
Du et al. Journal of Translational Medicine          (2023) 21:345  
https://doi.org/10.1186/s12967-023-04200-9

REVIEW

The role of mitochondria in the resistance 
of melanoma to PD-1 inhibitors
Fei Du1†, Lu‑han Yang1†, Jiao Liu1,3, Jian Wang1, Lianpeng Fan1, Suwit Duangmano2, Hao Liu1, Minghua Liu1, 
Jun Wang1, Xiaolin Zhong3, Zhuo Zhang1,2* and Fang Wang1,2* 

Abstract 

Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin 
cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immuno‑
therapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for mela‑
noma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as 
PD‑1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mito‑
chondrial function may affect the development of melanoma and the efficacy of PD‑1 inhibitors. To elucidate the role 
of mitochondria in the resistance of melanoma to PD‑1 inhibitors, this review comprehensively summarises the role 
of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria 
in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD‑1 inhibitors. 
This review may help to develop therapeutic strategies for improving the clinical response rate of PD‑1 inhibitors and 
prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
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Introduction
Melanoma, which is usually referred to as malignant 
melanoma, is a type of skin cancer that develops from 
melanocytes. It mostly occurs in the skin, mucous 
membranes and viscera. Although melanoma accounts 
for only 7% of total cases of skin cancer, almost 90% of 
patients die, accounting for 65% of all skin cancer-related 

deaths [1–3]. Some studies have shown that long-term 
skin exposure to ultraviolet (UV) light greatly increases 
the incidence of melanoma and is one of the main factors 
inducing melanoma [2]. According to statistics, differ-
ences in sex and age also affect the incidence of mela-
noma. The incidence of cutaneous melanoma is higher 
among men than among women worldwide. For example, 
in 2020, there were about 325,000 new cases of mela-
noma (174,000 males and 151,000 females) and 57,000 
deaths (32,000 males and 25,000 females) worldwide [4, 
5]. Moreover, approximately 40% of patients with malig-
nant melanoma are aged > 65 years, who not only present 
with more aggressive clinicopathological features but are 
often diagnosed with advanced cancer [6].

Melanoma is generally classified according to the 
tumour, node, and metastasis (TNM) staging system: 
stages I–II, patients with local disease; stage III, lymph 
node-positive disease; stage IV, advanced/metastatic dis-
ease [7]. The key to evaluating the severity of melanoma 
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is the assessment of clinicopathological features such as 
tumour thickness (Breslow depth), physiological and 
pathological status of the lymphoid system and ulcers and 
tumour cell metastasis. The treatment of melanoma var-
ies with the disease stage. In melanoma stages I–II, after 
the cancer site is determined based on clinical manifesta-
tions, surgical resection and adjuvant systemic treatment 
are used to reduce the risk of recurrence postoperatively 
[8, 9]. However, patients with lymph node-positive dis-
ease or tumour metastasis are not eligible for surgical 
treatment and may require targeted therapy, immuno-
therapy or combination therapy for effective treatment 
[10–13].

Programmed death-1 (PD-1) and its ligand (PD-L1) are 
co-inhibitory protein receptors expressed on the surface 
of lymphocytes. Their main physiological functions are 
maintaining self-tolerance and limiting inflammation in 
normal tissues [12]. Monoclonal antibodies against PD-1 
have demonstrated efficacy in the clinical treatment of 
melanoma, non-small cell lung cancer and renal cell car-
cinoma [14] and are one of the most important treatment 
agents for melanoma [15]. However, anti-PD-1 therapy 
does not effectively block tumour activity in all patients. 
Although some patients exhibit a clinical response, a 
large proportion of these patients may develop acquired 
resistance after the initial reaction [16].

Mitochondria are key cytoplasmic organelles, which 
are the main site for aerobic respiration. Some stud-
ies have shown that healthy mitochondria can not only 
inhibit melanoma metastasis but also increase sur-
vival. Additionally, activating mitochondrial function 
can increase the anti-tumour activity of  CD8+ T cells 
[17–19].

Based on the relationship among melanoma, PD-1 
inhibitors and mitochondria, this review discusses the 
recent research progress on the role of mitochondria in 

the treatment of melanoma resistance to PD-1 inhibitors 
to explore strategies for improving the survival rate of 
patients through the combination of mitochondrial acti-
vation and PD-1 inhibition.

Resistance mechanism of PD‑1 inhibitors 
in melanoma
Immune checkpoint inhibitor-based therapy is the most 
effective treatment for metastatic melanoma [20]. To 
date, three immune checkpoint inhibitors have been 
approved for the treatment of melanoma: the anti-PD-1 
antibodies nivolumab and pembrolizumab and the anti-
CTLA-4 antibody ipilimumab [21]. In recent years, 
PD-1 and PD-L1 inhibitors have been the major focus of 
research on the immunotherapy of melanoma (Table  1) 
[22, 23].

PD-1, also known as CD279, is usually expressed 
on activated T, B and natural killer cells and is highly 
expressed on tumour-specific T cells [12, 38, 39]. 
Immune cells expressing PD-1 identify cells as normal 
by recognising the PD-1 ligand (PD-L1/2) released by the 
cells, which can suppress the immune system [40]. PD-1 
regulates the immune system by inducing apoptosis of 
mature T cells [41, 42]. In addition, PD-1 can reduce the 
apoptosis of regulatory T cells, thus limiting the inflam-
matory response in normal tissues (regulatory T cells are 
anti-inflammatory cells that inhibit immune responses to 
self-antigens) [43]. These functions of PD-1 can reduce 
tissue damage during pathological disturbances such 
as infection. However, in the tumor microenvironment 
(TME) of melanoma, after identifying an abnormal anti-
gen in major histocompatibility complex (MHC), T cells 
release interferon-gamma (IFN-γ) to improve tumour-
killing efficiency. IFN-γ released by  CD8+ T cells can 
upregulate the expression of PD-L1 on tumour and stro-
mal cells [44]. Simultaneously, T-cell receptor signalling 

Table 1 The current status of immunotherapy for melanoma

Therapeutic method Reagent Mechanism References

CTLA‑4inhibitor Ipilimumab Anti‑CTLA4 antibody [24, 25]

Tremelimumab Anti‑CTLA4 antibody [26]

PD‑1 inhibitor Nivolumab Anti‑PD‑1 antibody [27]

Pembrolizumab Anti‑PD‑1 antibody [15, 28]

Cemiplimab Anti‑PD‑1 antibody [29]

PD‑L1 inhibitor Atezolizumab Anti‑ PD‑L antibody [30, 31]

Avelumab Anti‑ PD‑L antibody [32]

Durvalumab Anti‑ PD‑L antibody [33]

Others Interferon‑alfa2b and pegylated‑interferon‑
alpha2b

Cytokine activation of T‑Cells [34, 35]

Talimogene laherparepvec(T‑VEC) Oncolytic virus [36]

Relatlimab Anti‑ LAG‑3 antibody [37]
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can upregulate the expression of PD-1 on T cells, and 
the interaction between PD-1 and PD-L1 can lead to 
misidentification of tumour cells by T cells, thus playing 
a negative role in the anti-tumour effect [45, 46]. Stud-
ies have shown that the regulatory effects of melanoma 
cells on immune checkpoints can be overcome by using 
antibodies against PD-1 and PD-L1/2 [14, 47, 48]. In par-
ticular, PD-1 inhibitors (nivolumab and pembrolizumab) 
can effectively block the interaction between PD-1 and 
its ligands PD-L1 and PD-L2, thus allowing the occur-
rence of immune responses [28, 49–51]. In addition, 
studies have shown that the abundance of circulatory 
PD-1+ Tregs (Regulatory T cells) is rapidly decreased, the 
development of melanoma is significantly inhibited and 
the risk of metastasis is significantly reduced after anti-
PD-1 therapy [52].

However, most patients cannot benefit from anti-PD-1 
therapy, and a large number of patients who respond 
to anti-PD-1 therapy develop acquired resistance after 

the initial response in clinical settings [16]. Insufficient 
tumour immunogenicity, dysfunction of MHC, presence 
of other inhibitory receptors, IFN-γ signal resistance and 
an immunosuppressive microenvironment play a key role 
in the development of resistance to anti-PD-1/PD-L1 
therapy (Fig. 1) [16].

Insufficient immunogenicity of melanoma
The anti-tumour effects of PD-1 blockade depend on 
the presence of antigen-specific T-cell responses in the 
tumour microenvironment. They require antigen-pre-
senting cells (APCs) to present potential tumour anti-
gens to activate  CD8+ T cells and trigger subsequent 
anti-tumour activity [53]. In a study, patients with mela-
noma were treated with anti-PD-1 therapy, and the tis-
sue samples of responders and non-responders were 
subsequently compared. The results showed that patients 
who were sensitive to anti-PD-1 therapy contained more 
non-synonymous single nucleotide variants (SNVs) and 

Fig. 1 Mechanism of melanoma resistance to PD‑1 inhibitors. The main mechanisms of melanoma resistance to PD‑1 inhibitors include: (1) 
Insufficient immunogenicity of tumor; (2) MHC dysfunction caused by B2M mutation; (3)  CD8+T cells transformed into depleted T cells (Tex) 
due to continuous stimulation of tumor antigen; (4) IFN‑ γ signal plays an immunosuppressive role; (5) interference from other cells in tumor 
microenvironment. MHC: Major histocompatibility complex; B2M: β 2‑microglobulin; APC: Antigen‑presenting cells; STAT: Signal transducer and 
activator of transcription; JAK: Janus Kinase; TAM: Tumor‑associated macrophages; MDSC: Myeloid‑derived suppressor cells
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higher levels of MHC expression products (human leu-
kocyte antigen, HLA) [54]. More new antigens with suf-
ficient immunogenicity are produced in responders, 
whereas non-responders may be resistant to treatment 
because of the lack of tumour immunogenicity [55].

Dysfunction of MHC
Antigen presentation of melanoma cells occurs mainly 
through the MHCI pathway in TME (tumor cells can 
activate T cells through MHCI pathway); therefore, 
tumour cells can evade T cell-mediated killing through 
the inactivation of MHC-I. β2-microglobulin (B2M) 
is closely related to the production and stability of the 
HLAI complex [56]. Some studies have shown that B2M 
mutation can lead to HLAI dysfunction, which affects 
antigen presentation and eventually weakens the cytotox-
icity of T cells [57]. In a study, after anti-PD-1 therapy, 
the incidence of B2M gene mutation was three times 
higher in non-responders than in responders [58]. There-
fore, melanoma cells may resist the action of PD-1 inhibi-
tors by interfering with MHC-I function through B2M 
mutations.

Emergence of T‑cell exhaustion
Owing to the long-term existence of tumour antigens 
and immunosuppression in TME, T cells may gradu-
ally lose their effector function, thus exhibiting a state 
called ‘exhaustion’. During T-cell exhaustion, effector T 
cells (Teffs) are also called depleted T cells (Tex) [59]. 
Studies have shown that under the continuous stimula-
tion of tumour-derived vascular endothelial growth fac-
tor (VEGF),  CD8+ T cells show a state of ‘failure’ and 
express various inhibitory receptors, including PD-1, 
T cell immunoglobulin and mucin domain-containing 
3 (TIM3), lymphocyte activation gene 3 (LAG3) and 
cytotoxic T lymphocyte-associated antigen 4 (CTLA4) 
[60, 61]. In addition, the abundance of PD1 expressed 
on T cells affects the efficacy of anti-PD-1 therapy, and 
exhausted  CD8+ T cells expressing high levels of PD-1 
cannot respond to PD-1 inhibitors [62, 63]. This is 
because terminal Tex is a kind of dysfunctional cells with 
high expression of inhibitory receptors and little response 
to specific antigens. Previous studies have suggested that 
the blockage of PD-1 pathway can reverse terminal Tex 
in chronic infection into functional T cells [59, 64]. How-
ever, subsequent studies have pointed out that the epi-
genetic state of terminal Tex is difficult to be changed, 
which means that Immune checkpoint blockade (ICB) 
can hardly reverse the state of terminal Tex [65].There-
fore, T-cell exhaustion is an important phenomenon 
underlying the resistance to PD-1 inhibitors.

Resistance to IFN‑γ signal
The IFN-γ pathway in tumour cells plays both benefi-
cial and detrimental roles in immunotherapy. T cells 
produce IFN-γ by recognising receptors on the surface 
of tumour cells, which can not only increase the expres-
sion of MHC molecules to enhance tumour antigen 
presentation and recruit immune cells but also directly 
inhibit the proliferation of tumour cells and promote 
apoptosis [66]. The continuous expression of IFNs can 
affect the immune editing of tumour cells, which may 
lead to immunotherapy resistance [67, 68]. In addition, 
silencing or mutation of genes involved in the IFN-γ 
pathway, such as JaK1/JaK2 and STATS, can suppress 
the anti-tumour effects of IFN-γ [69–71] and PD-L1 
expression in tumour cells. In such cases, although 
patients with melanoma with a high tumour muta-
tional burden (TMB) are eligible for anti-PD-1/PD-L1 
therapy, anti-PD-1 therapy is not effective. At present, 
there are two main ways of immunotherapy for IFN- γ 
pathway. The first is for tumors without IFN- γ signal, 
which leads to PD-L1 or PD-1 antibody resistance due 
to the lack of adaptive expression of PD-L1. Activating 
the alternative interferon pathway (type I IFN) mainly 
through TLR agonists, oncolytic viruses, or other path-
ways may also lead to the activation of signal transducer 
and activator of transcription 1 (STAT1) and STAT2 
signals, thus promoting the transcription of PD-L1 and 
MHC class I by inducing interferon regulatory factor 1 
(IRF1) [72]. The second method is for tumors that have 
been exposed to IFN- γ for a long time (such as ultra-
violet-induced malignant melanoma of the skin), which 
is generally treated with systemic blocking of IFN- γ 
[73]. Both methods can effectively enhance the efficacy 
of immune checkpoint inhibitors and reduce their drug 
resistance.

Mitochondrial autophagy
Some recent studies have reported that mitochon-
drial autophagy can affect the role of PD-1 inhibitors. 
T cells can induce melanoma cell apoptosis by medi-
ating tumour necrosis factor-alpha (TNF-α) signal-
ling. Nuclear factor kappa B (NF-κB) signalling and 
autophagy play an important role in melanoma cell 
protection [74, 75]. In a study, T cells were more lethal 
to melanoma cells after a single autophagy-related 
gene (CRISPR) was knocked out; however, increased 
autophagy activity protected tumour cells from T cell-
mediated killing [76, 77]. Therefore, targeting mito-
chondrial autophagy may enhance immunotherapy 
sensitivity in melanoma.
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Mitochondrial metabolites affect the expression of PD‑1 
on T cells
Some mitochondrial metabolites in melanoma cells, 
such as  NAD+, glucose and glutamine, can promote 
tumour immune escape. PD-L1 expression has been 
associated with the content of  NAD+ and glucose [78, 
79]. Glutamine and glucose are indispensable to the 
development and activation of Teff cells [80]. How-
ever, in  vivo studies have shown that high expression 
of PD-1 on the surface of Tregs may be an important 
factor leading to primary resistance to PD-1 inhibi-
tors [81]. Compared with effector T cells, Treg cells 
can use Monocarboxylate transporter-1 (MCT1) to effi-
ciently uptake lactic acid in tumor microenvironment 
with abnormally elevated glycolysis levels, promote 
the entry of NFAT1 into the nucleus and induce Treg 
cells to express PD-1, while the expression of PD-1 on 
 CD8+T cell will be inhibited, resulting in the failure of 
PD-1 immunoblocking therapy. This reveals a new way 
in which lactic acid metabolism affects tumor immune 
microenvironment, and provides a new idea for devel-
oping new tumor immunotherapy strategies targeting 
lactic acid metabolism (such as MCT1, LDHA) [82, 83].

Interference of other factors between TME in melanoma
The microenvironment around melanoma cells contains 
a large number of cytokines, tumour metabolites and 
immunosuppressive cells that resist the anti-tumour 
effects of the immune system and promote the growth, 
reproduction and invasive ability of tumour cells [84, 85]. 
Tregs in TME can reduce the content of IL-2 in TME and 
promote the expression of CTLA4 by producing immu-
nosuppressive components such as TGF-β, IL-10 and 
extracellular adenosine, thus inhibiting the physiological 
function of  CD8+ T cells and favouring immune evasion 
of melanoma cells [86]. Additionally, tumour-associated 
myeloid-derived suppressor cells (tumour-MDSCs) and 
tumour-associated macrophages (TAMs) have also been 
associated with resistance to PD-1 inhibitors. Some 
studies have found that the expressions of Tyro3, Ax1, 
MERTK and their ligands of MDSCs in tumor-bearing 
(melanoma) mice are significantly up-regulated, which 
can inhibit the ability of T cells to migrate to tumor drain-
ing lymph nodes. Interestingly, when drugs inhibit the 
expression of Tyro3, Ax1 and MERTK in vivo, melanoma 
growth slows down,  CD8+T cell infiltration increases, 
and anti-PD-1 checkpoint inhibitor immunotherapy is 
enhanced. This suggests that Tyro3, Ax1 and MERTK 
control the function of MDSC and are expected to be 
pharmacological targets for regulating MDSC-mediated 
immunosuppression in patients with melanoma [87]. As 
a kind of immunosuppressive cells, TAMs can lead to T 
cell dysfunction and failure by expressing homologous 

immunoassay ligands (PD-L1) and secreting cytokines 
and metabolites (such as TGF- β, PGE2) [88–90]. There-
fore, TAMS may also be an important target for reversing 
anti-PD-1 drug resistance.

Mitochondria and melanoma
Mitochondria are a type of organelle surrounded by two 
membranes in eukaryotic cells. They produce energy and 
are the primary site of aerobic respiration. Their diameter 
is approximately 0.5–1.0 microns. As semi-autonomous 
organelles, mitochondria have genetic material and a 
genetic system, namely, mitochondrial DNA (mtDNA); 
however, their genome size is limited. In addition to pro-
ducing > 90% ATP to provide energy for cells through 
oxidative phosphorylation under aerobic conditions, 
mitochondria are involved in processes such as cell dif-
ferentiation, information transmission and apoptosis, 
and can regulate cell growth and cell cycle [91, 92].

During the occurrence and development of melanoma, 
the functional changes in mitochondria are related to 
tumour cell proliferation, metastasis and resistance to 
targeted therapy [93]. Cells in the tumour centre lack oxy-
gen because they are distant from the blood supply and 
may be more dependent on glycolysis [94, 95]. Glycolysis 
may benefit the survival of tumour cells under hypoxic 
conditions. Moreover, hypoxia can reduce the efficacy of 
radiotherapy, immunotherapy and chemotherapy [96]. 
Even under aerobic conditions, the glycolytic pathway in 
melanoma cells may enhance the resistance to radiation 
and chemotherapy by activating NF-κB, thus promoting 
cell survival [97]. Multiple mitochondrial responses and 
metabolic changes may also promote resistance to tar-
geted therapy [98] (Fig. 2).

The metabolic changes of tumor cells have always been 
considered to be closely related to mitochondria [99]. 
According to the Warburg theory, tumour cells gradually 
replace mitochondrial oxidative metabolism with glyco-
lysis, thus promoting their rapid proliferation. Melanoma 
cells often show the characteristics of the classical War-
burg effect, with some cells also maintaining high levels 
of disordered oxidative phosphorylation (OXPHOS). 
Therefore, inhibition of glycolysis and disordered 
OXPHOS plays a key role in the treatment of melanoma 
[100–102]. To date, some drugs with mitochondria-tar-
geting function have been used in experiments or clinics 
(Table 2). Factors affecting the function of mitochondria 
in melanoma cells are described below (Fig. 3).

Mutations in mitochondrial DNA(mtDNA)
There is a set of genetic material in mitochondria inde-
pendent of nucleus-mtDNA. The length of human mito-
chondrial DNA is 16569  bp, which has 37 genes and 
encodes 13 proteins. These proteins are involved in cell 
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energy metabolism [142, 143]. Owing to the lack of pro-
tective tissue proteins and related mechanisms of DNA 
repair, mtDNA has a much higher mutation rate than 
nuclear DNA under the influence of ROS [144]. There-
fore, to maintain their normal function and protect their 
genome, mitochondria usually respond to genotoxic 
damage by increasing mtDNA production. [145]. In 
melanoma cells, the persistent stimulation of mitochon-
dria by AKT protein leads to a decrease in mitochondrial 
function and an increase in ROS production. Conse-
quently, mtDNA is under oxidative stress for a long time, 
and ROS can induce oxidative mtDNA (Ox-mtDNA) 
production [146]. In mitochondria, Ox-mtDNA is either 
repaired by DNA glycosylase OGG1 or escaped through 
an open permeability transition pore (mPTP) on the 
outer membrane of the mitochondria. However, oxidized 
mtDNA is so large that it needs to be cut into smaller 
fragments before it can pass through the conversion hole, 
and this step is done by an enzyme called FEN1. Once 
cleaved by FEN1, Ox-mtDNA fragments escape through 
mPTP and enter the cytoplasm, and then they bind to 

two key factors: nod-like receptor heat protein domain 
related protein 3 (NLRP3) and cyclic GMP-AMP syn-
thase (cGAS) [147]. The combination of Ox-mtDNA with 
NLRP3 and cGAS can not only induce inflammation, but 
also induce the transcription of PD-L1 in melanoma cells, 
which leads to immune escape. Therefore, we believe that 
the activation of T cells can be promoted by inhibiting 
the release of Ox-mtDNA [148, 149]. Some studies have 
reported that in addition to mtDNA mutations, DNA 
fixes defects and replication errors also lead to abnor-
mal mitochondrial function and eventually promote the 
malignant transformation of tumours [150].

Mitochondria are matrilineal organelles that originate 
from symbiotic bacteria. They coevolve with their hosts, 
so most mitochondrial proteins are nuclear-encoded. 
Mitochondrial Lon peptidase 1 (LONP1) is an ATP-
dependent protein encoded by nuclear DNA. It is located 
in the mitochondrial matrix and plays an important role 
in regulating mitochondrial gene expression and main-
taining mitochondrial stability [151]. Some studies have 
demonstrated that LONP1 expression is significantly 

Fig. 2 Metabolic changes in melanoma cells affect cell proliferation, migration and therapeutic resistance. When normal cells are transformed 
into melanoma cells, intracellular mitochondrial metabolism is weakened and glycolysis is enhanced, which will promote tumor cell proliferation, 
migration and therapeutic resistance
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increased in melanoma and is related to changes in the 
metabolic mode of melanoma cells [152]. Overexpres-
sion of LONP1 promotes the progression of melanoma, 
whereas its knockdown inhibits tumour growth and 
migration. However, if the protein expression of LONP1 
is too low, it may lead to mitochondrial dysfunction, 
thereby promoting the occurrence and development 
of melanoma [152]. Due to the close communication 

between mitochondria and nuclei (Cross-talk), in which 
mtDNA may reverse regulate nuclear gene transcription, 
the anti-tumor mechanism of mitochondrial therapy may 
be related to mitochondrial-nuclear interaction. Micro-
array analysis showed that mitochondria could regulate 
several carcinogenic pathways, such as cyclin D1, ras, 
src and p53, and participate in its anti-tumor effect [153, 
154].

Table 2 Studies on the treatment of melanoma by affecting the function of mitochondria

Melanoma type Reagent Mechanism References

MAPK mutation Talimogene laherparepvec(T‑VEC) Oncolytic virus [36]

Prenyl‑binding protein phosphodiesterase‑δ 
(PDEδ)

NRAS inhibitor [103]

Vemurafenib BRAF inhibitor [104]

Dabrafenib BRAF inhibitor [105]

Encorafenib BRAF inhibitor [106]

Sorafenib BRAF inhibitor [107]

Trametinib MEK inhibitor [108]

Cobimetinib MEK inhibitor [109]

Binimetinib MEK inhibitor [110]

mtDNA/DNA mutation Temozolomide (TMZ) DNA alkylating agent [111]

Fotemustine (FM) DNA alkylating agent [112, 113]

Carboplatin/Cisplatin DNA alkylating agent [114, 115]

Dacarbazine (DTIC) DNA alkylating agent [116]

VAS2870 NADPH oxidase inhibitor, Reduce ROS [117]

Diphenylene iodonium (DPI) NADPH oxidase inhibitor, Reduce ROS [118, 119]

Irinotecan Reduce ROS [120]

Apocynin (4‑Hydroxy‑3‑methoxyacetophenone) PI3K inhibitor, Reduce ROS [121]

Drp1 expression disorder Vemurafenib Inhibition of Drp1 phosphorylation [122]

Cryptolepine Drp1 inhibitor [123]

mitochondrial division inhibitor‑1 (MDIVI‑1) Drp1 inhibitor [124, 125]

Calcium signal expression disorder Diallyl trisulfide Induce mitochondrial  Ca2+ overload [126]

δ‑tocotrienol Induce mitochondrial  Ca2+ overload [127]

Luteolin Induce tumor cell death [128]

N‑acetyl‑S‑(p‑chlorophenylcarbamoyl) cysteine 
(NACC)

Induce tumor cell death [129]

Sanguinarine Induce tumor cell death [130]

Aripiprazole Depletion of endoplasmic reticulum calcium [131]

Digitoxin Alter mitochondrial membrane potential [132]

Lmiquimod Induce  Ca2+ depletion [133, 134]

Abnormal tumor mitochondria OXPHOS Metformin OXPHOS inhibitor [135, 136]

Atovaquone OXPHOS inhibitor [135]

Arsenic trioxide OXPHOS inhibitor [135]

ONC212 OXPHOS inhibitor [100]

Mito‑MGN OXPHOS inhibitor [101]

MITO‑ONC‑RX OXPHOS inhibitor [137]

Chitosan biguanide Mitochondrial function inhibitor [138, 139]

Phenformin Mitochondrial function inhibitor [140]

Sorafenib Mitochondrial function inhibitor, inducing 
tumor vessel normalization

[141]
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Mutations in the BRAF or NRAS gene
During the formation and development of melanoma, 
mutations in some genes that affect mitochondrial 
oxidative metabolism may promote the proliferation 
and survival of melanoma. Activating mutations in the 
NRAS and BRAF genes play an important role in pro-
moting the progression of melanoma [155].

NRAS gene is located upstream of multiple signalling 
pathways. Activating mutations in the NRAS gene not 
only affect the MAPK signalling pathway but also acti-
vate PI3K signal transduction [156, 157]. Both MAPK 
and PI3K pathways eventually promote glycolysis and 
inhibit mitochondrial oxidative metabolism in mela-
noma. In addition, clinical studies have shown that 
melanoma with activating mutations in the NRAS gene 
is highly invasive and can rapidly develop resistance to 
existing treatment strategies [155, 158].

Mutation at V600E in the BRAF gene  (BRAFV600E muta-
tion) in melanoma cells can promote glycolysis to absorb 
and integrate substances required for tumour cell prolif-
eration. Additionally,  BRAFV600E mutation decreases the 
expression of PGC-1α by inhibiting the activity of MITF 
[159]. Some studies have shown that a decrease in the 
protein expression of PGC-1α can decrease the energy 
metabolism of mitochondria and increase the content of 
ROS in the cytoplasm in melanoma. [160]. In addition, 
 BRAFV600E–MAPK signalling can regulate mitochondrial 
function and induce mitochondrial division by activat-
ing the expression of dynamin-related protein 1 (Drp1) in 
melanoma [161].

Changes in mitochondrial function
The occurrence and development of melanoma is often 
accompanied by changes in mitochondrial function. In 

Fig. 3 The relationship between the occurrence and development of melanoma cells and mitochondria. Activation and mutation of NRAS or 
BRAF genes in MAPK and PI3K signaling pathways in melanoma cells can inhibit mitochondrial function and promote glycolysis. The increase 
of intracellular calcium concentration in melanoma cells can inhibit the function of mitochondria. In addition, some miRNAs may also affect 
the function of mitochondria. PI3K: Phosphatidylinositol 3‑kinase; MAPK: Mitogen‑activated protein kinases; NADH: Nicotinamide adenine 
dinucleotide; HIF1α: Hypoxia inducible factor‑1α; mTOR: mammalian Target of rapamycin; PDK1: Phosphoinositide‑dependent protein kinase 1; 
PTEN: Phosphatase and tensin homolog; NRAS: Neuroblastoma RAS; MAPK: Mitogen‑activated protein kinase; MITF: Microphthalmia‑associated 
transcription factor; NRF1: Nuclar respiratory factor‑1; TFAM: Mitochondrial transcription factor A; MYC: Myelocytomatosis viral oncogene; Drp1: 
Dynamin‑related protein 1; MDIVI‑1: Mitochondrial division inhibitor 1
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normal somatic cells, a delicate balance exists between 
mitochondrial division and fusion to maintain proper 
mitochondrial function [162]. Mitochondrial division is 
mainly mediated by Drp1, whereas mitochondrial fusion 
is mediated by dynamic-associated proteins, including 
Mfn1, Mfn2 and OPA1 [163]. Mitochondrial division in 
mammalian cells is controlled by Drp1 [161, 164]. Dur-
ing mitochondrial division, Drp1 is transported from the 
cytoplasm to the mitochondrial outer membrane and 
binds to fission-1 (Fis1) and mitochondrial fission fac-
tor (Mff) located in the mitochondrial outer membrane 
[165]. During mitochondrial fusion, it is affected by the 
mitofusin-1/2 gene (Mfn1 and Mfn2) located in the outer 
membrane of mitochondria and OPA1 in the inner mem-
brane of mitochondria [125]. However, unlike in normal 
cells, in melanoma cells with activated MAPK mutations, 
the deletion of Drp1 initiates mitochondrial network 
reprogramming, induces mitochondrial superfusion 
and promotes mitochondrial oxidative metabolism [125, 
161]. Some studies have shown that mitochondrial divi-
sion increases in melanoma and mitochondrial fusion 
may be directly related to chemotherapy resistance [166]. 
Therefore, changes in mitochondrial dynamics may be a 
potential target for adjuvant chemotherapy in melanoma.

Mutations in genes involved in the MAPK pathway 
are most common in melanoma with changes in mito-
chondrial function, including activating mutations in the 
BRAF gene, NRAS gene and tyrosine kinase (such as KIT) 
and inactivating mutation in the NF1 gene [167–170]. 
These mutations can inhibit the expression of a transcrip-
tion factor called microphthalmia-associated transcrip-
tion factor (MITF) in the TME of melanoma. However, 
MITF can influence the biogenesis and functional regula-
tion of mitochondria by promoting the expression of per-
oxisome proliferator-activated receptor-γ coactivator-1α 
(PGC-1α), In addition, the mitochondrial master regula-
tor PGC-1α is associated with the phenotypic transition 
between proliferation and invasion, which is attributed 
to different downstream activation signalling pathways 
[93, 171, 172]. Activation of the PI3K pathway leads to 
the formation of PIP3. Simultaneously, phosphoryla-
tion and activation of AKT by phospholipid-depend-
ent kinase-1 (PDK-1) can directly or indirectly activate 
mTOR, which in turn induces the expression of hypoxia-
inducible factor-1α (HIF1α) [173]. HIF1α inhibits mito-
chondrial respiration and promotes glycolysis [174]. The 
mechanisms underlying the occurrence and develop-
ment of melanoma and related signalling pathways have 
been identified through large-scale sequencing [175]. 
Changes in the MAPK and PI3K pathways are more 
commonly attributed to the occurrence of melanoma 
and can significantly affect the metabolism of melanoma 
cells. Additionally, the AMP-activated protein kinase 

(AMPK) pathway involved in mitochondrial function 
has been associated with the metabolism of melanoma 
cells [176, 177]. AMPK is a well-known metabolic recep-
tor that maintains cellular energy homeostasis. It senses 
the energy content of mitochondria through direct 
interaction with adenosine triphosphate (ATP), adeno-
sine diphosphate (ADP) and adenosine monophosphate 
(AMP) [178]. When OXPHOS is inhibited in mito-
chondria, AMPK can bind to PD-L1 in the endoplasmic 
reticulum (ER) and phosphorylate PD-L1 at S195, thus 
reducing the content of PD-L1 in tumour cells [179–181]. 
In melanoma cells, mutations in a signal pathway can 
regulate the function of mitochondria, thus affecting the 
balance of cell metabolism. Therefore, mitochondria play 
an important role in the occurrence and development of 
melanoma.

Other mechanisms
Micro-ribonucleic acids (miRNAs) are promising targets 
for cancer therapy and may be used as molecular bio-
markers of drug resistance in melanoma. Some studies 
have demonstrated that miR-1 overexpression can induce 
mitochondrial autophagy in melanoma stem cells (MSCs) 
by directly targeting the glycerol-3-phosphate dehydro-
genase 2 (GPD2) gene and the 3´-UTR of mitochondrial 
inner membrane tissue system 1 (MINOS1) and interact-
ing with a mitochondrial protein (LRPPRC) [182]. miR-
211, which is a tumour suppressor, acts as a metabolic 
switch and is downregulated in patients with melanoma. 
Some studies have reported that deletion of miR-211 can 
lead to downregulation of the TCA cycle and OXPHOS, 
thereby inhibiting the metabolic function of mitochon-
dria [183]. Additionally, mitochondrial dysfunction asso-
ciated with the imbalance of miR-2909 expression can 
lead to the Warburg effect in melanoma [184]. Barbato 
et al. used integrative genomic analysis and identified the 
miR-181/TFAM pathway as a key driver of drug resist-
ance in melanoma [185].

Calcium signalling is a major focus of research on 
anti-tumour therapy. It plays an important role in the 
pathological status of melanoma. Intracellular calcium 
concentration, expression of calcium-related signalling 
proteins, calcium channels on the cell membrane and 
the Wnt/Ca2+ pathway are related to the occurrence and 
development of melanoma [186, 187]. Evidence docu-
ments that increased intracellular calcium stores are 
associated with highly metastatic melanoma cells [186]. 
Y-box binding protein 1(YB-1) is an unfavorable prognos-
tic marker secreted from melanoma depending on  [Ca2+] 
i and ATP levels, the expression of which increases in 
primary and metastatic melanoma, compared to benign 
melanocytic nevi. Interestingly, elevated YB-1 secre-
tion stimulates melanoma cell migration, invasion, and 
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tumorigenicity [188]. It has been reported that Calcium 
channel dynamics are implicated in melanoma treat-
ment targeting mitochondria stress [189]. Some drugs 
with anti-melanoma effect (such as diallyl trisulfide) 
can cause voltage-dependent calcium channel (VDCC)-
mediated mitochondrial  Ca2+ overloa, ROS production 
and caspase activation, thus inhibiting the biological 
progression of melanoma [126, 190]. In some conditions, 
targeting calcium signaling is able to render melanomas 
more susceptible to conventional therapy, preventing the 
development of drug resistance and providing novel ideas 
for combination treatment. For example, tumor necro-
sis factor-related apoptosis-inducing ligand (TRAIL) is 
a promising anticancer drug, while some melanomas are 
resistant to TRAIL therapy. Studies have shown that  Ca2+ 
dynamics are a promising approach to overcome TRAIL 
resistance. Mitochondrial calcium removal can increase 
the efficacy of TRAIL in the treatment of melanoma 
through mitochondrial hyperfusion [186]. Therefore, we 
speculate that targeted calcium signal combined with 
anti-PD-1 therapy is a potential treatment for melanoma.

Mitochondria and T cells
Changes in mitochondrial function in melanoma cells 
can directly affect the development of melanoma, 
whereas those in immune cells can indirectly affect the 
progression of melanoma. T lymphocytes are the final 
effector cells in immune checkpoint inhibitor (ICI)-based 
immunotherapy, and the number of T cells infiltrating 
the tumour site is an important indicator of the efficacy 
of ICI therapy [191, 192]. PD-1 is not only a major regula-
tor of immune homeostasis but also one of the immune 
checkpoint (IC) molecules [193]. Recent studies have 
shown that melanoma cells can evade immune surveil-
lance by expressing PD-L1, interacting with PD-1 on T 
cells and maintaining T cells in a resting state by inhibit-
ing T-cell energy metabolism [194]. In TME, the energy 
metabolism of mitochondria in T cells plays a key role in 
regulating anti-tumour immune responses. T cell prolif-
eration requires mitochondrial metabolism, production 
of ATP for biosynthesis, signal pathways, production of 
ROS, and activation of NFAT (a key transcription factor 
produced by IL-2) [195, 196].

Because the metabolism of cells is inseparable from 
the biological function of mitochondria, the relation-
ship between PD-1 and mitochondria can be recognised 
from the perspective of cellular bioenergetics. PD-1 
is not expressed on immature T cells, which have low 
metabolic activity and mainly depend on the tricarbox-
ylic acid (TCA) cycle and OXPHOS pathway [197, 198]. 
During the normal development of T cells, after PD-1 is 
activated, the metabolism of T cells is temporarily domi-
nated by glycolysis to meet the sudden increase in energy 

demand [199]. When T cells are required to play an 
immune-related role, they usually differentiate into Teffs, 
memory T (TM) cells and Tregs. Teffs (such as  CD8+ T 
lymphocytes) can directly kill tumour cells, resulting in 
upregulation of the TCA cycle and OXPHOS in cells 
and a decrease in the expression of PD-1 [200, 201]. In 
an in vitro study, activation of PD-1 decreased the oxy-
gen consumption rate (OCR) and extracellular acidifi-
cation rate (ECAR), indicating that activation of PD-1 
reduced the mitochondrial energy metabolism of T cells 
[202, 203]. In addition, PD-1 activation can affect mito-
chondrial function by inhibiting the AKT and mTOR 
pathways located downstream of TCR [204]. However, 
owing to the long-term presence of tumour antigens and 
immunosuppression in TME, T cells may gradually ‘fail’ 
and lose their function. During T-cell exhaustion, the 
expression of PD-1 on Teffs is upregulated, and intracel-
lular metabolism shifts to glycolysis [197, 198, 205]. After 
the TCR–MHC pathway is activated, melanoma-specific 
 CD8+ T cells upregulate aerobic glycolysis to support 
their rapid proliferation and anabolism [206, 207]. Simul-
taneously, the PI3K–Akt–mTOR signalling pathway is 
activated, which promotes the secretion of IFN-γ from 
 CD8+ T cells, thereby enhancing the anti-tumour func-
tion of T cells [208]. However, compared with melanoma 
cells, T cells have a significantly weak glycolytic ability, 
which suppresses the anti-tumour function and eventu-
ally triggers immune escape [209, 210].

TM cells or Tregs mainly rely on the metabolic path-
way of OXPHOS to survive and can inhibit the expres-
sion of PD-1 by activating AMPK, thus maintaining the 
balance of intracellular metabolism [197, 211, 212]. How-
ever, contrary to Teff cells and TM cells, Tex cells exhib-
ited metabolic deficiency, including glucose uptake and 
decreased OXPHOS, some studies have shown that early 
Tex cells can restore certain proliferation and immune 
response by activating OXPHOS [213, 214]. In addition, 
 CD8+TILs have been shown to lose mitochondrial activ-
ity and biogenetic ability due to the decreased expres-
sion of transcriptional coactivator PGC-1α, which plays 
a key role in mitochondrial biogenesis and antioxidation. 
In B16 mouse tumor model, overexpression of PGC-1α 
in tumor specific  CD8+T cells can increase the biogen-
esis and maintain the effect function of mitochondria, 
and effectively inhibit tumor activity [214]. Therefore, 
we speculate that activating the mitochondrial function 
in effector T cells may inhibit the occurrence of immune 
escape.

It is well known that calcium channel kinetics is asso-
ciated with the treatment of melanoma for mitochon-
drial stress. At present, it has been proved that the 
increase of  [Ca2+] i mediated by SOCE can promote 
the cytotoxicity mediated by cytotoxic T lymphocytes 
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(CTL) in melanoma [215]. However, based on the 
tumor immune monitoring of T cells, we found that 
regulatory T cells can inhibit the production of IP3 
through TGF- β, reduce the intracellular calcium flow, 
lead to the death of effector T cells, inhibit the activa-
tion of T cells, and induce immunosuppression. Inter-
estingly, when enhancing the high selectivity of calcium 
signal in CTL or knocking out EGR4 in T cells (EGR4, 
a member of the zinc finger transcription factor fam-
ily, was reported as a key regulator of T cell differen-
tiation), IFN- γ production is increased, T cells are 
activated and melanoma growth is inhibited [216, 217]. 
Therefore, we speculate that targeting calcium signal 
combined with anti-PD-1 therapy will be a new hope 
for melanoma patients.

Functional changes in mitochondria and resistance 
of melanoma to PD‑1 inhibitors
In recent years, anti-PD-1 therapy has emerged as one of 
the main therapeutic strategies for melanoma. However, 
most patients do not exhibit a clinical response to PD-1 
inhibitors, and those who respond subsequently acquire 
drug resistance [16, 22, 23]. At present, some researchers 
have sorted out the effects of internal and external fac-
tors of tumor patients on ICB response, drug resistance 
and toxicity, and put forward the idea of improving the 
efficacy of ICB by affecting the function of cells in TME 
[218, 219]. Changes in mitochondrial function in tumour 
and immune cells in melanoma resistant to PD-1 inhibi-
tors and the effects of other cells in TME on drug resist-
ance are described below (Fig. 4).

Fig. 4 Changes of mitochondrial function in different cells during drug resistance of melanoma TME. Melanoma cells, Tumor‑MDSCs, and TAMs can 
all express PD‑L1, which makes  CD8+ T cells in a resting state. Among them, the expression of PD‑L1 in melanoma cells is related to the JAK1/2‑STAT 
pathway involved in mitochondria, while the expression of PD‑L1 in TAM may be related to the PI3K γ‑NF κ B pathway. When  CD8+T cells receive 
dual‑signal stimulation from melanoma cells, they can release IFN‑ γ to participate in immune regulation. After receiving the extracellular carrier 
(EV) released by melanoma cells, TAMS also releases interferon‑γ and IL‑6 to inhibit the immune function of T cells. In addition, melanoma cells can 
inhibit T cell aggregation by producing VEGF and IL‑8 through the MAPK pathway, affecting their mitochondria’s function through the PI3K pathway. 
Tumor‑MDSCs: Tumor‑associated myeloid‑derived suppressor cells; TAM: Tumor‑associated macrophages; IFN‑ γ: Interferon‑gamma; VEGF: Vascular 
endothelial growth factor; IDO‑1: Indoleamine 2,3‑Dioxygenase‑1; EV: Extracellular vesicle
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Changes in mitochondrial function in tumour cells
The abnormal expression of some genes and dysfunc-
tion of some pathways in tumour cells are internal 
factors leading to immunotherapy resistance in solid 
tumour cells (including melanoma). These factors may 
be active before immunotherapy (primary drug resist-
ance) or may be a result of exposure to immunothera-
peutic drugs (acquired drug resistance).

Compared with the metabolism of normal melano-
cytes, that of melanoma cells is dominated by gly-
colysis [135]. In the previous sections of this review, 
we mentioned that changes in mitochondrial energy 
metabolism in melanoma cells may be one of the causes 
of drug resistance. Metabolic reprogramming from 
OXPHOS to glycolysis in tumour cells is caused by the 
mutation of some genes involved in the MAPK path-
way and the continuous expression of HIF1α [220, 221]. 
Carcinogenic signals can also produce proteins (such 
as VEGF and IL-8) that inhibit T-cell function through 
the MAPK pathway [222]. As a result, the recruitment 
of Teffs to the tumour site and immune responses are 
suppressed. In addition, when the expression of LON is 
up-regulated, the metabolic function of mitochondria 
is inhibited and the production of ROS in mitochondria 
and the level of oxidative stress are increased. Oxidised 
mtDNA promotes the signal transduction of IFN-γ 
through the cGAS–STING–TBK1 pathway in the cyto-
plasm, which leads to the overexpression of IDO-1 and 
PD-L1 on the surface of tumour cells to inhibit T-cell 
activation [149]. Consequently, tumour cells develop 
immune resistance.

As mentioned earlier, when melanoma cells escape 
immune surveillance through the PD-L1/PD-1 path-
way, PD-L1 expressed on melanoma cells binds to PD-1 
on the surface of T cells [40]. Prior to this, the antigen 
peptides produced by melanoma cells transmit ‘stimu-
latory’ signals to TCR on the surface of Teffs with the 
help of APCs. Simultaneously, the B7 family ligands 
present on APCs bind to CD28 receptors on the sur-
face of Teffs. Under the action of the two types of stim-
ulatory signals, Teffs are activated to kill tumour cells 
(such as by releasing IFN-γ). Owing to both anti- and 
pro-cancer functions of IFN-γ, melanoma cells may 
develop acquired resistance to PD-1 inhibitors [66]. 
Studies have demonstrated that drug-resistant mela-
noma cells have lower levels of OXPHOS and lipid 
metabolism than normal melanoma cells [102]. There-
fore, mitochondrial function is further inhibited in 
melanoma cells resistant to PD-1 inhibitors. These 
studies suggest that targeted activation of mitochon-
drial function in melanoma cells combined with anti-
PD-1 therapy has become a new treatment strategy for 
melanoma patients.

Changes in mitochondrial function in T cells
As mentioned earlier, when T cells are required to exert 
anti-tumour effects, cellular metabolism dominated by 
mitochondria not only reduces the expression of PD-1 
on the cell surface but also promotes the differentiation 
of T cells [200, 201]. Differentiated T cells play differ-
ent roles in the development of drug resistance in mela-
noma. Therefore, changes in mitochondrial function in 
T cells may lead to drug resistance in melanoma.

Treg infiltration is found in many human tumours, 
including melanoma [223]. Tregs can inhibit the 
response of Teffs by secreting inhibitory factors (such 
as TGF-β, IL-10 and IL-35) or through cellular contact 
[224–226]. Therefore, Tregs may play an important role 
in maintaining auto-tolerance [227]. Several animal 
studies have reported that primary and adaptive drug 
resistance to immunotherapy can be reduced by affect-
ing the ratio of Teffs-to-Tregs in TME or by directly 
removing Tregs [228–230]. An in  vivo study demon-
strated that Tregs can induce high PD-1 expression in 
 CD8+ T cells, leading to primary resistance to PD-1 
inhibitors [81]. PD-1 inhibitors usually act on  CD8+ T 
cells, which are activated in the draining lymph nodes 
(DLNs) and transported to the tumour site through the 
MIG/CXCR3 axis [18, 231]. Activation of  CD8+ T cells 
is related to  Ca2+ release, TCA cycle and ROS produc-
tion [232–234].

Recognition of PD-L1 on the surface of melanoma cells 
by PD-1 on the surface of T cells inhibits the metabolism 
of mitochondria in  CD8+ T cells. Consequently,  CD8+ 
T cells are in a resting state, allowing melanoma cells to 
escape immune surveillance [194]. However, the co-inhi-
bition of PD-1 transmission in T cells is blocked in mela-
noma sensitive to PD-1 inhibitors. The costimulatory 
signal transmitted by TCR activates intracellular mito-
chondrial function, thus exerting anti-tumour effects [20, 
235]. In melanoma resistant to PD-1 inhibitors,  CD8+ T 
cells irreversibly differentiate into Tex owing to energy 
depletion, and other mechanisms of drug resistance may 
directly or indirectly inhibit mitochondrial function in T 
cells [59, 236, 237]. Studies have demonstrated that the 
combination of mitochondria-activating agents, such as 
uncouplers of mitochondrial OXPHOS (FCCP), mTOR 
activators, AMPK activators and PGC-1α activators, and 
PD-1 inhibitors can significantly increase the clinical 
response rate of PD-1 inhibitors [18, 238–240]. We spec-
ulate that an inextricable relationship exists between the 
decreased immune function of  CD8+ T cells caused by 
drug resistance and the inhibited metabolic function of 
mitochondria in melanoma. To sum up, targeted activa-
tion of mitochondrial function in T cells combined with 
anti-PD-1 therapy can exert a stronger anti-tumor effect 
and inhibit the occurrence of drug resistance.



Page 13 of 19Du et al. Journal of Translational Medicine          (2023) 21:345  

Other cells in TME are involved in the resistance 
of melanoma to PD‑1 inhibitors
In addition to melanoma and common T cells, other 
cell types in the tumour immune microenvironment are 
involved in the development of resistance to PD-1 inhibi-
tors. Tumour-MDSCs and TAMs have been associated 
with resistance to PD-1 inhibitors [87, 241]. At present, 
the relationship between the resistance of melanoma to 
PD-1 inhibitors and the changes in mitochondrial func-
tion in tumour-MDSCs and TAMs remains unclear. 
However, both MDSCs and TAMs can participate in 
the immunosuppressive TME by expressing PD-L1 or 
producing some cytokines in melanoma [87, 241]. Some 
studies have demonstrated that inhibition of phospho-
inositide 3-kinase (PI3K-γ) in macrophages differentiated 
from tumour-MDSCs can enhance the immunothera-
peutic effects of PD-1 inhibitors in mouse models of 
melanoma [242, 243]. As mentioned earlier, a correlation 
exists between the activation of PI3K-related pathways 
and the inhibition of mitochondrial function. In addition, 
upregulation of LON in the mitochondria of melanoma 
cells induces the release of extracellular vesicles (EV) 
carrying mtDNA, PD-L1 and lactic acid from tumour 
cells to TAMs, thus inducing TAMs to produce IFN-γ 
and IL-6. This phenomenon weakens T-cell immunity in 
TME [149].

To the best of our knowledge, no study has exam-
ined the changes in mitochondrial function in tumour-
MDSCs and TAMs in melanoma resistant to PD-1 
inhibitors. However, given that tumour-MDSCs and 
TAMs are involved in the development of resistance to 
PD-1 inhibitors in melanoma, we speculate that func-
tional changes in mitochondria in these two types of cells 
may be related to PD-1 inhibitor resistance.

Conclusion and prospect
At present, PD-1 inhibitors are commonly used to treat 
melanoma; however, their low response rate remains a 
problem. To reduce the resistance of melanoma to PD-1 
inhibitors and improve the response rate, the combina-
tion of PD-1 inhibitors and other therapeutic methods 
is preferred to the independent use of PD-1 inhibitors 
[244]. The ability of melanoma cells to resist mitochon-
dria-targeting drugs is reduced because of OXPHOS dys-
function. Therefore, the combination of mitochondrial 
activators and PD-1 inhibitors may represent a new strat-
egy for the treatment of melanoma in the future [102, 
245].

In this review, we summarised the mechanisms 
underlying the resistance of melanoma to PD-1 

inhibitors and discussed therapeutic targets related to 
mitochondrial function in melanoma cells. In addition, 
we elucidated the changes in mitochondrial function 
in different cells in melanoma resistant to PD-1 inhibi-
tors. When drug resistance occurs, mitochondria in 
both melanoma and immune cells are inhibited, and the 
development of melanoma is not affected. We hypothe-
sised that in melanoma resistant to PD-1 inhibitors, the 
use of mitochondria-targeting drugs to activate oxida-
tive metabolism in melanoma and immune cells can not 
only increase the immune activity of  CD8+ T cells (for 
example, the release of IFN-γ) but also inhibit tumour 
progression because of the altered energy metabolism 
balance by downregulating glycolysis. In 2017, Cha-
moto et al. demonstrated that mitochondria-activating 
agents can cooperate with PD-1 inhibitors on T cells, 
resulting in elevated anti-tumour effects [18]. There-
fore, the combination of PD-1 inhibitors and mitochon-
drial activators in the treatment of melanoma is a very 
promising research direction.

In conclusion, the tolerance of melanoma to PD-1 
inhibitors can be reduced by activating mitochondrial 
function. However, experimental studies should be 
conducted to verify this viewpoint. We will continue to 
investigate the immunological mechanisms underlying 
the abovementioned combination therapy in future tri-
als and will further describe the clinical benefits of this 
approach for the treatment of melanoma.
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