
supplementation during pregnancy [23].

This review summarizes the research on the rela-
tionship between DHA intake during pregnancy and 
five common pregnancy complications: preeclampsia 
(PE), gestational diabetes mellitus (GDM), preterm 
birth (PT), intrauterine growth restriction (IUGR), and 
postpartum depression (PPD). Additionally, we dis-
cuss the impact of DHA intake during pregnancy on 
the prediction, prevention and treatment of the afore-
mentioned pregnancy complications. Furthermore, we 
explore the role of DHA in offspring neurodevelop-
ment. Finally, because DHA is the most important n-3 
PUFA, this review also summarizes the relationship 
between n-3 PUFAs and the aforementioned preg-
nancy complications.

Preeclampsia (PE)
Maternal plasma DHA levels are significantly altered in 
patients with PE. Dangat et al. collected peripheral blood 
from PE patients (n = 45) and normal pregnant women 
(n = 85) at the time of delivery and found that maternal 
plasma DHA concentrations were significantly reduced 
in PE patients [16], and similar results were reported in 
other studies [17]. In addition, women with the lowest 
n-3 PUFA levels in red blood cells were 7.6 times more 
prone to suffer from PE than those with the highest levels 
[24], but this conclusion may be confounded by causality. 
In fact, the decrease in plasma DHA levels in PE patients 
does not occur until the third trimester. A cross-sectional 
study suggested that the decrease in DHA in PE patients 
was already present at 16–20 weeks of gestation [18]. 
These results suggest that early maternal DHA levels may 
be potentially predictive of PE.

Previous studies have not found any difference in sea-
food intake between PE patients and normal pregnant 
women, suggesting that the decrease in plasma DHA 
content in PE patients is not caused by the decrease in 
maternal dietary intake. Mackay et al. proposed that the 
metabolic pattern of PE patients includes high nonest-
erified fatty acid (NEFA) concentrations [25]. Increased 
NEFA flux is associated with mitochondrial dysfunction 
and may cause ectopic lipid accumulation in the liver and 
other tissues, which interferes with PUFA synthesis [26]. 
Another explanation for the decrease in plasma DHA 
content in PE patients is oxidative stress in the placenta 
[27]. Reactive oxygen species attack the double bonds of 
PUFAs and initiate a chain reaction leading to the for-
mation of lipid peroxides. There is a deficiency of anti-
oxidants in PE, and the increased peroxidative reactions 
further promote the decomposition of PUFAs. Notably, 
Roy et  al. found that maternal plasma DHA levels were 
lower in PE women who gave birth to male infants than 
in normal control pregnant women who gave birth to 
male infants, but this same relationship was not observed 
between PE and normal pregnant women who gave 
birth to female infants [28]. Taken together with in utero 
exposure to PE as an environmental risk factor for vari-
ous neurodevelopmental disorders [29] and the role of 
DHA in neurodevelopment, this result suggests that male 
infants born to mothers with PE may be at higher risk for 
neurodevelopmental disorders than female infants.

In addition to maternal plasma, the DHA content 
in the cord blood of PE patients is also lower than that 
of normal pregnant women [18, 25, 30]. The decrease 
in cord blood DHA levels may be due to the following 
three reasons: (1) PE patients are in a low PUFA environ-
ment, which leads to a decrease in maternal plasma DHA 
content and a subsequent decrease in cord blood DHA 
content. (2) Increased oxidative stress in the placental 
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tissues of patients with PE may lead to peroxidation of 
cord blood lipids. In addition, oxidative stress can also 
lead to the dysregulation of angiogenic factors, resulting 
in an increase in sFlt-1, which by itself has been shown 
to induce oxidative stress, leading to further decreases in 
the level of DHA in cord blood [30]. (3) Placental tissues 
of PE patients have been confirmed to have decreased 
mRNA levels of Δ5 desaturase and fatty acid transport 
protein 1/4 (FATP1/4) [18]. Unfortunately, Δ5 and Δ6 
desaturases are the rate-limiting enzymes for PUFA 
conversion and are recognized as the primary determi-
nants of PUFA levels, and the transport of DHA from 
mother to offspring is primarily carried out by FATP1/4 
[31]. The decreased expression of FATP1/4 is a sign of 
impaired fatty acid transport in the placenta and a pos-
sible cause of decreased DHA content in cord blood. (4) 
Lipidomic analysis of placentas from patients with preec-
lampsia reveals higher lipid content than placentas from 
healthy patients [32]. Although the mechanism remains 
unclear, the presence of ectopic fat in the placenta sug-
gests that DHA becomes trapped in the placenta and is 
not transferred to the fetus; thus, the amount of DHA in 
cord blood is low. The fatty acid transport family primar-
ily includes fatty acid transport proteins (FATPs), fatty 
acid-binding proteins (FABPs) and fatty acid translocases 
(FAT/CD36) [33]. In human placental tissue, FABPs are 
predominantly located on the maternal-facing placen-
tal membranes, whereas FATPs and FAT are distributed 
across both maternal and fetal membranes [34]. FABP4 
is essential for trophoblast lipid accumulation. Inhibi-
tion of FABP4 expression in primary human trophoblasts 
blocked their uptake of exogenous fatty acids [35]. In 
addition, Biron-Shental et al. found that human primary 
trophoblasts exhibited increased expression of FABP1, 
FABP3 and FABP4 under inflammatory and hypoxic con-
ditions [36], and FABP4 expression was increased in both 
the serum and placenta of PE patients [37, 38]. Increased 
expression of FABPs located on the maternal surface 
and decreased expression of FATPs, which are primar-
ily responsible for the transport of free fatty acids to the 
fetus, may be the cause of placental ectopic fat in patients 
with eclampsia. These results suggest that alterations in 
polyunsaturated fatty acid metabolism and transport in 
different regions of the preeclamptic placenta may con-
tribute to the pathological features of preeclampsia.

However, the decrease in cord blood DHA levels due 
to these three potential causes appears to be partially 
ameliorated by DHA supplementation during preg-
nancy. First, the low maternal plasma level of DHA in 
PE patients can be improved by exogenous DHA supple-
mentation. Second, DHA can exert antioxidant effects by 
promoting mitochondrial function and biogenesis [39], 
which is speculated to antagonize oxidative stress in PE 

patients. Third, FATPs and FABPs are regulated by per-
oxisome proliferator-activated receptor γ (PPAR-γ) [40], 
whose natural ligand is primarily derived from dietary 
n-3 PUFAs, with DHA being the main component [41]. 
Therefore, DHA is expected to ameliorate the decreased 
expression of FATP1 and FATP4 in placental tissues of 
PE patients through the PPAR-γ pathway, subsequently 
promoting DHA transport, forming a process similar to 
“positive feedback” mechanism (Fig.  1). However, most 
of the current studies are observational studies, and no 
study has investigated the effects of DHA supplemen-
tation in PE patients on cord blood DHA content and 
long-term neurodevelopment in offspring. Future stud-
ies could use this as an entry point to explore the clinical 
value of DHA supplementation.

Interestingly, despite the decrease in maternal plasma 
DHA content in PE patients, the postpartum DHA con-
tent in breast milk increases [16, 42]. It is possible that 
when global PUFA levels are low in PE patients, there 
are adaptive mechanisms in the mammary gland to syn-
thesize PUFAs by increasing sterol regulatory element 
binding proteins (SREBP-1), and the increase in SREBP-1 
expression may ameliorate the expression of Δ5 and Δ6 
desaturase [43]. This study seems to provide guidance 
for breastfeeding in PE patients. However, because there 
are few studies on this topic, further mechanistic stud-
ies and animal models are needed to explore the clinical 
significance.

A large number of epidemiological studies support the 
positive effects of n-3 PUFAs on cardiovascular events, 
including hypertension [44], which may be attributed 
to the antioxidant effect of n-3 PUFAs. The n-3 PUFAs 
can improve vascular endothelial function and antago-
nize the proinflammatory response in hypertension 
[45]. Meanwhile, n-3 PUFAs have also been shown to 
possess vasodilator effects [46]. Similar to hyperten-
sion patients, PE patients exhibit pathologic oxidative 
stress, inflammation and vasoconstriction. Therefore, 
n-3 PUFAs are also expected to improve the symptoms 
of PE patients. However, studies have reported conflict-
ing results. A Cochrane study reported that PE may be 
reduced with omega-3 LCPUFAs (RR 0.84, 95% CI 0.69–
1.01; 20 trials, 8306 participants; low-quality evidence) 
[47], whereas another RCT suggested that DHA supple-
mentation of 800 mg/d in the second half of pregnancy 
does not reduce the risk of PE [48]. In contrast, Li et al. 
found that maternal DHA intake was inversely associ-
ated with the risk of PE, and dietary n-3 PUFA intake 
may protect pregnant women from the development of 
PE [49]. A Danish cohort study involving 65,220 preg-
nant women with singleton pregnancies suggested that 
although EPA + DHA 250  mg/d did not improve the 
overall risk of PE, supplementation reduced the risk of 
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severe preeclampsia (RR = 0.77, 95% CI 0.60–0.99) [50]. 
In view of the current controversy about the risk and 
therapeutic effect of DHA on PE in pregnant women, 
we look forward to more large-scale RCTs on maternal 

DHA intake and PE risk to provide guidance on maternal 
DHA supplementation. Current studies primarily focus 
on whether the use of DHA in normal pregnant women 
can prevent PE and whether DHA supplementation in 

Fig. 1 DHA upregulates FATP4 expression via PPAR-γ to promote its transport in the placenta
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PE patients can improve abnormal blood pressure. Few 
studies have focused on the relationship between DHA 
supplementation in PE patients and long-term neurode-
velopment in offspring. Future research could focus on 
this relationship.

In conclusion, PE patients exhibit lower plasma DHA 
concentrations, which have been observed as early as 
16–20 weeks of gestation. Low plasma DHA levels, pla-
cental oxidative stress, the absence of fatty acid trans-
porters, and ectopic fat in the placenta are potential 
reasons for the reduction in cord blood DHA concen-
trations in PE offspring. Whether supplementation with 
DHA during pregnancy can improve the reduction in 
cord blood DHA in eclamptic patients and the neurode-
velopment of the offspring remains largely unknown and 
necessitates future research.

Gestational diabetes mellitus (GDM)
In contrast to the decrease in maternal plasma DHA 
levels in PE patients, a cross-sectional study suggested 
that GDM did not affect the activities of Δ5 and Δ6 
desaturases, and maternal plasma DHA levels were not 
decreased when GDM was diagnosed in the second tri-
mester [51]. In a meta-analysis of 24 observational stud-
ies, plasma DHA levels were even elevated in GDM 
patients [52]. However, a high maternal DHA environ-
ment did not increase the DHA content in cord blood. 
Léveillé et  al. did not identify any difference in DHA 
levels in cord blood between GDM patients and normal 
pregnant women [53], and even in most studies, DHA 
levels in the cord blood of GDM patients were found to 
be significantly lower than those of pregnant women with 
normal blood glucose [52, 54]. These results suggest that 
the ability of the GDM placenta to transport n-3 PUFAs 
like DHA is decreased.

Gázquez et  al. found that DHA supplementation dur-
ing pregnancy in normal pregnant women increased both 
maternal DHA levels and cord blood DHA levels simul-
taneously, but DHA supplementation in GDM mothers 
did not improve cord blood DHA levels [55, 56]. Studies 
of fatty acid placental transfer in  vivo using stable iso-
tope tracers have also confirmed the impairment of fatty 
acid transport in GDM placentas [19]. Previous stud-
ies have found that the expression of FATP1, FATP4, the 
Major Family Super Domain 2a (MFSD2a) and endothe-
lial lipase in placental tissues of GDM patients is signifi-
cantly decreased [57, 58], resulting in placental fatty acid 
transport disorders. MFSD2a is associated with the selec-
tive transportation of DHA as lysophospholipids. The 
expression of the DHA membrane transporter MFSD2a 
is lower in GDM placentas, which could affect maternal-
fetal DHA transport. Therefore, the level of MFSD2a in 
the maternal blood of GDM mothers could be used as 

a potential biomarker for the early detection of distur-
bances in MFSD2a expression during pregnancy and the 
subsequent consequences on offspring neurodevelop-
ment [57]. The fatty acid transport disorder in GDM pla-
cental tissue may be caused by environmental stimulation 
of high glucose and insulin resistance [59]. When GDM 
patients exhibit good blood glucose control, cord blood 
DHA levels are positively correlated with maternal DHA 
levels [60]. This result also explains why Léveillé et al. did 
not observe a reduction in DHA levels in the cord blood 
of GDM patients; the case group selected in this study 
was GDM patients with good blood glucose control by 
diet or insulin [53]. Therefore, controlling blood glucose 
levels through diet, exercise, and medications in GDM 
patients may facilitate placental fatty acid transport.

Decreased cord blood DHA levels in GDM patients 
may lead to decreased plasma DHA levels in GDM new-
borns [61, 62], and this result has been shown to affect 
neurodevelopment at 6 months after birth [63]. Because 
previous studies suggest that additional DHA supple-
mentation did not significantly increase the DHA levels 
in cord blood [55, 56], how to improve GDM placental 
fatty acid transport disorders has become the focus of 
preventing neurodevelopmental disorders in GDM off-
spring. As mentioned previously, improving blood glu-
cose by diet, exercise or medication may help restore 
normal fatty acid transport in the placenta. In addition, 
similar to the reduced expression of FATP1 and FATP4 
in the placenta of PE patients, DHA is also expected to 
improve FATP1 and FATP4 expression and promote fatty 
acid transport through the PPAR-γ pathway in GDM 
(Fig.  1). Although DHA supplementation at 600  mg/d 
during pregnancy in GDM patients did not improve the 
status of fetal DHA [56], this dose was within the physi-
ological recommended intake range, and the effects of 
higher doses of DHA supplementation on placental fatty 
acid transport function and umbilical cord blood DHA 
content cannot be determined. Given that n-3 PUFAs 
have been used at a dose of 2.4 g/d in overweight school-
age children with metabolic syndrome [64] and have 
not been associated with adverse pregnancy outcomes 
including excessive weight gain in overweight pregnant 
women [65], future studies should evaluate the effect of 
higher doses of n-3 PUFAs on cord blood DHA levels in 
GDM patients under conditions of safety.

DHA levels in vivo are negatively correlated with sev-
eral markers of insulin resistance [66]. Animal models 
have suggested that n-3 PUFAs may reduce the secretion 
of inflammatory cytokines and reverse glucose intoler-
ance [67, 68]. Meanwhile, n-3 PUFAs can also improve 
pancreatic fatty infiltration in the offspring of GDM mice 
[69]. Therefore, DHA may also have some preventive and 
therapeutic effects on GDM. However, RCTs and cohort 
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studies have demonstrated that supplementation of 
DHA-rich fish oil during pregnancy did not prevent the 
development of GDM in normal pregnant women [48, 66, 
70], but pregnant women who have been diagnosed with 
GDM can reduce the levels of blood glucose, blood lipids, 
high-sensitivity C-reactive protein and insulin resistance 
by intake of cod liver oil [71]. Combined supplementa-
tion of vitamin D and n-3 PUFAs for 6 weeks in GDM 
patients has also been shown to have beneficial effects 
on fasting blood glucose, serum triglycerides, very low-
density lipoprotein cholesterol, and insulin-related indi-
cators [72]. Therefore, DHA plays a more therapeutic role 
than a preventive role in GDM patients. Patients with 
GDM during pregnancy may benefit from DHA supple-
mentation, and DHA supplementation can be considered 
in the management of GDM patients during pregnancy. 
The clinical benefits of this initiative, such as whether it 
can control blood glucose levels in GDM patients and 
improve neurodevelopment in GDM offspring, remain to 
be evaluated in large-scale clinical trials.

In summary, although the plasma DHA level of GDM 
patients is unchanged or even increased, the umbilical 
cord blood DHA level is significantly decreased. These 
results suggest that placental transport dysfunction in 
GDM, which has been verified in many other studies, 
may be the primary cause of reduced DHA uptake in 
GDM offspring. High-dose DHA may improve the reduc-
tion in cord blood DHA in GDM patients. In addition, 
according to existing studies, although DHA supplemen-
tation during pregnancy does not seem to prevent GDM, 
pregnant women with GDM may benefit from DHA sup-
plementation during pregnancy.

Preterm birth (PT)
A case‒control design nested in the Danish National 
Birth Cohort measured the percentage of plasma 
DHA + EPA in total fatty acids at 9 and 25 weeks of ges-
tation in 376 pregnant women with early preterm birth 
(< 34 weeks, ePT) and 348 pregnant women with term 
pregnancy [73]. Compared with women with DHA + EPA 
concentrations ≥ 1.8%, women with concentrations < 1.6% 
had a 10.27-fold increased risk of ePT. This result sug-
gests that low plasma DHA and EPA concentrations dur-
ing pregnancy may be a strong risk factor for preterm 
birth. A cross-sectional study in 2021 also suggested that 
the plasma DHA levels of PT pregnant women at deliv-
ery were significantly lower than those of full-term preg-
nant women [17]. However, this study did not compare 
the plasma DHA levels of PT pregnant women at deliv-
ery with the plasma DHA levels of full-term pregnant 
women at the corresponding gestational weeks, and there 
is no study to dynamically monitor the changes in plasma 
DHA levels of pregnant women throughout the whole 

pregnancy, so it is not possible to confirm whether the 
results are caused by different gestational weeks. In gen-
eral, the low plasma DHA levels during pregnancy seem 
suggestive of a relationship with PT [74], and some schol-
ars have advocated monitoring the plasma concentration 
of DHA + EPA during pregnancy to predict PT [75].

The mechanism by which DHA levels contribute to PT 
remains unclear, although several have been suggested: 
(1) The initiation of labor is associated with increased 
expression of uterotonic proteins, activation of specific 
ion channels, and increased connexin 43 [76]. These fac-
tors promote electrical synchronization and coordination 
of contractions in the myometrium. Upon activation of 
contractile protein receptors, the uterus can be stimu-
lated to contract by oxytocin and the stimulatory pros-
taglandins E2 and F2α. As one of the n-3 PUFAs, the 
physical properties of the lipid membrane of DHA may 
affect the activity of contractile protein receptors [77]. In 
addition, DHA regulates connexin 43 expression [78] and 
reduces PGE2 and F2α levels [79]. (2) The infiltration of 
white blood cells and the release of cytokines are the trig-
gers for the initiation of labor, and this maternal inflam-
matory response provides a protective effect for mother 
and baby [80, 81]. However, abnormal inflammation is 
considered the cause of PT [82], and DHA can reduce 
inflammation by regulating the interaction between 
ligands and receptors on the cell surface [83]. The lack 
of DHA in the third trimester of pregnancy may lead to 
abnormal activation of the inflammatory response and 
subsequent PT. This theory has been supported by clini-
cal studies in which DHA supplementation during preg-
nancy contributes to the prolongation of gestational age 
[84]. (3) Defective deep placentation, a failure of invasion 
and transformation of the spiral arteries by the tropho-
blast, may cause uteroplacental ischemia, which is one of 
the causes of PT [85]. Studies of fatty acids on tropho-
blast cells have demonstrated that DHA has a proangio-
genic effect, stimulating the production of proangiogenic 
factors [86] and improving the development of capillary 
buds [87]. Therefore, DHA may reduce the incidence of 
preterm birth by improving deep placental dysfunction.

Considering the above three reasons, it is speculated 
that DHA supplementation during pregnancy is a poten-
tial way to prevent PT. In 2018, the Cochrane study 
included 70 RCTs to analyze the association between 
n-3 PUFA supplementation during pregnancy and preg-
nancy outcomes, and found that pregnant women with 
n-3 PUFA supplementation during pregnancy exhibited 
reduced incidences of PT and ePT compared with those 
without DHA supplementation [47]. Three RCTs since 
2018 have also suggested that DHA supplementation dur-
ing pregnancy can reduce the risk of PT [88–90]. Among 
them, Carlson et  al. found that daily supplementation 
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with 1000 mg DHA was more effective in preventing ePT 
than daily supplementation with 200  mg DHA, and the 
effect was more significant in pregnant women with low 
baseline DHA levels [89]. Although these studies sug-
gest the preventive significance of DHA supplementa-
tion during pregnancy for PT, further studies are needed 
to explore the relationship between maternal DHA lev-
els and appropriate DHA intake; women with higher n-3 
PUFA levels content have a lower risk of PT, and it is pos-
sible that additional supplementation with n-3 PUFAs 
may actually increase the risk of PT [91].

Moreover, the accumulation of fetal n-3 PUFAs pri-
marily occurs during the last trimester of pregnancy [92], 
with the efficiency of n-3 PUFA transport from mother 
to fetus reaching a peak of 42–75 mg/d at 35–40 weeks 
of gestation [93]. Due to the early end of this period, 
preterm infants are especially prone to lack DHA in 
the critical window period of neurodevelopment [94], 
which is more likely to cause adverse outcomes, includ-
ing long-term neurodevelopmental disorders in ePT [95]. 
Therefore, it is important and difficult to improve the 
low n-3 PUFA status of preterm infants. Human milk is 
the preferred source of nutrition for premature infants 
when they are able to receive enteral feeding, but the 
DHA content in breast milk is generally low due to the 
changes in modern dietary structure and the decrease in 
fish consumption [94, 96]. Adding to the problem, Viz-
zari et al. found that DHA content in breast milk appears 
to be related to gestational age, with breastmilk from 
preterm women having lower DHA content than that 
from full-term women [97]. These studies suggest that 
preterm infants who do not absorb enough DHA in the 
third trimester may benefit from DHA supplementation 
of the infants and their nursing mothers. Therefore, many 
scholars have advocated increasing the content of DHA 
in formula milk powder or food for preterm infants [97–
99]. However, there is significant heterogeneity in related 
studies on this topic, and whether preterm infants can 
benefit from DHA supplementation is still inconclusive. 
Regarding offspring neurodevelopment, Hewawasam 
et  al. found that DHA supplementation in preterm 
infants did not improve the attention of the offspring at 
18 months [100], and the Cochrane analysis of the rela-
tionship between preterm infants and fatty acid supple-
mentation did not find long-term benefits or harms in 
preterm infants receiving n-3 PUFA formula milk powder 
[101]. However, the study by Westerberg et al. suggested 
that early DHA supplementation in very low birth weight 
newborns had a positive effect on the attention ability of 
offspring at 20 months of age [102]. Moreover, DHA sup-
plementation in preterm infants may reduce the risk of 
hay fever [103], necrotizing enterocolitis [104], and intra-
ventricular hemorrhage [105].

In general, low plasma DHA levels during pregnancy 
seem to be suggestive of PT risk, and DHA supplementa-
tion during pregnancy has a preventive effect on PT and 
ePT. Premature infants have insufficient intake of DHA 
due to the early termination of pregnancy. There is con-
siderable controversy regarding whether preterm infants 
benefit from postnatal DHA supplementation. RCTs with 
large sample sizes are needed to determine the clinical 
significance of DHA supplementation in preterm infants.

Intrauterine growth retardation (IUGR)
Although DHA has been shown to be closely related to 
fetal neurodevelopment, there are few studies on the 
relationship between DHA and IUGR. A previous study 
found that DHA levels in maternal plasma and umbili-
cal cord blood of pregnant women with IUGR fetuses 
decreased during pregnancy, whereas the placental 
expression of lipoprotein lipase, FABP1/3 and FATP1/2/4 
increased [106]. The increase in placental fatty acid trans-
porters may be a compensatory response, but this com-
pensation did not improve the DHA deficiency of IUGR 
fetuses. It is not known whether the decrease in maternal 
DHA levels is a cause or consequence of IUGR. Although 
placental disorders are also predisposing factor for IUGR 
(see preterm birth section) [85], a meta-analysis sug-
gested that n-3 PUFA supplementation during pregnancy 
did not reduce the risk of IUGR [47].

Given that the major site of action of DHA in the fetal 
period is the brain, two studies have evaluated the rela-
tionship between DHA supplementation during preg-
nancy and fetal head circumference [107, 108]. However, 
the two studies differed in their results, despite using the 
same DHA dose and similar start and end times. A Mexi-
can study demonstrated that maternal intake of 400 mg/d 
DHA starting at 20 weeks of gestation was associated 
with a larger head circumference at birth [108], whereas 
another study suggested that intake of 400  mg/d DHA 
starting before 20 weeks of gestation until delivery did 
not increase the head circumference [107]. Gamboa et al. 
found that inactivating mutations in MFSD2A, required 
for n-3 PUFA transport in the brain, cause lethal micro-
cephaly syndrome [109]. This result suggests that DHA 
deficiency may contribute to microcephaly. If clinical 
studies confirm this theory, DHA supplementation may 
be a potential treatment for women with microcephaly or 
small head circumference detected by ultrasound during 
pregnancy.

Notably, some animal models suggest that offspring 
with IUGR may benefit from maternal DHA supple-
mentation, such as enhanced lung function [110, 111] 
and prevention of impaired oligodendrogenesis [112]. In 
addition, DHA supplementation in the offspring of IUGR 
model rats can improve cognition [113].
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In conclusion, plasma and cord blood DHA levels are 
decreased in IUGR patients. DHA supplementation 
during pregnancy may have a protective effect on fetal 
microcephaly and small head circumference. Despite 
the demonstrated benefits of maternal and offspring 
DHA supplementation for IUGR infants in animal mod-
els, there are substantial gaps in relevant clinical studies, 
which should be the focus of future research.

Postpartum depression (PPD)
Previous studies have suggested that EPA, DHA and total 
n-3 PUFA levels are lower in patients with depression, 
suggesting their role in the pathogenesis of depression 
[114, 115]. Related RCTs and meta-analyses also suggest 
that n-3 PUFAs may exhibit preventive and therapeutic 
effects on depression [116–118] through their role in 
anti-inflammatory, antioxidant, and neurotrophic pro-
cesses in the brain [119]. Similar to depression, patients 
who develop PPD have been shown to exhibit low levels 
of DHA in the postpartum period [120], which may occur 
in the third trimester [121] or even the first trimester 
[122]. Epidemiological evidence suggests that both higher 
DHA concentrations in breast milk and higher seafood 
consumption predict a lower prevalence of PPD [123], 
and greater seafood consumption and n-3 PUFA intake 
may be protective against PPD [124]. This evidence sug-
gests the potential predictive, preventive and therapeutic 
effects of n-3 PUFAs in PPD.

However, the results of RCTs have been more diver-
gent. A large RCT involving 2399 pregnant women 
suggested that DHA supplementation at 800  mg daily 
starting at 21 weeks of gestation did not reduce mater-
nal PPD risk [125]. Other studies have reached similar 
conclusions [126–130]. For pregnant women with low 
DHA levels during pregnancy, additional DHA supple-
mentation did not seem to prevent PPD [131]. DHA sup-
plementation of 1.9 g/d for 8 weeks also did not exhibit 
a significant therapeutic effect on women who already 
developed PPD [130], and the result of Mendelian ran-
domization did not demonstrate a causal relationship 
between n-3 PUFA intake and PPD [132]. In contrast, 
several recent studies have suggested an association 
between maternal DHA levels and PPD [133], as well 
as the preventive or therapeutic effects of DHA supple-
mentation on PPD [134, 135]. We compared the differ-
ences between different studies and found that the year 
of study was the most significant factor explaining the 
differences in conclusions. Most of the negative stud-
ies [125–132] were conducted relatively early, with even 
the most recent negative studies [126, 127] published in 
2017. However, most of the positive studies [133–135] 
were conducted in recent years, all of which were per-
formed after 2020. The specific effect of study years on 

this outcome is not clear. Changes in social environment 
and dietary structure may be potential causes, but more 
clinical studies are needed to verify the results. The two 
recently published meta-analyses [136, 137] were limited 
by the lack of comprehensiveness of the included studies, 
and the conclusions were inconsistent, which had limited 
the creation of clinical guidelines. Although Cochrane 
did not conclude a protective effect of n-3 PUFAs against 
PPD [138], this meta-analysis is a decade old. Therefore, 
it is necessary to conduct a systematic, comprehensive 
and rigorous analysis of the studies on the association 
between n-3 PUFA intake and PPD.

In addition, because one-third of women with PPD 
experience the onset of depressive symptoms during 
pregnancy [139], we also summarized the effects of DHA 
intake on depression during pregnancy. Epidemiology 
suggests an association between low omega-3 intake 
from seafood and increased risk of elevated depressive 
symptoms during pregnancy [140], and the intake of 
fish and DHA has a protective effect on depression dur-
ing pregnancy [141]. Rees et al. found that women with 
depression during pregnancy have lower blood DHA 
levels in the third trimester [142]. After adjustment for 
confounding factors, those with high DHA levels still had 
significantly lower odds of depression. Another prospec-
tive cohort also found that lower DHA serum concen-
trations, regardless of the pregnancy trimester in which 
levels were measured, were associated with higher odds 
of depressive symptoms throughout pregnancy [143]. 
Depressive symptoms in early pregnancy, even in the 
subclinical range, were inversely associated with breast 
milk DHA levels [144], which may have some impact on 
the offspring. Given that DHA appears to have a protec-
tive effect on depression during pregnancy [145], women 
with depressive symptoms may benefit from DHA sup-
plementation during pregnancy, both for themselves and 
their offspring.

In summary, similar to patients with depression, DHA 
levels were decreased in PPD patients. Epidemiologi-
cal evidence suggests that DHA supplementation has a 
potential role in the prediction, prevention and treatment 
of PPD. There is a large variation in clinical studies, and 
the year of study, which may reflect social development, 
dietary structure improvements and changes in the prep-
aration of DHA, may be the main reason for this varia-
tion. In addition, DHA may also have a protective effect 
on depression during pregnancy.

Conclusions and future perspectives
Although significant evidence suggests that DHA supple-
mentation during pregnancy may aid in the prevention of 
PT and may represent a treatment for GDM, in the data 
is less clear with respect to the prevention or treatment 



Page 9 of 13Jiang et al. Journal of Translational Medicine          (2023) 21:394  

of other pregnancy complications. In view of the sugges-
tive role of maternal DHA levels in these diseases, and 
the finding that only pregnant women with low maternal 
DHA levels could benefit from additional DHA supple-
mentation in some studies, we suggest that the measure-
ment of maternal DHA levels during pregnancy may have 
a positive effect on maternal perinatal management.

Studies suggest that a daily intake of 200 mg DHA can 
decrease the likelihood of preterm birth [146], and the 
recommended daily intake of DHA for pregnant women 
in many countries meets this requirement [89, 147]. 
Although studies suggest that 1000  mg/d DHA is more 
effective than 200  mg/d DHA in preventing ePT [89], 
there are few studies on the dose, and this relationship 
seems to be influenced by maternal DHA levels [91]. 
Therefore, we do not recommend DHA supplementa-
tion in healthy pregnant women beyond the doses rec-
ommended in the dietary guidelines because it does not 
appear to provide additional benefit. Unfortunately, in 
modern diets, the intake of fish containing high levels of 
n-3 PUFAs is limited [83]. In the United States, the aver-
age adult daily intake of DHA + EPA is approximately 
100 mg [148], well below the recommended daily intake 
of DHA during pregnancy. Therefore, when normal preg-
nant women are unable to meet the appropriate intake 
of DHA, additional supplementation with DHA capsule 
preparations has a positive effect on pregnancy outcomes 
and fetal development.

Whether DHA supplementation should be added 
to the recommended intake of 200  mg/d for pregnant 
women with comorbidities remains questionable. The 
prevention and treatment effects of DHA for pregnancy 
complications are controversial, and there is a lack of 
related studies on the long-term neurodevelopment of 
offspring of women with complications. Previous animal 
studies have found that the water maze performance of 
healthy young mice fed DHA until adulthood is not dif-
ferent from that of healthy mice fed without DHA sup-
plementation [149]. However, in animal models such as 
Alzheimer’s disease [150], traumatic brain injury [151], 
n-3 PUFA deficiency [152, 153] and offspring exposed 
to general anesthesia with propofol during early preg-
nancy [154], water maze related performances were 
significantly improved after DHA supplementation. In 
view of this phenomenon, we believe that the effects of 
DHA on nerve development and wound repair may only 
be reflected in pathological conditions. For women with 
normal pregnancies who have normal levels of DHA and 
meet the daily requirements for DHA intake, additional 
DHA supplementation may not confer benefit in the 
offspring. However, for mothers with certain pregnancy 
complications, even if their DHA levels are normal or 
they consume the recommended amount of DHA daily, 

the offspring may still be exposed to low DHA levels 
due to placental transport disorders, which may lead to 
long-term neurodevelopmental disorders. In such cases, 
although high-dose DHA supplementation may not play 
a role in the treatment of complications, it may improve 
DHA deficiency in offspring by increasing maternal DHA 
levels, improving placental fatty acid transport, and pre-
venting the long-term neurodevelopmental disorders 
caused by some pregnancy complications.

Current studies on DHA and offspring neurodevel-
opment primarily focus on healthy pregnant women 
without complications. We hope that future studies can 
explore the effects of DHA supplementation on the long-
term neurodevelopment of offspring in complicated 
pregnancies, and provide new guidance for the necessity 
of DHA supplementation in women with complicated 
pregnancies.
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