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Abstract 

Cardiovascular disease (CVD) is the leading cause of noncommunicable disease-related death worldwide, and effec-
tive therapeutic strategies against CVD are urgently needed. Mitochondria dysfunction involves in the onset and 
development of CVD. Nowadays, mitochondrial transplantation, an alternative treatment aimed at increasing mito-
chondrial number and improving mitochondrial function, has been emerged with great therapeutic potential. Sub-
stantial evidence indicates that mitochondrial transplantation improves cardiac function and outcomes in patients 
with CVD. Therefore, mitochondrial transplantation has profound implications in the prevention and treatment of 
CVD. Here, we review the mitochondrial abnormalities that occur in CVD and summarize the therapeutic strategies of 
mitochondrial transplantation for CVD.
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Background
Cardiovascular diseases (CVD) are the leading cause 
of non-communicable disease-related deaths world-
wide [1, 2]. With the gradually increased burden, CVD 
have become a major public health problem [2]. The 
diversity of risk factors, the complexity of pathological 
mechanisms, and the verity of comorbidities make the 
treatment of CVD even more challenging. Effective ther-
apeutic strategies against CVD are urgently addressed.

Mitochondria play indispensable rolese in cardiovas-
cular system. Mitochondrion is an energy center of the 
cardiomyocyte by constantly providing ATP. As one of 
the most complex and critical organelles in eukaryotic 
cells, mitochondria play an important role in cell signal 
transduction, redox balance, biotransformation of amino 
acids and lipids, calcium homeostasis, apoptosis and pro-
grammed cell death [3, 4] Intracellular energy balance is 
important for cardiomyocytes survival. Cardiomyocytes 
are one of the cell types with the highest content of mito-
chondria, and are highly dependent on mitochondrial 
oxidative phosphorylation to produce ATP. Mitochon-
dria adapt quickly to changing environments to maintain 
metabolic homeostasis [5, 6]. Mitochondria dysfunction 
involves in the onset and development of CVD.

Nowadays, mitochondrial transplantation, an alterna-
tive treatment aimed at increasing mitochondrial num-
ber and improving mitochondrial function, has been 
emerged with great therapeutic potential [7]. Since pro-
tein components in mitochondria act as network hubs 
in multiple biological pathways are often affected simul-
taneously under pathological conditions, mitochondrial 
transplantation offers unique advantages over traditional 
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pharmacological treatments targeting a single molecule 
[4]. Intracellular mitochondrial movement promotes the 
connection and formation of a dynamic mitochondrial 
network. In addition, the intercellular transfer of mito-
chondria was observed both in  vitro and in  vivo under 
physiological and pathophysiological conditions [3]. 
Since the dynamics and transferable capacity of mito-
chondria have been uncovered gradually, the therapeu-
tic potential of mitochondrial transplantation for CVD 
as a rapidly developing field has attracted great atten-
tion. Substantial evidence indicates that mitochondrial 
transplantation improves cardiac function and outcomes 
in patients with CVD, and mitochondrial transplanta-
tion has profound implications in the prevention and 
treatment of CVD. Here we review the mitochondrial 
abnormalities that occur in CVD and summarize the 
therapeutic strategies of mitochondrial transplantation 
for CVD.

The role of mitochondria in cardiovascular system
Mitochondria, which are widely regarded as the “energy 
hub” of cells, play major roles in maintain metabolism 
and intracellular  Ca2+ homeostasis, regulation of inflam-
matory reactions and molecular signaling.

Key signal pathways in mitochondria
AMP-activated protein kinase (AMPK) pathway is 
one of the mitochondria specific signaling pathways, 
which is activated when the adenosine monophosphate 
(AMP)/ATP ratio increases. AMPK has been impli-
cated in the energy balance of key enzymes and regu-
latory nodes in various metabolic pathways, such as 
lipid and glucose metabolism, mitochondrial dynamics, 
autophagy, and protein synthesis [8]. In addition, the 
ratio of nicotinamide adenine dinucleotide (NAD) to 
NADH can be used as another indicator of mitochon-
drial metabolism, perceiving and transmitting the met-
abolic state of mitochondria. Act as cofactors for many 
metabolic reactions, NAD levels vary with metabolic 
activity. At the same time, it is also a family of proteases 
such as CD38, sirtuins protein (1–7) deacetylase and 
deacylase [9]. Reactive oxygen species (ROS) is a toxic 
by-product of mitochondrial dysfunction. The decrease 
of NAD level stably mediated by hypoxia inducible 
factor-1α is harmful to mitochondrial function in aged 
mice [10].

The main process of mitochondrial metabolism is that 
sugars, lipids, and proteins are oxidized through tricar-
boxylic acid cycle and oxidative phosphorylation, which 
involves a series of enzymatic reactions to provide energy 
for cardiomyocytes [11]. Under physiological conditions, 
compared with glycolysis, oxidative phosphorylation is 
more effective way to produce adenosine triphosphate 

(ATP). Intracellular calcium homeostasis is disrupted 
under stress, reducing oxidative phosphorylation effi-
ciency and ATP production, producing excessive ROS, 
which further causes mitochondrial dysfunction and ulti-
mately leads to the development of CVD (Fig. 1).

Mitochondria dysfunction and CVD
Mitochondrial dysfunction leads to increased ROS, 
energy stress, and cell death, which are closely related to 
the onset and development of CVD [12].

Mitochondria abnormalities range from structure to 
function has been suggested in CVD [13]. Abnormali-
ties in mitochondrial size and distribution, the most 
common manifestations of structural abnormalities, 
have been found in various CVD such as myocardial 
infraction, ischemia/reperfusion (I/R) injury, pulmonary 
hypertension, diabetes [14]. The two processes of fusion 
and fission occur simultaneously and continuously, and 
the number, shape, and distribution of mitochondria all 
influence the respiratory function of mitochondria [15, 
16]. Ultrastructural analysis shows a significant increase 
in the number and size of mitochondria, resulting in the 
enlargement of cardiomyocytes and sarcomere disorders 
hinder contractile activity in mitochondrial heart disease 
[17].

The mitochondrial respiratory chain is also a major 
source of intracellular ROS while providing energy. Con-
versely, ROS can also affect the activities of respiratory 
chain complexes III and IV [15]. Mitochondrial ROS 
burst contributes to cardiomyocyte death, endothelial 
dysfunction and vascular occlusion in myocardial I/R 
injury [18, 19]. ROS causes mitochondrial  Ca2+ overload, 
which in turn further increases ROS levels, this feedback 
loop maintains a  Ca2+overload state with increased ROS 
production [20].

The nonspecific high conductance channels of mito-
chondrial permeability transition pore (mPTP) mediate 
the transition of mitochondrial permeability. Opening 
of mPTP leads to collapse of mitochondrial membrane 
potential, resulting in uncoupling of oxidative phospho-
rylation and ATP consumption [6, 21]. Related studies 
have shown that changes in mitochondrial permeabil-
ity are associated with heart failure, hemorrhagic shock, 
hypertension, cardiomyopathy and cardiac I/R injury 
[14, 15, 22, 23]. In ischemic heart, Oxygen deprivation 
decrease oxidative phosphorylation in mitochondria, 
aerobic glycolysis becomes the primary mode of energy 
supply. Mitochondrial  Ca2+ overload occurs along 
with increased ROS production and mPTP opening in 
ischemic cardiomyocytes [24].

Mitophagy is a defense behavior to restore mitochon-
drial components and selectively removes the accumula-
tion of abnormal mitochondria, ensure energy supply and 
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maintain cellular homeostasis [25]. Mitophagy abnormal-
ities are closely related to a variety of diseases, especially 
CVD, including sepsis-induced myocardial dysfunction 
[21], myocardial I/R injury [15], cardiomyopathy [25], 
heart failure, atherosclerosis, myocardial infarction and 
hypertrophy and diabetic cardiomyopathy [26].

Mitochondrial transfer between cells and spontaneous 
mitochondrial transfer
Intercellular mitochondrial transfer is a form of intercel-
lular interaction [27]. Mitochondrion derived proteins 
were initially discovered in exocrine proteomics, and 
subsequent studies further suggest that the secretion of 
damaged mitochondria by vesicles may be a mitochon-
drial quality control mechanism. Importantly, the trans-
fer of healthy mitochondria from mesenchymal stem 
cells to target organs.

In 2006, Spees et al. demonstrated that wild mitochon-
dria from bone marrow stem cells can be transferred to 
parenchymal cells displaying mitochondrial dysfunction 
to increase the aerobic respiration capacity of recipient 
mitochondria [28]. Although some studies have shown 
that exogenous mitochondria released from donor cells 
due to the delivery of autophagy may be degraded or 
integrated by recipient cells, the biological role of this 
interaction remains controversial [29, 30]. Accumulat-
ing evidence suggests that intercellular mitochondrial 

transfer occurs spontaneously in the cardiovascular sys-
tem to maintain tissue homeostasis and development [7, 
31]. In addition to bidirectional mitochondrial transfer 
between cardiomyocytes and fibroblasts [7], cardiomyo-
cytes, vascular smooth muscle cells, and endothelial cells 
can act as donors or receptors during mitochondrial 
transfer [4].

Intercellular mitochondrial transfer has been dem-
onstrated, but how exogenous mitochondria are inter-
nalized and integrated into the mitochondrial network 
of recipient cells is a key question in mitochondrial 
transplantation studies. Masuzawa et  al. detected that 
mitochondria did not co-locate with any lysosomal or 
autophagosomal, indicating the internalization of exog-
enous mitochondria [32]. Later studies further revealed 
that mitochondrial internalization was actin-dependent 
in cardiomyocytes [33]. Many lines of evidence have 
demonstrated that the dynamic features of mitochondria 
are not restricted by cell boundaries, and the transfer of 
mitochondria between cells can integrate into the endog-
enous mitochondrial network of recipient cells to restore 
their biological functions [29, 34].

Fig. 1 Key signal pathways of mitochondrial metabolism. A Major mitochondrial metabolites and cellular signaling pathways. B Main factors and 
pathways involved in mitochondrial metabolism under physiological conditions of cardiovascular system
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Strategy and mechanism of mitochondrial transfer 
in CVD
Methods for the treatment of CVD by mitochondrial 
transplantation include naked mitochondrial transplan-
tation, cell-mediated approaches including tunnel nano-
tubes (TNTs), cell fusion, and extracellular vehicles (EVs) 
[3]. There are also gap junction channels-mediated syn-
aptic complexes and dendritic networks that are used in 
other diseases but have not been reported in CVD [35, 
36]. Since then, a number of studies have shown mito-
chondrial engraftment by TNTs and cell fusion, which 
are summarized in Table 1.

Naked mitochondrial transplantation
Naked mitochondrial transplantation is a technique 
in which mitochondria isolated from healthy tissue or 
cells are injected directly into the myocardium or into 
coronary arteries or veins with the aid of microinjection 
techniques to improve cardiac function [37–39]. Interest-
ingly, cell-free mitochondria were reported to be present 
in human blood, although they have no potential for oxi-
dative phosphorylation and are unlikely to be functional 
in  vivo [40]. This method has no risk of complications 
such as autoimmune reaction, microvascular occlusion, 

arrhythmia, and intramyocardial hematoma, but it is 
technically demanding and has low efficacy [4].

TNTs
Cell based mitochondrial transplantation can inject mes-
enchymal stem cells and progenitor cells into the myo-
cardium. The main advantage of this technique is that 
mesenchymal stem cells can be derived from multiple tis-
sues with high quality mitochondria [7]. TNTs is a tran-
sient filamentous membrane connected cell comprising 
cell membranes, F-actin, myosin, and tubulin, and stud-
ies have shown it to be a novel type of intercellular com-
munication between neonatal rat cardiomyocytes and 
endothelial progenitor cells [41]. Mesenchymal stem cells 
(MSCs) rescued injured endothelial cells in an in  vitro 
I/R model via tunnel structure mediated mitochondrial 
transfer [42]. In I/R injury and anthracycline induced car-
diomyopathy, transplantation of MSCs mitochondria to 
endothelial cells enhances aerobic respiration to protect 
cardiomyocytes from oxidative stress, limit left ventricu-
lar dilatation and myocardial fibrosis [42–44]. As early as 
in 2005 it was shown that metabolic reprogramming can 
improve mitochondrial transfer in cardiac tissue.

Table 1 Summary of mitochondrial transfer between MSCs and recipient cells of heart

BM-MSCs bone marrow mesenchymal stromal cells, hBM-MSCs human bone marrow mesenchymal stromal cells, iPSC-MSCs pluripotent stem cell-derived 
mesenchymal stem cells, hMADS human multipotent adipose-derived stem cells

Donors Condition Recipients Mechanism Outcome References

Human endothelial pro-
genitor cells

Ex vivo Rat cardiomyocytes TNTs The formation of intercel-
lular junctions

Koyanagi et al. [46]

Human MSCs In vivo Rat cardiomyocytes TNTs Cell-to-cell crosstalk 
between MSCs and cardio-
myocytes in co-culture

Plotnikov et al. [47]

MSCs In vitro Rat cardio-myoblasts TNTs and cell fusion Preserved cardio-myoblasts 
bioenergetics

Cselenyák et al. [48]

hBM-MSCs In vitro Adult mouse cardiomyo-
cytes

Cell fusion Metabolic reprogramming, 
transformation to progeni-
tor state

Acquistapace et al. [49]

hMSCs In vitro Human vascular smooth 
muscle cells

TNTs increased MSC proliferation Vallabhaneni et al. [50]

hBM-MSCs In vitro Human umbilical vein 
endothelial cells

TNTs Increased mitochondria 
biogenesis, decreased 
cell apoptosis, increased 
proliferation and finally 
promoted cell survival

Liu et al. [42]

BM-MSCs and iPSC-MSCs In vivo Mouse cardiomyocytes 
(doxorubicin-induced 
damage)

TNTs Increased ATP production 
and mitochondria biogen-
esis, increased cell viability 
and decreased apoptosis

Zhang et al. [51]

BM-MSCs In vitro Rat cardiomyocytes TNTs Restored mitochondrial 
function, decreased cell 
apoptosis

Han et al. [52]

hMADSs In vitro and
in vivo

Cardiomyocytes and 
endothelial cells

TNTs Increased mitochondrial 
biogenesis, decreased cell 
apoptosis

Mahrouf-Yorgov et al. [53]
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The extension of TNTs required cell division control 
protein 42 homolog (CDC42), a cytoskeletal regula-
tory protein that controls the protrusion and growth 
[45]. M-Sec promoted nanotubes formation by enhanc-
ing the expression of epidermal growth factor recep-
tor and activating the mammalian target of rapamycin 
(mTOR)/CDC42 signal transduction pathway, thereby 
increasing the expression of p53 [54]. In addition, mito-
chondrial Rho GTPase 1 (Miro1), a tail anchored outer 
mitochondrial membrane protein, mediated the move-
ment of mitochondria along TNTs [51, 55]. Miro1 bound 
to the docking protein TRAK1/2 to recruit the motor 
protein kinesin and initiate microtubule based mito-
chondrial movement [56]. Ahmad et  al. showed that 
Miro1 regulated the movement of mitochondria from 
MSCs to recipient cells, and its overexpression enhanced 
mitochondrial transfer and therapeutic effects [57]. An 
in  vitro model of simulated I/R model, bone marrow 
MSCs rescued injured cardiomyocytes by TNTs medi-
ated mitochondrial transfer, which increased mitochon-
drial membrane potential, enhanced mitochondrial 
function, and decreased cardiomyocytes apoptosis [52]. 
Mitochondria isolated from human MSCs via nasal 
administration in mice achieved rapid cellular internali-
zation and restored brain structure and function [58]. 
However, nasal delivery has not been applied to CVD.

Cell fusion
Partial (temporary) or complete (permanent) cell fusion 
is the process of realizing the gradual sharing of orga-
nelle and cytoplasmic components by merging plasma 
membranes [59]. Acquistapace et  al. studied the fusion 
of human bone marrow MSCs and human pluripotent 
adipose stem cells with partially mature mouse car-
diomyocytes [49]. The co-culture of cardiomyocytes 
and human pluripotent adipose stem cells allowed the 
exchange of materials and mitochondria and facilitated 
cardiomyocytes reprogramming. Several studies have 
pointed out that MSCs rescued damaged cells through 
paracrine mechanisms, however, there are many safety 
concerns such as arrhythmia and microcirculation occlu-
sion, which limited the application of this transplantation 
method [4].

EVs
EVs, including exocrine bodies, microvesicles and apop-
totic bodies, are cell secreted nanoscale bilayer vesicles 
that stably reside in the extracellular fluid and participate 
as important messengers for cell communication, migra-
tion and angiogenesis [60]. Exocrine itself is related to 
the occurrence and development of CVD. Recent stud-
ies suggested that inhibition of inflammatory response 
and exocrine led to inhibition of apoptosis and oxidative 

stress in sepsis-induced cardiomyopathy. In mammalian 
cells microvesicle biogenesis was found to be controlled 
by cluster of differentiation 38 and cyclic adenosine 
diphosphate ribose signaling, while entry of exogenous 
mitochondria was regulated by integrin induced Src/Syk 
signaling [61]. Most importantly, EVs-mediated mito-
chondrial transfer is part of a fundamental cell biologi-
cal process that occurs in multiple tissues, which makes 
the use of EVs for mitochondrial transfer as a new hot-
spot. Ibáñez and Villena-Gutierrez [62] proposed a novel 
strategy of mitochondrial transplantation, whereby EVs 
secreted the mitochondria from human-induced pluri-
potent stem cell-derived cardiomyocytes to damaged 
cardiomyocytes, attenuating myocardial infarction and 
I/R injury. Intracoronary or intravenous administra-
tion of mitochondria improved cardiac contractility and 
prevented left ventricular remodeling in I/R injury [63]. 
Brestoff et  al. isolated mitochondria from adipocytes 
and transferred them into cardiomyocytes via small EVs 
to ameliorate I/R injury [64]. The complex composition 
of different EVs makes them unique for various diseases, 
and this method has high mitochondrial stability with no 
risk of microvascular occlusion and arrhythmias [4].

In addition, EVs are natural cell-derived drug carri-
ers. EVs with a particle size larger than 200  nm, that is 
medium-to-large extracellular vesicles (m/lEVs) are nat-
urally transported mitochondria during biogenesis to 
improve the survival rate of injured recipient tissues, and 
effectively protect mitochondrial integrity and activity, 
prolonging their life span in the blood, thus making EVs a 
promising carrier [65]. A recent study found that activa-
tion of PGC-1 α make m/lEVs carry a higher mitochon-
drial load, but it is often expensive and time-consuming 
[66]. Studies aimed at expanding the production capac-
ity of EV and m/lEVs and increasing the mitochondrial 
load will expand the clinical application of mitochondrial 
therapeutics. We further compared the safety, effective-
ness and flexibility of mitochondrial transplantation 
through co-incubation, microinjection, EVs mitochon-
drial delivery (Table 2).

Targeted mitochondrial transplantation is a challeng-
ing and promising task. For this reason, researchers are 
committed to finding ways to improve the efficiency of 
transplantation. Magneti or pressure driven techniques 
improved transplantation efficiency [66], and the appli-
cation of optical tweezers achieved automated mito-
chondrial transplantation [67]. In addition, McCully and 
his group were granted a patent for an automated isola-
tion of live mitochondrial device, which may be use-
ful for the treatment of mitochondrial transplantation 
in CVD. Recently, a new delivery system was developed 
with the aid of a biocompatible polymer, that is, delivery 
by artificially encapsulating isolated mitochondria with 
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a triphenylphosphine complex of dextran or a transac-
tivates of transcribed glucan complexes [68, 69]. Mito-
chondria are almost completely contained in this delivery 
system, with high transfer efficiency and strong rescue 
ability.

Strategy and mechanism of mitochondrial transfer in 
CVD were summarized in Fig. 2. More feasible and pos-
sible strategic options will be available for mitochondrial 
transplantation in future studies.

Therapeutic practices of mitochondrial 
transplantation for CVD
Targeting important molecules involved in the mech-
anisms of mitochondrial dysfunction significantly 
improves cardiac function, implicating mitochondrial 

replacement therapy as an important approach for cardi-
oprotection [70]. According to important breakthroughs 
in the study of mitochondrial transplantation (Fig.  3), 
more and more evidences prove that targeted mitochon-
drial transplantation is a promising strategy for the treat-
ment of CVD.

Myocardial I/R injury
The McCully group has been working on mitochondrial 
transplantation for the treatment of CVD. In their study, 
mitochondria isolated from the left ventricle of donor 
rabbit sham control or regional ischemia were injected 
directly into the ischemic site of the rabbit heart before 
reperfusion, it showed that mitochondria isolated from 
normal tissues significantly enhanced functional recovery 

Table 2 Different mitochondria transplantation methods in safety, efficacy and flexibility

Methods Safety Efficacy Fexibility

Co-incubation Low accuracy
High risk of mitochondria damage

Moderate transfer efficiency
mtDNA retention up to 12 passages

Reduced manipulation of large numbers 
of transplant recipient cells; easy to 
realize

Microinjection Potentially harmful for the target, high risk of 
mitochondria damage

mtDNA is retained from 6–10 weeks 
after treatment

Limited number of cells transplanted

EVs Mitochondrial and cellular integrity preservation mtDNA retention not known Low manipulation, easy to realize

Fig. 2 Strategy and mechanism of mitochondrial transfer in CVD. A Naked mitochondria or mitochondria carrying MSCs. B Mitochondrial 
transplantation overview. C, D Different delivery methods: mitochondria can either be transplanted through direct injection to the tissue of concern 
or through intravenous injection. E Cell-based mitochondrial transplantation. F Extracellular vehicles
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and cell viability after ischemia [37]. Masuzawa et  al. 
then successfully transplanted human mitochondria 
to a rabbit cardiac I/R model, achieving mitochondrial 
allotransplantation [32]. Their subsequent study trans-
planted exogenous mitochondria through the coronary 
vasculature and compared the outcomes of mitochon-
drial transplantation by two different routes of delivery. 
The concentration and distribution of mitochondria 
transported through the coronary arteries were higher 
than those achieved by direct mitochondrial injection in 
human fibroblasts [38]. Although both routes I/R injury, 
compared with safe, dense mitochondria injected in situ 
only near the administration site, vascular injection of 
mitochondria was less invasive and could be widely dis-
tributed over a short period of time. A study comparing 
the therapeutic effects of mitochondrial transplantation 
through coronary arteries before and during reperfusion, 
further demonstrated that coronary blood flow was tem-
porarily restored and myocardial infarct size was reduced 
after mitochondrial transplantation [71]. Intracoronary 
implantation of mitochondria was further verified as a 
safe and effective method for the treatment of myocar-
dial I/R injury, and ATP mediated vasodilation of inward 
potassium channels significantly increased coronary 
blood flow [72]. New implantation method improved 
the rate of mitochondrial uptake increasing the accuracy 
of mitochondrial distribution. However, serial multiple 
mitochondrial transplantation was not superior to single 
mitochondrial transplantation in a I/R injury model in 
Yorkshire swine, although both procedures significantly 

increased coronary blood flow and ejection fraction and 
reduced infarct size [73]. Mitochondria for transplanta-
tion can be derived from pectoralis major muscle cells as 
well as gastrocnemius myocytes. Isolation of allogeneic 
mitochondria from gastrocnemius muscles and injected 
them into coronary artery before harvesting donor heart 
showed prolonged cold ischemia time, enhanced graft 
function and reduced graft tissue injury [74]. These stud-
ies are summarized in Table 3.

Cardiomyopathy
Diabetes cardiomyopathy is the most common cardio-
vascular complication of diabetes [23]. The insulin secre-
tion of islet β cells is mainly related to the production of 
mitochondrial ATP stimulated by glucose. It has been 
found that human adipose MSCs transferred mitochon-
dria to human islet β cells under symbiotic conditions 
to enhance the bioenergy and insulin secretion capacity 
of damaged β cells [75], implying mitochondrial trans-
plantation as promising for the treatment of diabetes. 
Doulamis IP et al. also demonstrated that mitochondrial 
transplantation mitochondrial transplantation improves 
diabetic myocardial function [76]. These studies sug-
gest that mitochondrial transplantation is a promising 
therapeutic strategy to reduce cardiac damage in type 2 
diabetes.

It also showed that mitochondrial transplantation 
was more effective in treating sepsis-induced cardio-
myopathy than simply improving mitochondrial func-
tion [22]. Recently, Mokhtari B et al. have demonstrated 

Fig. 3 Important breakthroughs in the study of mitochondrial transplantation
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that mitochondrial transplantation improved the mito-
chondrial function, biogenesis and kinetics related to 
SIRT-1/PGC-1 α network to prevent myocardial dys-
function induced by sepsis [77]. Anthracycline induced 
cardiomyopathy is a dose-dependent progressive myo-
cardial injury, after intramyocardial injection mitochon-
dria derived from human induced pluripotent stem cell 
derived MSCs to neonatal mouse cardiomyopathy model 
induced by anthracycline, both mitochondrial respiration 
and cardiomyocyte viability were significantly enhanced 
[51]. These results provide evidence that mitochon-
drial transplantation improved anthracycline-induced 
cardiomyopathy.

Mitochondrial cardiomyopathies are structural or 
functional abnormalities of the myocardium caused by 
defects in nuclear DNA or mtDNA genes and are usually 
characterized by hypertrophic cardiomyopathy, dilated 
cardiomyopathy, and cardiac conduction defects [80]. 
Potential treatments are to transplant or deliver entirely 
new mitochondria from healthy cells to diseased cells to 
improve outcomes in patients with acquired or congeni-
tal mitochondrial defects due to mitochondrial mutations 
[44]. Recently, Park et  al. proposed that mitochondrial 
transplantation was a valuable strategy for the treatment 
of a variety of mitochondrial diseases [81], but further 
studies are needed to prove its therapeutic efficacy.

Myocardial infarction and heart failure
Injection of human pluripotent adipocyte derived mito-
chondria into cardiomyocytes and endothelial cells sur-
rounding the infarct zone increased heme oxygenase-1 
expression and mitochondrial biogenesis [82]. MSCs-
based mitochondrial transplantation opens a new avenue 
for the use of mitochondrial transplantation in the treat-
ment of myocardial infarction.

A key pathophysiological mechanism of heart failure 
is defective myocardial mitochondrial function. In end-
stage myocardial failure, the activity of citrate synthase 
of complex I of the mitochondrial respiratory chain was 
reduced by 28%, therefore, mitochondrial transplantation 
holds extensive promise in the treatment of heart failure. 
Studies showed that autologous mitochondrial transplan-
tation from rat skeletal muscle cells to cardiomyocytes 
improved cellular respiration and energy production in 
a short time [44]. Injection autologous calf muscle mito-
chondria into the right ventricular free wall in a porcine 
model of right ventricular hypertrophy/failure prolonged 
the physiological adaptation of the right ventricle under 
pressure load and maintained contractile ability by 
reducing cardiomyocytes apoptosis [83]. In doxorubicin 
induced heart failure, transfer of M2-like macrophages 
reduced cardiac fibrosis and cardiomyocyte apoptosis 

to improve cardiac function, which may be related to 
mitochondrial transfer, moreover, co-culture of M2 mac-
rophages in  vitro translocated mitochondria to cardio-
myocytes and promoted repair of myocardial injury [84]. 
Transplantation of mitochondria with varying metabolic 
status, showing that metabolically matched mitochondria 
restored mitochondrial membrane potential and pro-
tected against doxorubicin-induced heart failure [85].

Pulmonary hypertension
Pulmonary hypertension, a fatal progressive vascular dis-
ease, is caused by an increase in mean pulmonary artery 
pressure and right ventricular afterload due to pulmo-
nary arteriolar occlusion, resulting in right ventricular 
hypertrophy and failure [86]. Two recent studies and 
other literature found that mitochondrial transplanta-
tion did not change the survival rate of animals [87, 
88]. Mitochondrial transplantation in the experimental 
model of pulmonary hypertension provided beneficial 
effects in reducing pulmonary artery smooth muscle cell 
proliferation and pulmonary vasoconstriction, reduc-
ing pulmonary vascular remodeling, and improving 
right ventricular function [86–88]. Transplantation of 
mitochondria extracted from rat femoral artery smooth 
muscle cells into rat pulmonary artery smooth muscle 
cells by intravenous administration inhibits pulmonary 
vasoconstriction induced by acute hypoxia and attenu-
ates pulmonary vascular remodeling induced by chronic 
hypoxia [87]. After mitochondria were isolated from 
immature rat soleus muscle and intravenously injected 
into pulmonary hypertensive rats, right ventricular mass 
and wall thickness returned to normal, and serum B-type 
natriuretic peptide levels and ventricular diameter were 
reduced, demonstrating that mitochondrial transplanta-
tion increased lung tissue ATP concentration, reversed 
pulmonary artery remodeling and improved right ven-
tricular function [88].

Ischemic stroke
Ischemic stroke, a life-threatening disease caused by a 
sudden decrease in cerebral blood flow followed by a 
decrease in oxygen and glucose, is associated with mito-
chondrial dysfunction [89]. The transfer of mitochon-
dria from endothelial progenitor cells to ischemic brain 
endothelial cells showed increased mitochondrial bio-
genesis and mitochondrial DNA copy number, restored 
ATP level after ischemic stroke [89]. Many studies have 
also shown that human MSCs reduce inflammation and 
promote vascular growth and neurite outgrowth as well 
as functional recovery [90]. Interestingly, MSCs based 
mitochondrial transplantation is a novel treatment for 
ischemic stroke by promoting the bioenergetic profile of 
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neuron and neurite regeneration, enhancing angiogen-
esis, reducing infarct volume, and improving functional 
recovery in cerebral ischemic rats [90].

In view of the fact that (i) the source of mitochondria 
used in most studies is autologous mitochondria and (ii) 
mitochondrial haplotypes may have a great impact on 
genome expression, which is related to mitochondrial-
nuclear incompatibility and the spread of harmful muta-
tions, these technical challenges and ethical issues greatly 
limit the clinical use of mitochondrial transplantation [4, 
44]. According to the current literature, mitochondrial 
transplantation has only studied the problems related to 
ischemic heart injury in clinical treatment.

In the first clinical research on mitochondrial trans-
plantation, autologous mitochondria from non-ischemic 
skeletal muscle were isolated and pericardial injection 
was given to pediatric patients with I/R injury supported 
by extracorporeal membrane oxygenation (ECMO), it 
showed that mitochondrial therapy did not cause inflam-
mation or rejection but instead improved ventricular 
function, while the conclusion was statistically significant 
due to the limited sample size [91]. In addition, mito-
chondrial transplantation resulted in significantly shorter 
ventricular strain and adverse cardiovascular events and 
fewer adverse cardiovascular events. This suggests the 
promise of mitochondrial transplantation in the treat-
ment of cardiogenic shock in pediatric patients with I/R 
injury [38]. In 2021, the McCully team used autologous 
mitochondrial transplantation again in the treatment of 
refractory cardiogenic shock in children [92]. Autologous 
mitochondrial transplantation in ECMO patients with 
cardiogenic shock favored successful isolation of ECMO 
with enhanced ventricular strain, further reflecting the 
great potential of mitochondrial transplantation in clini-
cal therapy.

Opportunities and challenges
The advantages of mitochondrial transplantation
Intercellular mitochondrial transfer plays an important 
role under both physiological and pathological con-
ditions. It occurs spontaneously under physiological 
conditions and regulates the development of the cardio-
vascular system by promoting the proliferation and dif-
ferentiation of stem cells into cardiomyocyte through 
progenitor cells reprogramming [4, 7]. Intercellular 
mitochondrial transfer contributes to the release of dys-
functional mitochondria under pathological conditions. 
Intercellular mitochondrial transmission can also be 
sensed by other cells, for example, the release of dysfunc-
tional mitochondria in I/R injury was sensed by MSCs to 
enhance mitochondrial biogenesis as a negative feedback 
mechanism [53]. Intercellular mitochondrial transfer also 

rescued cellular injury by taking up functional mitochon-
dria, thereby improving mitochondrial biogenesis [65].

A great advantage of mitochondrial transplantation 
over traditional mitochondria targeted drug delivery 
therapies lies in: (1) Achieve better therapeutic effects 
on multiple targets (2) Etiological treatments which are 
equivalent to gene level (3) More benefits from a single 
injection (4) The switch of cell-based therapy to cell-free 
therapy will greatly improve the convenience and cost of 
mitochondrial transplantation. At the same time, contro-
versy still exists on mitochondrial transplantation tech-
nology, and there is still a long way to go to achieve its 
widespread clinical application.

Challenges and future prospective
In recent years, with the increasing popularity of mito-
chondrial transplantation, controversy over this treat-
ment method has also emerged, mainly included in the 
following aspects.

Firstly, skeptics point out that McCully’s team did 
not rule out the possibility that mitochondria might be 
destroyed under injection conditions [93]. The concen-
tration of calcium ions in the extracellular fluid is much 
higher than that in the intracellular fluid, whereas mito-
chondria are highly permeable to calcium ions, and the 
opening of the mPTP under high calcium conditions 
leads to mitochondrial inner membrane barrier disrup-
tion, mitochondrial permeability edema, inner mem-
brane rupture, and even cell death. Although some earlier 
studies found mitochondria to be damaged in high cal-
cium environments, this does not mean that they cannot 
survive at all. McCully team also discovered free mito-
chondria in the blood, however its activity may be nor-
mal or impaired [40, 94].

In addition, McCully’s group found that mitochondrial 
transplantation during reperfusion can improve cardiac 
function in as little as a few minutes [32], whereas mito-
chondria need to pass the endothelial barrier to integrate 
in the vicinity of cardiomyocytes, a process that takes 
several hours. And without a cytoplasmic environment, 
the conversion of glucose and fatty acids into pyruvate 
and fatty acyl coenzymes does not reveal how mitochon-
dria produce ATP and complete cell contraction [93], this 
is also a very important aspect that needs to be clarified.

Furthermore, although McCully and colleagues found 
that mitochondrial transformation is feasible in cul-
tured cells, whether mitochondria survive or not and 
are taken up by cardiomyocytes has not been clearly 
demonstrated, they entered cardiomyocytes but in low 
numbers [38], so the capacity to provide ATP might be 
limited. And studies showed that direct administration of 
exogenous ATP cannot significantly alleviate myocardial 
injury [37], in order to ensure the effect of mitochondrial 
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transplantation, there must be sufficient mitochondria 
through the cell membrane to promote host cells to pro-
duce ATP. In fact, the immunogenicity of mitochondria is 
also closely related to transplantation efficiency. How to 
ensure that exogenous mitochondria are not rejected by 
individuals or phagocytosed by immune responses is also 
one of the very important issues.

It has become a consensus that mitochondria can be 
transferred between cells. Significant cellular endocy-
tosis also appears from indirect or direct co incubation 
of isolated mitochondria with cells in in  vitro experi-
ments, but the mechanism of internalization after con-
tact with tissue cells is not fully understood. What’s 
more, there is no definitive research evidence and con-
clusion as to whether there are differences in efficiency 
and efficacy when delivered in different ways.

Certainly, the timing and conditions of mitochondrial 
transplantation as a therapeutic approach can be fur-
ther explored. The first step of mitochondrial transfer 
technically is the isolation of mitochondria, ensuring 
complete separation and good storage of mitochon-
dria. Meanwhile, the core issue in mitochondrial trans-
plantation is how to target and deliver mitochondria 
to specific tissues or organs. Therefore, future studies 
should focus on developing carriers for specific cellu-
lar delivery to improve the efficiency of mitochondrial 
internalization.

Finally, the effects of mitochondrial transplantation 
need to be further validated and evaluated in  vivo. 
Delivery methods should be optimized according to the 
cell or tissue type and put into clinical practice.

Summary
Mitochondria participate in a series of important cel-
lular processes and are the metabolic center and signal 
platform of cells. Mitochondrial dysfunction is one of 
the major pathological features of CVD. A number of 
preclinical trials have demonstrated significant advan-
tages of mitochondrial transplantation over traditional 
approaches to improve mitochondrial function in CVD 
treatment. Although the study of mitochondrial trans-
plantation is in its infancy and many issues remain to 
be unanswered, there is no doubt that this new technol-
ogy will have a promising future.
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