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Abstract 

Background Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignan-
cies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma 
(MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding 
of metabolic phenotypes in MB and their impact on patients’ outcomes.

Methods Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored meta-
bolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients 
(ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratu-
moral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. 
Findings on metabolic heterogeneity were correlated to clinical data.

Results Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsu-
pervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC 
and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the 
according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered 
regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic 
value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol 
phosphates and nucleotides correlates with patient survival.

Conclusion Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct 
metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.
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Graphical Abstract

Background
Medulloblastoma (MB) is one of the most common 
malignant paediatric brain tumour types and a highly 
heterogeneous tumour entity. In addition to the four 
consensus molecular groups, WNT, SHH, group 3 
(G3), and group 4 (G4), extensive analyses of multi-
omics data have resulted in an even further subdivi-
sion into numerous subgroups [1–4]. Overactivation 
of WNT/β-catenin and SHH signalling pathways char-
acterise WNT and SHH MB, respectively, and are 
associated with a good (WNT), intermediate (SHH, 
TP53-wildtype) and poor (SHH, TP53-mutated) prog-
nosis [5–7]. Meanwhile, G3/G4 MB correlate with an 
intermediate (G4) and poor (G3) patient outcome [5], 
share some overlapping features and are not consist-
ently separable [2, 6]. Recently, Sharma et al. [2] intro-
duced eight distinct G3/G4 consensus subgroups based 
on the analysis of DNA methylation data. Of these, 
subgroups II, III, and V were identified as high-risk 
MB exhibiting a particularly unfavourable prognosis 
and frequently showing amplification of either MYC or 
MYCN.

While molecular risk stratification has significantly 
improved our understanding of MB, it is not yet fully 
elucidated what drives heterogeneity and gradients, 
especially among G3/G4 MB [2, 6]. One aspect contrib-
uting to the diversity among malignancies, in general, is 

aberrant cell metabolism [8]. Various factors shape the 
metabolic phenotype, including cell-intrinsic influences 
(e.g. the cell of origin, oncogenome or deregulated sig-
nalling and metabolic pathways) and extracellular fac-
tors such as the tumour microenvironment (TME) or 
nutrient availability [9–12]. It has been established that 
MB emphasises anabolic pathways similar to progenitor 
cells in the developing cerebellum to promote tumour 
growth and ensure tumour survival [13, 14]. However, a 
few studies imply that metabolic patterns might not be 
consistent across MB groups [15, 16]. This is also exem-
plified in our previous work showing extensive metabolic 
reprogramming in the tumour of a mouse model for SHH 
MB, which affected lipid metabolism, nucleotide metabo-
lism, and oxidative phosphorylation (OXPHOS) [17]. To 
answer whether specific alterations in metabolic depend-
encies could potentially serve as future therapeutic 
targets [18], detailed knowledge about the extent of met-
abolic diversity in MB and underlying molecular mecha-
nisms is needed. Therefore, this study comprehensively 
explored metabolic differences between and within MB 
groups on a genomic and transcriptomic level. Focus-
ing on G3/G4 MB revealed three metabolic clusters that 
significantly impact patients’ survival. Lastly, upregula-
tion of genes involved in the metabolism of nucleotides 
and inositol phosphate (IP) compounds correlated with 
patients’ outcomes.
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Methods
Patient samples
Data from 1288  MB patients derived from four inde-
pendent cohorts were included in this study. ICGC 
cohort encompassed whole-genome sequencing (WGS) 
data of 491 patients. Normalised RNA expression values 
of 139 ICGC tumour samples retrieved from the Euro-
pean Genome-phenome Archive were explored in bulk 
RNA analysis. Supplements from Northcott et  al. list-
ing nDNA mutations in ICGC cohort was searched for 
alterations in all 491 patients [19]. Microarray data from 
763 tumour samples from MAGIC cohort were obtained 
from Gene Expression Omnibus GEO [20]. Clinical data 
and group annotation were added from a previous pub-
lication [4]. Both cohorts comprised all four MB groups. 
Metabolic heterogeneity on single-cell RNA level was 
explored using six additional human MB samples (two 
G3, four G4) from patients treated in Münster, Germany, 
with ethical committee agreement (2017-261-f-S, Mün-
ster, Germany). This dataset is referred to as MSMB in 
the graphical abstract and the main text. Findings were 
validated by exploring a second single-cell RNA cohort 
encompassing data from 28 patients published by Rie-
mondy et al., abbreviated as RMB dataset [21].

Single‑cell RNA sequencing
Six human MB samples were dissociated and further 
processed into single-cell suspensions of vital tumour 
cells as described [17]. We applied chromium technology 
(10× Genomics) for single-cell capture, barcoding and 
cDNA amplification. The Library Bead Kit and i7 Mul-
tiplex Kit were employed for library generation. Quality 
controls were performed with a Tapestation 2000 instru-
ment (Agilent Technologies). Sequencing of samples was 
conducted at Core Facility Genomics, University Hos-
pital Münster, on an Illumina NextSeq 500 instrument 
utilising High Output Kit v2 with 75 cycles. Single-cell 
RNA sequencing (scRNA-seq) data are available on Gene 
Expression Omnibus GEO [22].

Data analysis
The bioinformatic data analyses were conducted using 
R-versions 4.0.5 and 4.1.3 [23, 24]. A list of metabolic 
genes compiled from KEGG and REACTOME metabolic 
pathways was obtained from the cancer cell metabolism 
gene database (ccmGDB) [25]. Gene signatures of meta-
bolic pathways previously published by Rosario et  al. 
[26] were used to validate bulk RNA and nDNA analyses 
and for survival analyses. To explore bulk and single-cell 
RNA data, canonical pathway analyses of differentially 
expressed genes (DEGs) were performed using QIAGEN 
IPA (QIAGEN Inc., https:// digit alins ights. qiagen. com/ 
IPA) [27]. Bulk RNA analysis and selected findings from 

single-cell RNA analysis were validated using Metascape 
[28]. The graphical abstract was created using BioRender.
com. Further details on analyses and packages used are 
provided in the Additional file 1.

Results
Metabolic gene expression in MB subgroups
In order to study characteristics of cell metabolism in 
MB, we evaluated RNA expression levels of 2071 genes 
from ccmGDB associated with cell metabolism (called 
“metabolic genes” thereafter) across 139  MB samples 
from the ICGC cohort [25]. Unsupervised hierarchi-
cal clustering was performed, and silhouette method 
revealed an optimal number of three clusters for the 
resulting heatmap (Additional file 1: Fig. S1B). However, 
as a separation into three clusters would have implicated 
a strong mixing of the according consensus MB groups, 
the cohort was divided into seven metabolic clusters 
instead, including one WNT, two SHH and three G3/G4 
clusters (Fig.  1A; Additional file  1: Fig. S1D). One clus-
ter was excluded as potential outlier, as described in the 
Additional file 1. Patients from cluster I_G3/4.2 (predom-
inantly G3) had a significantly shorter progression-free 
and overall survival (Fig. 1B; Additional file 3: Table S2).

To validate this metabolic classification system, we 
used the 763-sample MAGIC cohort. Here, we were 
able to identify six metabolic clusters that were associ-
ated with different survival of affected patients (Fig. 1A, 
C). Kaplan–Meier survival curves highlighted M_G3/4.2, 
which is dominated by G3 MB (G3 n = 33; G4 n = 4), as 
a “high-risk metabolic cluster” with significantly shorter 
overall survival, comparable with I_G3/4.2 (Fig.  1C; 
Additional file 1: Fig. S3A). To further molecularly clas-
sify these two “metabolic high-risk clusters”, we com-
pared our clustering with published G3/G4 methylation 
subgroups from Sharma et al. [2] and found that I_G3/4.2 
(n = 6) and M_G3/4.2 (n = 37) comprised mainly sam-
ples from consensus methylation subgroup II (I_G3/4.2 
n = 4; M_G3/4.2 n = 21). Accordingly, five I_G3/4.2 sam-
ples showed amplification of either MYC or MYCN and 
30 M_G3/4.2 samples had been categorised as G3γ ear-
lier [4]. I_G3/4.1, I_G3/4.3, and M_G3/4.1 encompassed 
several samples belonging to methylation subgroup VII 
or VIII [2]. For M_G3/4.3, a similar trend was not as 
clear. Compared to M_G3/4.1 and M_G3/4.2, this cluster 
also included larger fractions of methylation subgroups 
III and IV, which most likely resembles samples included 
in I_G3/4.3 in the other cohort (Fig. 1A; Additional file 1: 
Fig. S1).

In order to rule out that this clustering is reliant on the 
gene list from ccmGDB, we performed a second analy-
sis using a collection of 1771 metabolic genes based on 
the work of Rosario et  al. [26]. While ccmGDB also 

https://digitalinsights.qiagen.com/IPA
https://digitalinsights.qiagen.com/IPA
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Fig. 1 Established MB groups differ in metabolic gene expression with association to patients’ prognoses. A Heatmaps showing the expression of 
metabolic genes from the ccmGDB across 139 samples from the ICGC cohort and 763 samples from the MAGIC cohort ordered by unsupervised 
hierarchical clustering. For the MAGIC cohort, genes are in the same order as for the ICGC cohort. Annotation bars on the column side illustrate the 
amplification status of MYC (only ICGC), correlation with published methylation G3/G4 subgroups [2], and the samples’ MB group affiliation from 
top to bottom. B, C Overall survival of patients from B ICGC and C MAGIC cohort. Patients have been grouped into metabolic clusters identified in 
A. Log-rank test was used to calculate p-values, and p < 0.05 was considered significant. MBNOS = MB not other specified; wt = wildtype
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considers genes involved in RNA metabolism, Rosario 
et  al. comprised a complete set of genes belonging to 
certain pathways, for example, OXPHOS, but also lipid 
and carbohydrate metabolic processes (Additional file 1: 
Fig. S2A–C). Despite these differences in essential meta-
bolic categories, we received a similar clustering in both 
cohorts using the second gene list (Additional file 1: Fig. 
S2D, E). This finding supports the idea that the metabolic 
clusters depicted in Fig.  1 are not solely dependent on 
one specific set of metabolic genes.

Next, we aimed to get more detailed insights into func-
tional networks underlying the described clusters of 
G3/G4 MB. Therefore, we compared the transcriptome 
of all clusters and only G3/G4 clusters performing IPA 
canonical pathway analyses and using Metascape to gain 
a comprehensive understanding of enriched genes and 
pathways.

The upregulated DEGs of I_G3/4.1 indicated enrich-
ment of genes associated with inflammation and immune 
response (Fig.  2A; Additional file  1). This result is par-
ticularly interesting as immune and stromal cells are 
known to strongly impact nutrient availability and cancer 
cell metabolism [12, 29]. Computational quantification 
of cell types from the TME employing MCP-counter [30] 
revealed significant differences in the abundance of vari-
ous cell populations across metabolic clusters (Additional 
file 1: Fig. S6; Additional file 6: Table S5). Especially the 
amount of B and T cells, cells from the monocytic line-
age and neutrophils varied among clusters from both 
cohorts when contrasting all and only G3/G4 clusters. As 
depicted in Additional file 1: Fig. S6, I_G3/4.1 exhibited 
comparably high abundance scores for these cell types.

In contrast, IPA canonical pathways such as OXPHOS, 
sirtuin signalling pathway, eIF2 signalling and purine bio-
synthesis implied a relevant role of energy, mRNA and 
nucleotide metabolism in I_G3/4.2 (Fig.  2B). I_G3/4.3 
exhibited 128 upregulated DEGs, which are involved in 
glycolysis and the metabolism of IP (Fig. 2C; Additional 
file 5: Table S4). Although OXPHOS and IP metabolism 
were less clearly recognisable in the results from Metas-
cape, we again found pathways highlighting RNA and 
nucleotide metabolism in I_G3/4.2 (Additional file  1: 
Figs. S4A, S5A, B). Analysis of upregulated DEGs of 
I_G3/4.3 when comparing only G3/G4 clusters resulted 
in several pathways pointing at energy deficiency, such 
as protein modification and catabolism or mitophagy 

(Additional file  1: Fig. S5C) [31]. However, this latter 
result should be interpreted cautiously due to the small 
number of DEGs and lower gene expression values used 
for this cluster (Additional file 1).

To compare our findings to the clustering from the 
MAGIC cohort, we repeated all analytical steps with 
DEG lists derived from this cohort. Additionally, we 
constructed a Sankey plot using each cluster’s top 250 
unique upregulated DEGs (Fig.  2G; Additional file  1). 
DEG analyses indicated a resemblance between I_G3/4.2 
and M_G3/4.2 when employing both QIAGEN IPA and 
Metascape (Fig. 2B, E; Additional file 1: Fig. S4). As pre-
sented in the Sankey plot, further similarities between 
I_G3/4.1, I_G3/4.3 and M_G3/4.1, as well as the SHH 
clusters I_SHH.1 and M_SHH.1 and the WNT clusters, 
could be observed (Fig. 2G). The similarity between the 
WNT clusters M_WNT and I_WNT is also evident 
when comparing gene expression patterns in bulk RNA 
heatmaps (Fig. 1A), indicating a distinct metabolic gene 
expression profile. I_SHH.2, M_G3/4.3 and M_SHH.2 
appeared to have only few unique DEGs overlapping with 
other clusters. One possible explanation for this observa-
tion might be variable data processing before our study 
or differences in cohort size resulting in a more homog-
enous clustering of established MB groups in the MAGIC 
cohort. The latter argument is also supported by canoni-
cal pathways of M_G3/4.1 and M_G3/4.3 when only com-
paring G3/G4 clusters (Fig. 2D, F). While top metabolic 
pathways in these clusters refer to IP metabolism, top 
canonical pathways, in general, resemble characteristic 
biological processes enriched in G4 MB (M_G3/4.1) and 
G3α and β (M_G3/4.3) [4]. As described above, G3/G4 
samples of methylation subgroup III/IV (mostly equata-
ble with G3α and β) clustered together with samples from 
subgroups VII and VIII (mostly G4) in I_G3/4.3 while 
forming a separate cluster in M_G3/4.3 [6]. Because two-
thirds of I_G3/4.3 comprises samples classified as G4 
MB, a resemblance of I_G3/4.3 and M_G3/4.3 might be 
concealed when only looking at unique DEGs. Creating a 
plot similar to Fig. 2G without focusing on unique genes 
provides evidence of overlaps between I_G3/4.3 and M_
G3/4.3 (Additional file 1: Fig. S3C).

This idea seems to hold concerning the SHH clusters, 
too. Considering upregulated DEGs, in general, dem-
onstrates that metabolic gene expression programs of 
identified SHH clusters are not as easily distinguishable. 

(See figure on next page.)
Fig. 2 Functional characterisation of metabolic G3/G4 clusters in examined cohorts. IPA canonical pathway analysis of upregulated DEGs 
comparing solely clusters dominated by G3/G4 MB has been performed. Pathways are presented for A I_G3/4.1, B I_G3/4.2, C I_G3/4.3, D M_G3/4.1, 
E M_G3/4.2, F M_G3/4.3. Pathways that overlap in content across clusters are printed in bold. Behind each pathway, the number of DEGs matching 
this pathway is listed in brackets. G Sankey plot illustrating relationships between metabolic clusters in ICGC and MAGIC based on DEGs of each 
cluster as outlined in the Additional file 1. The width of each bar representing a cluster refers to the total number of DEGs which overlap with 
clusters from the other cohort. IP = inositol phosphate; EMT = epithelial–mesenchymal transition
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Fig. 2 (See legend on previous page.)
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Meanwhile, Fig.  2G implies a resemblance between I_
SHH.1 and M_SHH.1. M_SHH.1 consists mainly of 
samples from SHHα and SHHδ, while large parts of M_
SHH.2 are made up of SHHβ and SHHγ. Interestingly, 
this suggests a division of clusters by age since SHHβ and 
SHHγ primarily occur in infants, while SHHα and SHHδ 
affect mostly older children and adults [4]. Data regard-
ing these subgroups were not available for ICGC cohort. 
However, patients from I_SHH.1 were significantly older 
compared to all other ICGC clusters, with a mean age of 
22.6 years, while the mean age of patients from I_SHH.2 
was 14.6 years. Even though pairwise Wilcoxon test com-
paring only I_SHH.1 and I_SHH.2 was not significant, 
this indicates that samples from I_SHH.1 likely classify as 
SHHδ while I_SHH.2 contains a combination of samples 
from different age groups (Additional file 1: Fig. S1; Addi-
tional file 3: Table S2).

Altogether, our analyses reveal apparent differences in 
metabolic gene expression between the established MB 
groups. Moreover, we discovered a separation of G3/
G4 MB into three clusters displaying distinct metabolic 
programs. Enhanced metabolism of RNA and nucleo-
tides together with OXPHOS distinguished high-risk MB 
patients from others.

Metabolic programs of G3/G4 MB reflect intertumoral 
metabolic heterogeneity
We performed scRNA-seq on six human G3/G4 MB 
samples (n = 2 in G3; n = 4 in G4) to explore metabolic 
clusters at single-cell level. This analysis revealed 18 dis-
tinct cell clusters, most of which were malignant cells, 
which in turn separated according to groups G3 or G4 
(Fig. 3A, B; Additional file 1: Figs. S7–8).

Using gene signatures for each of the metabolic G3/G4 
clusters from bulk RNA analysis (see Additional file  1), 
we next addressed the question of whether these clus-
ters represent inter- or intratumoral differences. Signa-
tures showed few overlaps (Additional file  1: Fig. S9A), 
confirming their suitability to represent the individual 
metabolic clusters. Expression patterns of examined gene 
signatures did not highlight different cell types reflecting 
distinct metabolic phenotypes within one group. Instead, 
a resemblance to the expression of established marker 
genes for G3/G4 MB was found. In line with the results 

from bulk RNA analysis, one exception was most likely 
I_G3/4.1, whose gene expression pattern highlighted cells 
from the TME in a direct comparison of G3/G4 MB clus-
ters. Signatures of metabolic clusters consisting mainly 
of WNT or SHH MB samples exhibited only low gene 
expression levels (Fig. 3C, D; Additional file 1: Fig. S9).

Subsequently, we aimed to validate our findings utilis-
ing a published scRNA-seq cohort comprising data from 
28  MB patients. We identified 19 clusters which were 
annotated regarding MB group and cell type affiliation. 
Despite a greater overlap of MB groups compared to the 
smaller cohort, differences in gene expression patterns 
were still detectable for SHH, G3 and G4 MB. WNT MB 
was represented with only one sample explaining why a 
unique gene expression pattern was absent. As can be 
seen from Fig. 3E, the similarity of the metabolic signa-
tures’ gene expression and MB group markers was repro-
ducible in this cohort. Strikingly, cluster 10 displayed 
strong expression of genes characterising M_G3/4.3, 
while expression of DEGs from M_G3/4.2 was instead 
observed in cells from cluster 4. When looking at the 
number of cells from different samples per cluster (Addi-
tional file 7: Table S6), it is noticeable that most cells in 
cluster 10 are derived from one sample classified as G3α 
[21]. Therefore, one can conclude that the differences in 
metabolic gene expression between different subgroups 
of G3 MB described for the bulk RNA clustering are also 
detectable in our scRNA-seq data.

Intending to address the possibility of intratumoral 
metabolic heterogeneity, we created new UMAPs based 
solely on metabolic genes (Additional file 1: Figs. S10A, 
S11A). Here, we observed TME and cycling cells display-
ing discrete metabolic features distinguishing them from 
other cells (Fig.  3F, G). Unique genes (e.g. TK1, DHFR, 
DUT) and the corresponding canonical pathways indi-
cated the importance of the metabolism of nucleotides, 
folate and amino acids in cycling cells [32]. Pathways 
pointing at nucleotide metabolism were also present 
in the according clusters in RMB dataset (clusters 7, 8), 
accompanied by lipid metabolic processes (clusters 8, 10) 
and upregulated DEGs relevant for the metabolism of 
ketone bodies (cluster 10). In clusters of glial cells, unique 
genes (MSMB: LCAT , PLTP; both datasets: BCAN, 
PTGDS) were involved in neuromodulation, extracellular 

Fig. 3 Intertumoral metabolic heterogeneity in G3/G4 MB. A Integrated clustering of six (two G3, four G4) human MB single-cell transcriptomes 
is shown in a two-dimensional UMAP plot. B Cell clusters have been annotated regarding their affiliation to G3 and G4 MB or as non-malignant 
TME cells using cell counts and different marker gene signatures (Additional file 1: Figs. S7, S8). C, D UMAP plots showing overlaps between G3/G4 
MB groups and the metabolic gene signatures obtained from ICGC or MAGIC. E The analysis has been repeated using a second scRNA-seq dataset 
derived from Riemondy et al., encompassing samples from all four MB groups. Moreover, UMAPs based on single-cell RNA expression of metabolic 
genes from ccmGDB, also used for bulk RNA analysis, are shown for F MSMB and G RMB cohorts. Annotation of cell types from the TME and 
metabolic processes highlighted in these metabolic UMAPs has been performed as described in the Additional file 1. ECM = extracellular matrix; 
PPP = pentose phosphate pathway

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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matrix synthesis, and lipid metabolism [33–36]. The 
top canonical pathways of macrophage clusters’ unique 
DEGs implied a relevant role of various lipid metabolic 
processes (e.g. phospholipases, phosphatidylglycerol 
biosynthesis, sphingosine and sphingosine-1-phosphate 
metabolism). This became even more apparent when 
analysing the according genes using Metascape. Here, 
the metabolism of lipids was identified as the top path-
way in both datasets. T cells did not form a separate clus-
ter in the metabolic UMAP of MSMB cohort but in the 
larger RMB cohort. In the latter, they exhibited only one 
upregulated unique gene involved in purine catabolism 
[32]. Earlier studies on the metabolism of neutrophils 
mainly reported a glycolytic phenotype. Nonetheless, it 
has been proposed that immature neutrophils can rely 
on OXPHOS to sustain the production of reactive oxygen 
species when glucose metabolism via the pentose phos-
phate pathway (PPP) is restricted [37, 38]. In our analysis 
of the RMB dataset, canonical pathways of upregulated 
DEGs in metabolic cluster 13 encompassed the PPP and 
pathways pointing at glucose metabolism, while oxidative 
phosphorylation was not among the significant pathways 
of this cluster (Fig. 3F, G; Additional file 7: Table S6).

When it comes to tumour cell clusters, the metabolic 
UMAP of the MSMB dataset depicted inter-sample dif-
ferences in cells’ clustering, suggesting patient-specific 
metabolic features (Additional file  1: Fig. S10B; Addi-
tional file 7: Table S6). G3 MB clusters exhibited upreg-
ulated DEGs involved in the metabolism of nucleotides 
and carbohydrates, while G4 clusters expressed many 
genes associated with the metabolism of lipids and sec-
ondary metabolites, such as IP compounds. However, 
a similar separation of samples and MB groups was not 
visible in the second cohort from Riemondy et al. (Addi-
tional file 1: Fig. S11; Additional file 7: Table S6).

These results suggest that metabolic characteristics 
previously identified are also present in scRNA-seq sam-
ples and that intertumoral instead of intratumoral heter-
ogeneity of metabolic patterns determines our previous 
findings.

DNA aberrations associated with cell metabolism in MB
Mutations in various genes can drive altered tumour 
metabolism and contribute to different metabolic pheno-
types. Therefore, we searched 2462 previously published 
nuclear DNA (nDNA) mutations [19] detected in all 491 
patients of the ICGC cohort for mutations in metabolic 
genes from ccmGDB. 374 mutations in 62 metabolic 
genes were detected. Single nucleotide variants (SNVs) 
comprised the largest fraction of detected variants. Of 
these, 256 SNVs had been classified as nonsynonymous 
variants, nine as splicing variants and 22 as stopgain 
mutations (Fig. 4A). The top 20 highly aberrant genes are 

shown in Fig. 4B, C. Many of these genes (10 of the top 
20) appear to be regulatory genes relevant to carcinogen-
esis and MB development. This is evident in the enrich-
ment of mutations in CTNNB1 in WNT MB and TP53 
or CREBBP in mainly SHH samples (Fig. 4C) [19]. Gene 
Ontology (GO) analysis of all mutated metabolic genes 
revealed a strong association with lipid metabolism and 
aberrations in genes involved in IP metabolism (Fig. 4D).

In line with our bulk RNA analysis, we also searched 
for nDNA variants based on the second list of metabolic 
genes [26] (Additional file 1: Fig. S12). Here, we observed 
variants in 40 genes and GO terms also referring to the 
metabolism of lipids and organophosphates, albeit with 
higher p-values.

Metabolic pathways with prognostic relevance for MB 
patients
Several metabolic pathways repeatedly appeared aber-
rant throughout analyses, e.g. metabolism of lipids, IP 
compounds, and nucleotides. For this reason, we evalu-
ated how expression levels of genes involved in these 
pathways correlate with patients’ outcomes, including all 
MB groups. A detailed description of the analytical steps 
carried out can be found in the Additional file 1. Briefly, 
metabolic gene signatures from Rosario et  al. [26] were 
selected based on previous results. For every sample and 
every signature, gene expression values were summarised 
into an oncoscore. Maximally selected rank statistics [39] 
were performed to identify the optimal cut-off value for 
each score to divide both cohorts into high and low gene 
expression groups. Subsequently, these groups were com-
pared regarding patients’ prognoses (Fig.  5A). Survival 
analyses revealed high gene expression in pyrimidine 
metabolism being associated with an unfavourable and 
IP metabolism with a better prognosis (Fig.  5B, C). The 
latter was only observed in the MAGIC cohort. Purine 
metabolism showed a similar trend to pyrimidine metab-
olism, highlighting the relevance of deregulated nucleo-
tide metabolism (Additional file 1: Fig. S14A). However, 
grouping by maximally selected rank statistics did not 
reach significance in this case.

Next, multivariate Cox regression analysis was con-
ducted to determine the independence of identified risk 
factors. Both cohorts were stratified for MB groups, and 
the influence of high gene expression in pyrimidine and 
IP metabolism on patients’ overall survival compared to 
the respective low gene expression groups was tested. 
Increased expression of genes involved in pyrimidine 
metabolism was associated with a significantly higher 
hazard ratio in both cohorts. In contrast, IP metabolism 
significantly reduced the hazard ratio in the MAGIC 
cohort (Additional file 1: Fig. S13A, B).
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These results imply that genes essential for pyrimi-
dine and IP metabolism are relevant prognostic risk 
factors in MB.

Discussion
Many factors influence cell metabolism, leading to 
diverse metabolic phenotypes even within one tumour 

Fig. 4 Mutation spectrum of metabolic genes in MB. Metabolic genes from ccmGDB were analysed for nDNA aberrations, and 374 variants in 62 
genes were detected. A Mutation type of all variants detected is shown. SNVs have been further classified as nonsynonymous, splicing and stopgain 
mutations. B and C show the top 20 mutated genes, including the number of samples in which every depicted gene was mutated. B refers to 
the mutation type, and C to the MB group affiliation of the mutated samples. D GO analysis of all mutated genes using ToppGene Suite (https:// 
toppg ene. cchmc. org/). The number of DEGs found for each GO term is shown in brackets. SNV = single nucleotide variant; INDEL = insertions and 
deletions

https://toppgene.cchmc.org/
https://toppgene.cchmc.org/
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Fig. 5 Nucleotide and IP metabolism are of prognostic relevance for MB patients. A Workflow showing all steps of the survival analysis using 
maximally selected rank statistics. The separation of ICGC and MAGIC cohorts into high and low gene expression groups has been performed using 
the R package maxstat as described in the Additional file 1. B, C Kaplan–Meier curves showing the overall survival of patients from MAGIC and ICGC 
cohorts. Patients have been divided into two groups depending on RNA expression levels of genes involved in the metabolism of B pyrimidines 
or C inositol phosphates. Log-rank test was used to calculate p-values, and p < 0.05 was considered significant. The flowchart was created using 
Biorender.com
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entity [11]. While there have been other studies analys-
ing metabolism in MB, we are only beginning to under-
stand metabolic heterogeneity between MB groups [40]. 
Park et  al., for example, established prognostically rel-
evant metabolic pathways for SHH, G3 and G4 MB by 
exploring RNA expression data of the MAGIC cohort 
[16]. Comparable to their work, this study demonstrates 
striking metabolic differences on a transcriptomic level 
among MB groups. However, by starting with an unsu-
pervised approach, we aimed to take differences also 
within established groups into account. Further, consid-
ering cancer metabolism to be a multi-faceted concept, 
we extended our analysis by also including scRNA-seq as 
well as nDNA data. We focused our study on G3/G4 MB 
because the relevance of biological processes concerning 
overlaps and differences in these groups has not yet been 
definitively clarified.

G3/G4 MB are separated into three metabolic clusters 
with significant differences in patient survival. In terms 
of intracellular effectors of cell metabolism, oncogenic 
driver events are known to play a central role in shap-
ing the metabolic phenotype [9, 11]. It can therefore 
be assumed that varying developmental pathways, e.g. 
WNT and SHH [4], or the oncogene MYC [10] likely 
contribute to the metabolic clustering identified in this 
study. Likewise, our data showed a clear overlap of high-
risk metabolic clusters with published G3/G4 consensus 
methylation subgroup II and correspondingly a high frac-
tion of MYC-amplified samples [2]. Consistent with our 
results, MB samples with MYC amplification or overacti-
vation separated from others when exploring proteomic 
data [41] and exhibited upregulation of genes related to 
OXPHOS, ribosomal genes and nucleotide metabolism 
in previous studies [42–44]. Although MYC is associated 
with a glycolytic phenotype [10, 43–45], stimulation of 
aerobic ATP production and anabolic pathways for bio-
mass generation under normoxic conditions has been 
described [11]. In accordance, a recent review outlin-
ing metabolic characteristics of MB established thus far 
concluded that aerobic glycolysis and OXPHOS might be 
coexistent in MB [40]. Furthermore, the electron trans-
port chain is closely linked to the metabolism of nucle-
otides [18]. The latter has been considered essential for 
proliferating cancer cells as it provides components for 
synthesising DNA, RNA and other macromolecules [18, 
46]. These findings are in agreement with those obtained 
by Park et  al., stating that the pentose phosphate path-
way, which is also relevant to nucleotide metabolism and 
provides macromolecules for numerous metabolic path-
ways [47], is of prognostic importance in G3 MB [16].

In contrast, standard-risk clusters of G3/G4 MB exhibit 
upregulated metabolism of IP compounds. Earlier, dereg-
ulated phosphoinositol metabolism was observed in a 

subgroup of G4 MB, which responded well to combina-
tion therapy of IP6 and cisplatin [48]. It might be inter-
esting to examine whether IP6 also benefits G3 patients 
exhibiting an upregulation of genes involved in IP metab-
olism, e.g. I_G3/4.3 and M_G3/4.3 (Fig. 2C, F).

On top of that, we demonstrated that frequently 
mutated metabolic genes play a central role in MB devel-
opment and were associated with lipid and IP metabo-
lism. In line with this observation, Sinkala et al. explored 
genomic variants in over 10.000 patients with 32 different 
types of cancer and outlined that highly mutated meta-
bolic genes in tumours are often involved in lipid metab-
olism and have a well-known role in carcinogenesis [49].

Concerning cell-extrinsic influences, the TME deter-
mines tumour metabolism by causing changes in the 
metabolic milieu and competition for scarce nutrients 
[12]. Similar to the heterogeneity observed across malig-
nant cells, the metabolism of immune cells can vary 
depending on numerous factors, including cell type and 
activation [29]. On the one hand, this is consistent with 
data obtained in our MCP counter analysis highlighting 
significant differences in TME cell populations across 
bulk RNA clusters, which may contribute to their meta-
bolic phenotype. On single-cell RNA level, most TME 
cell types exhibited distinct differences in the expression 
of metabolic genes, forming separate clusters in both 
cohorts. Beyond that, our analysis emphasised the effect 
of intertumoral differences on metabolism across clusters 
identified in bulk RNA analysis. Although previous stud-
ies by Gwynne et  al. identified pyrimidine metabolism 
as a characteristic of a particular tumour cell type in G3 
MB [50], gene signatures from metabolic clusters did not 
highlight different cell types in the scRNA data examined 
here.

It has become clear that varying metabolic pathways 
have prognostic value in cancer [51, 52]. We provide 
evidence that distinct pathways are associated with the 
outcome of patients suffering from MB. Upregulated 
pyrimidine metabolism correlates with a significantly 
decreased overall survival, while IP metabolism gene 
expression comes with a better prognosis. These results 
were confirmed by stratified multivariate Cox regression 
analysis. Regarding the ICGC cohort, the results of this 
analysis might be limited by the small number of samples 
with available clinical data. On the one hand, our find-
ings agree with Peng et al. [52], suggesting a correlation 
between nucleotide metabolism and an unfavourable 
prognosis. A positive correlation was also shown between 
lipid metabolism and prolonged survival. Moreover, high 
expression of DHFR and TYMS, involved in nucleotide 
synthesis, is associated with poor prognosis in G4 MB 
[16]. However, regarding IP metabolism, the aforemen-
tioned G4 MB subgroup was associated with decreased 
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survival compared to control MB [48], and low expres-
sion of INPP5E, a phosphatase involved in the metabo-
lism of IP, has been described to correlate with a better 
prognosis [53]. One possible explanation for this may be 
the confinement of these studies to only one gene or one 
MB subgroup. Further studies are needed for a deeper 
understanding of IP metabolism in MB.

There are likely other factors influencing metabolism, 
which we cannot depict on a genomic and transcrip-
tomic level. However, a strong relationship between 
gene expression and metabolite profiling data has been 
reported in the literature [52], implying that transcrip-
tomic analysis is a suitable tool for exploring metabolic 
phenotypes.

In the context of the growing body of literature drawing 
attention to various aberrations in tumour cell metabo-
lism, the idea of exploiting oncometabolism as a potential 
therapeutic target appears more and more compelling 
[54]. In the past, combinatorial therapies, including the 
pyrimidine antimetabolite gemcitabine or inhibition of 
DHODH, a key enzyme in de novo pyrimidine synthesis, 
yielded promising results in preclinical studies of MYC-
amplified G3 MB [50, 55–57]. However, the metabolic 
flexibility of cancer cells and the need for therapies spar-
ing surrounding non-malignant tissue pose a great chal-
lenge. In a recent review, the authors drew the conclusion 
that the effective use of metabolic inhibitors together 
with standard therapeutic options would necessitate 
vigorous screening to identify metabolic vulnerabilities 
downstream of established driver mutations and patients 
who might profit from these [58]. By comparing MB 
groups and subgroups under different aspects, our study 
aims to contribute to reaching this overarching goal.

Conclusions
In summary, this study unravelled apparent differences in 
cell metabolism between MB subgroups. We established 
the metabolism of nucleotides and inositol phosphate 
compounds to be frequently deregulated in MB and of 
prognostic relevance for patients. Our results broaden 
the current understanding of intertumoral heterogeneity 
in MB and may pave the way for future studies on metab-
olism-targeted therapies in this tumour entity.
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