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Abstract 

Background Lipid A is the primary immunostimulatory part of the lipopolysaccharide (LPS) molecule. The inflamma-
tory response of LPS varies and depends upon the number of acyl chains and phosphate groups in lipid A which is 
specific for a bacterial species or strain. Traditional LPS quantification assays cannot distinguish between the acylation 
degree of lipid A molecules, and therefore little is known about how bacteria with different inflammation-inducing 
potencies affect fractional exhaled nitric oxide  (FeNO). We aimed to explore the association between pro-inflammatory 
hexa- and less inflammatory penta-acylated LPS-producing oral bacteria and  FeNO as a marker of airway inflammation.

Methods We used data from a population-based adult cohort from Norway (n = 477), a study center of the RHINESSA 
multi-center generation study. We applied statistical methods on the bacterial community- (prediction with MiRKAT) 
and genus-level (differential abundance analysis with ANCOM-BC) to investigate the association between the oral 
microbiota composition and  FeNO.

Results We found the overall composition to be significantly associated with increasing  FeNO levels independent of 
covariate adjustment, and abundances of 27 bacterial genera to differ in individuals with high  FeNO vs. low  FeNO levels. 
Hexa- and penta-acylated LPS producers made up 2.4% and 40.8% of the oral bacterial genera, respectively. The 
Bray–Curtis dissimilarity within hexa- and penta-acylated LPS-producing oral bacteria was associated with increasing 
 FeNO levels independent of covariate adjustment. A few single penta-acylated LPS producers were more abundant in 
individuals with low  FeNO vs. high  FeNO, while hexa-acylated LPS producers were found not to be enriched.

Conclusions In a population-based adult cohort,  FeNO was observed to be associated with the overall oral bacte-
rial community composition. The effect of hexa- and penta-acylated LPS-producing oral bacteria was overall sig-
nificant when focusing on Bray–Curtis dissimilarity within each of the two communities and  FeNO levels, but only 
penta-acylated LPS producers appeared to be reduced or absent in individuals with high  FeNO. It is likely that the 
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pro-inflammatory effect of hexa-acylated LPS producers is counteracted by the dominance of the more abundant 
penta-acylated LPS producers in this population-based adult cohort involving mainly healthy individuals.

Keywords Lipopolysaccharide, Endotoxin, Lipid A, Oral microbiota, Bacteria, Airway inflammation, Exhaled nitric 
oxide, RHINESSA, MiRKAT, ANCOM-BC

Background
Lipopolysaccharide (LPS) is a major cell wall compo-
nent of Gram-negative bacteria, and a strong stimulator 
of innate immunity in eukaryotes [1, 2]. LPS, also called 
endotoxin, is structurally heterogeneous and consists of 
three distinct domains: highly conserved lipid A, core 
oligosaccharide, and a highly variable O-antigen, while a 
few bacteria, e.g., Porphyromonas gingivalis, contain LPS 
molecules composed only of lipid A [3–5]. Lipid A is the 
primary immunostimulatory part of the LPS molecule, 
and it mainly activates innate pathways in macrophages, 
monocytes, and monocyte-derived dendritic cells that all 
express Toll-like receptor 4 (TLR4) [3, 6–8]. LPS is first 
recognized by myeloid differentiation factor 2 (MD-2) 
which binds five of the acyl chains of LPS (penta-acylated 
LPS) before it assembles with TLR4 in the TLR4-MD2 
complex. If the lipid A holds a sixth acyl chain (hexa-
acylated LPS), it can facilitate the formation of an MD-
2-TLR4-TLR4-dimer that finally activates the TLR4 
pathway. If lipid A exists in a penta-acylated form, it can-
not form a potent activating MD-2-TLR4-TLR4-dimer. 
The inflammatory response induced by LPS depends 
upon the structural acyl variations of the lipid A domain 
[3, 9, 10], but also the number of phosphate groups [11]. 
The ability of a bacterium to produce LPS variants is 
encoded in its genome via the presence or absence of the 
genes encoding the nine enzymes taking part in the Raetz 
pathway [12]. Most of the Gram-negative bacteria encode 
the genes for eight of these enzymes ending with the 
LpxL gene (Enzyme Commission (EC) 23.1.241) required 
for the production of penta-acylated LPS, while only a 
few bacteria hold the additional LpxM gene (EC 23.1.243) 
required for the production of hexa-acylated LPS, such 
as found in E. coli [5]. Once genomes are available, it is, 
therefore, possible to use in silico prediction based on the 
presence/absence of bacterial genes to predict their abil-
ity for penta-acylated vs. hexa-acylated LPS production. 
Hexa-acylated LPS is 100 times more potent in stimu-
lating inflammatory response than penta-acylated LPS; 
in contrast, lipid A with four acyl chains (tetra-acylated 
LPS) acts as a TLR4 antagonist by dampening the inflam-
matory response in the host [8, 13]. The ratio between 
different lipid A variants originating from different bac-
terial species determines the inflammatory potential 
[14]. Notably, to evade immune detection, certain bacte-
ria, such as the human pathogenic Yersinia species, can 

express hexa- or tetra-acylated LPS forms depending 
upon environmental conditions [3, 9, 10], or produce a 
mix of LPS variants, e.g., periodontopathogen P. gingi-
valis [15]. Hence, the variation in expressed lipid A forms 
across bacterial species in a sample makes it challenging 
to detect and quantify their production [16].

Endotoxin is ubiquitous in the environment and can be 
present in ambient air particulate matter, contaminated 
water, house dust, and in occupational settings, such as 
cotton, saw or grain dust [17]. The oral route is the main 
gateway for commensal and pro-inflammatory bacteria 
and their metabolites to enter the lungs [18]. Circulat-
ing LPS leads to low-grade inflammation locally (e.g. oral 
cavity) or systemically (e.g. small intestine), and endo-
toxin exposure has been associated with increased risk 
for periodontitis [19, 20], cardiovascular diseases [21], 
and respiratory diseases, such as occupational lung dis-
ease [17] and asthma [22]. Early-life exposure to hexa- 
and penta-acylated LPS—from farming and livestock 
sources—is suggested to be protective against allergy and 
asthma development in adulthood [23, 24].

Traditional LPS quantification assays, such as the Lim-
ulus Amebocyte Lysate (LAL) assay, cannot distinguish 
between different lipid A variants and LPS producers, 
and little is known about how bacteria with different 
inflammation-inducing potential affect fractional exhaled 
nitric oxide  (FeNO). Exhaled nitric oxide (NO) is a marker 
of airway inflammation that is used to support asthma 
diagnosis [25] and guide treatment [26]. Exhaled nitric 
oxide is believed to reflect type 2 airway inflammation 
in asthma [26]. In healthy individuals, another relevant 
source of nitric oxide might be the contribution from 
the oral cavity by reduction of nitrate  (NO3

−) to nitrite 
 (NO2

−) and further reduction to nitric oxide [27]. For 
example, nitrate load has resulted in increased levels of 
 FeNO and this is different between individuals [28]. More-
over, other mechanisms, e.g., occupational endotoxin 
exposure, may result in increased levels of  FeNO in non-
smoking, non-atopic adults [29], probably by means of 
nitric oxide synthase (NOS) activation in response to the 
release of inflammatory cytokines such as tumor necrosis 
factor-α (TNF-α) [30].

Here, we used amplicon sequencing of the oral 
microbiota and  FeNO measurements to investigate the 
association between the oral microbiota and airway 
inflammation in a population-based adult cohort from 
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Norway. We first examined the microbiota using both 
community- and genus-level statistical methods [31], 
and next explored the association between oral bacteria 
exhibiting pro-inflammatory hexa- or the less inflam-
matory penta-acylated LPS activity in relation to  FeNO 
measurements.

Methods
Study population
A total of 477 adult participants, generation 3 (G3), 
from the community-based generation study Respira-
tory Health In Northern Europe, Spain, and Australia 
(RHINESSA) [32], Bergen center, were examined in 
2014–2015 with questionaries, interviews, and a clinical 
investigation, including gingival fluid sampling.

Measurement of  FeNO
FeNO was measured according to standardized methods 
using the NIOX Mino (Aerocrine AB, Solna, Sweden), 
a hand-held electrochemical device, in parts per bil-
lion (ppb). Participants were instructed to refrain from 
exercising, smoking, eating, and drinking for at least 1 h 
before measurement, according to the guidelines [33]. 
During the procedure, participants were seated in an 
upright position wearing a nose clip to allow them to 
inhale NO-free air through the device and subsequently 
exhale it at a flow rate of 50 ml/s for 10 s, which mainly 
reflects NO production from the central airways [33, 34]. 
The participants were divided into three  FeNO catego-
ries:  FeNO < 25  ppb used as a reference, 25–49  ppb, and 
≥ 50  ppb, corresponding to low, intermediate, and high 
 FeNO levels, respectively, according to the American Tho-
racic Society (ATS) guidelines on the interpretation of 
 FeNO for clinical applications [35].

Gingival fluid sampling
Gingival fluid was collected with sterile paper points 
(PROTAPER, Jacobsen Dental, Norway) from the gingi-
val crevice (area between the gingiva crest and the neck 
of the tooth) at five per-protocol predetermined sites 
in the lower and upper jaw, specifically between the left 
front tooth (lateral side), the right front tooth (lateral 
side), left and right molars number 6 (both facing molar 
5). The paper points were collected into 2 ml Biopur Safe-
Lock tubes without buffer and stored at − 80 °C until fur-
ther processing; five paper points per individual from the 
upper or lower jaw were stored in each tube.

DNA extraction, amplification, Illumina MiSeq sequencing, 
and data preprocessing
Bacterial DNA was extracted from the gingival fluid 
samples and based on all five paper points from the 
lower jaw. A total of 12.5 ng DNA was amplified using a 

combination (4:1) of universal and Bifidobacterium-spe-
cific primers targeting the V1-V2 region of the 16S rRNA 
gene [36, 37]; primer sequences contained overhang 
adapters appended to the 5’ end of each primer for com-
patibility with Illumina sequencing platform. The com-
plete sequences of the primers were:

8F (5ʹ TCG TCG GCA GCG TCA GAT GTG TAT AAG 
AGA CAG AGA GTT TGA TCC TGG CTCAG 3ʹ), BifidoF 
(5ʹ TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA 
CAG AGG GTT CGA TTC TGG CTCAG 3ʹ), 338R (5ʹ GTC 
TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGC 
TGC CTC CCG TAG GAGT 3ʹ).

Master mixes contained 12.5 ng of total DNA, 0.2 μM 
of each primer, and 2 × KAPA HiFi HotStart ReadyMix 
(KAPA Biosystems, Wilmington, MA). The amplification 
program was as follows: 3 min at 95  °C, followed by 25 
cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C, with 
an extension step at 72  °C for 5 min and a final hold at 
4 °C. The 16S amplicons were purified using the AMPure 
XP reagent (Beckman Coulter, Indianapolis, IN). Illu-
mina sequencing adapters and dual-index barcodes 
(index 1(i7) and index 2(i5)) (Illumina, San Diego, CA) 
were added to the amplicons using a limited-cycle PCR 
program: 3 min at 95  °C, followed by 8 cycles of 30 s at 
95 °C, 30 s at 55 °C and 30 s at 72 °C, with an extension 
step at 72 °C for 5 min and a final hold at 4 °C. The result-
ing libraries were again purified using the AMPure XP 
reagent (Beckman Coulter, Indianapolis, IN), quantified, 
and normalized prior to pooling. The DNA library pool 
was then denatured with NaOH, diluted with hybridi-
zation buffer, and heat-denatured before loading on the 
MiSeq reagent cartridge (Illumina) and on the MiSeq 
instrument (Illumina, San Diego, CA). Automated clus-
ter generation and paired-end MiSeq sequencing were 
performed at the UNC Microbiome Core Facility at the 
University of North Carolina, USA according to the man-
ufacturer’s instructions.

Illumina MiSeq sequencing output was converted 
to fastq-format and demultiplexed using bcl2fastq 
v.2.18.0.12; the resulting paired-end reads were processed 
in QIIME 2 v. 2018.11 [38]. Barcodes and linker primer 
sequences were trimmed using the QIIME 2 invocation 
of cutadapt [39]. DADA2 [40] was used for denoising 
and dereplicating of paired-end reads, quality filtering, 
error correction, and chimera detection using default 
parameters. Amplicon sequence variants (ASVs; mean 
length 308.23  (± 28.17)  nt) from DADA2 were assigned 
taxonomy against the Human Oral Microbiome Data-
base v.15.1 (HOMD; http:// www. homd. org) [41] using 
the q2-feature-classifier plugin with a setting classify-
sklearn [42]. De novo multiple sequence alignment was 
generated with MAFFT [43] and phylogenetically unin-
formative or ambiguously aligned columns were removed 

http://www.homd.org
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prior to constructing a rooted phylogenetic tree in Fast-
Tree2 [44] (QIIME 2 plugins alignment mafft, alignment 
mask, phylogeny fasttree, and phylogeny midpoint-root, 
respectively).

Lipid A annotation
Annotation of oral bacteria to hexa- or penta-acylated 
LPS producers was done according to Brix et al. [14]; it 
was based on the presence/absence of the nine genes in 
the Raetz pathway in the whole genome sequenced bac-
teria. Bacteria containing all nine genes, including LpxL 
and LpxM, were assigned to have the ability to produce 
hexa-acylated LPS. Bacteria with the eight first genes 
in the Raetz pathway, and not LpxM, were annotated to 
have the ability for penta-acylated LPS production.

Biostatistics: associations between oral microbiota 
and  FeNO
Descriptive statistics are presented as mean [± standard 
deviation (sd)] and median [interquartile range (IQR)] for 
continuous variables (compared by Shapiro–Wilk test) 
and as frequency (percentage) for categorical variables. 
Potential confounders were selected based on the factors 
that we know affect both the exposure (oral microbiota 
composition) and the outcome  (FeNO) from the RHI-
NESSA cohort [32] using directed acyclic graphs (DAGs). 
We adjusted for age, sex, height, weight, smoking habits 
(never/previous/current), gingival bleeding upon brush-
ing teeth (never/rarely/sometimes/often/always), an 
attack of asthma in the last 12 months (no/yes), and the 
use of asthma medication (no/yes). Participants who had 
used antibiotics in the last 4 weeks before gingival sam-
pling were excluded from the downstream analyses [45].

We applied community-level analysis and differential 
abundance analysis. At the community level, the micro-
biome regression-based kernel association test (MiR-
KAT) [46] was used to test for associations between 
 FeNO and differential composition of the overall, only 
hexa-, or only penta-acylated LPS-producing oral bac-
teria. As compared to a traditional permutation-based 
distance analysis PERMANOVA [47], MiRKAT is able to 
consider multiple distance metrics by constructing cor-
responding kernel matrices while controlling for possi-
ble confounding effects. In our study, four kernels were 
tested simultaneously with an omnibus test (via the 
Cauchy combination test which allows the weighting of 
all kernels equally) to increase the power of the analyses 
and to obtain more insight into the source of microbial 
variability [48, 49]. We used four different beta diversity 
metrics: unweighted UniFrac, weighted UniFrac, gener-
alized UniFrac, and Bray–Curtis dissimilarity. The abun-
dance-based Bray–Curtis dissimilarity relies solely on 
the abundances of bacterial taxa between two different 

samples [50]. In contrast, the UniFrac distances differ 
by the weighting of phylogeny upon measuring similar-
ity between samples [51]. Unweighted UniFrac is defined 
as a binary, or presence/absence, weighting, and it is 
most efficient in detecting abundance change in rare taxa 
given that the abundant taxa are likely to be present in 
all samples [52]. Weighted UniFrac uses taxon abundance 
information and has more power to detect changes in 
common taxa [53]. The generalized UniFrac moderates 
the weighting placed on either abundant or rare taxa and 
therefore has more power to detect changes in bacterial 
species with modest abundance [54]; it can be done by 
tuning an additional parameter α that we set to 0.5.

Function GUniFrac from the GUniFrac R package was 
used to generate the UniFrac distances [54]. We rare-
fied the data before calculating beta diversity metrics 
to account for variability in sequencing depth (function 
rrarefy from the vegan R package) [55, 56]. Beta diversi-
ties on non-rarefied data were also provided and served 
as a sensitivity analysis. The kernel-specific p-values were 
computed by inverting the characteristic function of the 
mixture chi-square distribution (method = “davies”) [57]. 
We adjusted for age, sex, height, weight, smoking habits, 
gum bleeding, an attack of asthma in the last 12 months, 
and the use of asthma medication. Samples with missing 
metadata on one or more covariates were removed prior 
to running the MiRKAT.

Analysis of compositions of microbiomes with bias cor-
rection (ANCOM-BC) [58] was used to test which bac-
terial taxa were differentially abundant between three 
clinically defined  FeNO categories  (FeNO < 25 ppb used as 
a reference group) while controlling for other covariates 
(see above). ANCOM-BC accounts for the compositional 
nature of microbiome data [59], reports direction and 
effect size for absolute abundances, and allows multiple 
testing [58]. The tool provides a statistically valid test 
with a q-value (adjusted p-value) and confidence intervals 
(log fold change) for each bacterial taxon. A negative and 
a positive log fold change indicate that the taxon is less or 
more abundant, respectively, compared to the reference 
group. All p-values were adjusted with the Holm-Bon-
ferroni method which is a default option in ANCOM-
BC; it is recommended when interactions between taxa 
are unknown. Significance was assessed with a thresh-
old of false discovery rate (fdr) < 0.05. The other settings 
for implementing ancombc function were as follows: 
prv_cut = 0.10; lib_cut = 1000; struc_zero = TRUE; neg_
lb = TRUE; tol = 1e−5, max_iter = 100, conserve = FALSE, 
global = TRUE. Prior to running the ANCOM-BC, we 
aggregated bacterial ASVs into genera (function aggre-
gate_taxa, microbiome R package).

Since current smoking is associated with lower  FeNO 
levels [60, 61] and alters oral bacterial community 
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composition [62], and individuals with asthma are usually 
characterized by increased  FeNO [63], we performed two 
sensitivity analyses. The definition of current asthma was 
based on the affirmative answers to the questions about 
having had an attack of asthma in the last 12 months and/
or currently taking asthma medication. We excluded (1) 
current smokers (and did not adjust for smoking habits in 
the MiRKAT and ANCOM-BC models), and (2) subjects 
with current asthma (and did not adjust for an attack of 
asthma in the last 12 months and the use of asthma med-
ication in the MiRKAT and ANCOM-BC models).

All statistical analyses were performed in R ver-
sion 4.2.2 [64] using packages ANCOMBC v.1.6.2 [58], 
ggplot2 v.3.3.6 [65], GUniFrac v.1.6 [66], microbiome 
v.1.18.0 [67], MiRKAT v.1.2.1 [46], phyloseq v.1.40.0 [68], 
tidyverse v.1.3.2 [69] and vegan v.2.6-2 [70].

Results
Study population characteristics in relation to  FeNO
A total of 477 adults from the community-based gen-
eration study RHINESSA, Bergen center, were analyzed, 
223 (47%) women and 254 (53%) men. The women were 
slightly younger than the men (mean (± sd): 27.2 (± 6.6) 
and 28.7 (± 6.8) years; median (IQR): 26 (22–32) and 28 
(23–34) years; min–max: 18–45 and 18–47 years, respec-
tively). The outcome variable  FeNO had a right-skewed 
distribution, with median (IQR) equal to 18 (13–25) ppb. 
The range of  FeNO values was 5–158 ppb for the total pop-
ulation, 5–123, and 5–158 ppb for the women and men, 
respectively. When the participants were divided into 
three  FeNO categories, the distribution was as follows: 345 
(72.9%), 113 (23.9%), and 15 (3.2%) corresponding to low, 
intermediate, and high  FeNO levels, respectively (Table 1). 
More women than men had low vs. high  FeNO levels (186 
(53.9%) vs. 4 (26.7%) women, and 159 (46.1%) vs. 11 
(73.3%) men, respectively), excluding four participants 
with missing information on  FeNO (Table 1). Most current 
smokers (n = 56) had low  FeNO values, while only 2 par-
ticipants had  FeNO ≥ 50 ppb (both males) (Table 1). The 
number of individuals with current asthma was 30 (6.3% 
of the population). When these individuals were subdi-
vided into low, intermediate, and high  FeNO categories, 
the distribution was 20 (5.8%), 7 (6.2%), and 3 (20.0%) 
individuals, respectively. Due to the small number of sub-
jects with current asthma in our study population, we 
adjusted for an attack of asthma in the last 12 months and 
the use of asthma medication separately in the models.

Bacterial diversity and taxa distribution
A total of 47,443,921 reads representing 33,756 ASVs 
were obtained from the gingival samples of the 477 sub-
jects (an average number of reads per sample: 99,463; 
range: 10,017–292,207).

The dominant bacterial phyla were Firmicutes (27.7%), 
Bacteroidetes (24.7%), Fusobacteria (18.4%), Proteo-
bacteria (15.6%), and Actinobacteria (8.5%). The most 
prevalent bacterial genera, present in all samples, were 
Fusobacterium (15.2%, phylum Fusobacteria), Streptococ-
cus (9.7%, phylum Firmicutes), and Prevotella (8.4%, phy-
lum Bacteroidetes).

Lipid A annotation
In total, 2.4% and 40.8% of the oral bacterial genera were 
annotated as hexa- and penta-acylated LPS producers, 
respectively (Fig.  1). Among pro-inflammation-induc-
ing oral bacteria, 9 genera from the phylum Proteo-
bacteria were detected (Aggregatibacter, Enterobacter, 
Escherichia, Haemophilus, Klebsiella, Proteus, Steno-
trophomonas, Yersinia, and unclassified Proteobacteria). 
Penta-acylated LPS producers were represented by 71 

Table 1 Characteristics of the study population in relation to 
 FeNO categories

a ppb parts per billion
b Participants with missing information on  FeNO: female (n = 3) and male (n = 1)
c Never and Current smoker were defined as having answered no and yes, 
respectively, to the question “Do you smoke?”. Previous smoker was defined as 
having answered yes to the question “Did you smoke previously?”

Variable FeNO group

Low  FeNO Intermediate  FeNO High  FeNO

(< 25  ppba) (25–49 ppb) (≥ 50 ppb)

Individuals, n (%)

345 (72.9) 113 (23.9) 15 (3.2)

Sex, n (%)

  Femaleb 186 (53.9) 30 (26.5) 4 (26.7)

  Maleb 159 (46.1) 83 (73.5) 11 (73.3)

Smoking habits, n (%)

  Neverc 238 (69.0) 82 (72.6) 12 (80.0)

 Previous 51 (14.8) 24 (21.2) 1 (6.7)

 Current 56 (16.2) 7 (6.2) 2 (13.3)

Current asthma, n (%)

 Yes 20 (5.8) 7 (6.2) 3 (20.0)

Fig. 1 The distribution of the oral microbiota annotated to hexa- and 
penta-acylated LPS producers, as well as Gram-negative (G−) that 
were not possible to assign to hexa- or penta-acylated LPS groups 
due to phylum annotation only, Gram-positive (G +), and unknown 
bacteria from the study population
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genera, with the most abundant belonging to Capnocy-
tophaga and Prevotella (phylum Bacteroidetes), Neisseria 
(phylum Proteobacteria), and Fusobacterium (phylum 
Fusobacteria).

Community‑level analyses with MiRKAT
We investigated the association between the oral micro-
biota community composition at the overall level, and 
for the hexa-, and penta-acylated LPS producers vs.  FeNO 
as the marker of airway inflammation, while control-
ling for potential confounders. Before the analyses, we 
filtered out 35 samples (7.3%) with missing data on one 
or more covariates. We performed the analysis on both 
rarefied and non-rarefied data to show that the variabil-
ity in sequencing depth does not affect the results. The 
kernel-specific and omnibus p-values for each of the ana-
lyzed bacterial community compositions and the model 
parameters are shown in Table  2 and Additional file  1: 
Table S1. Taking into account the relative relatedness of 
community members (the UniFrac metrics), the associa-
tion between the overall bacterial community composi-
tion and  FeNO was statistically significant (the omnibus 
p < 0.05). But the same effect was not observed between 
 FeNO and the overall oral bacterial community of hexa- 
or penta-acylated LPS producers. On the contrary, we 
identified a statistically significant relation between  FeNO 
and the Bray–Curtis kernel for both hexa- and penta-
acylated LPS community compositions, while this was 
not observed for the overall bacterial community (Table 2 
and Additional file 1: Table S1). These results imply that 
the relatedness between the hexa- and penta-acylated 
LPS producers, with hexa-acylated LPS producers being 
Gammaproteobacteria and penta-acylated LPS producers 
being dominated by the highly abundant Bacteroidetes 

members, may explain this result, as the bacterial related-
ness is taken into account for all three UniFrac metrics, 
but not for Bray–Curtis dissimilarity.

We also performed two sensitivity analyses excluding 
(1) current smokers, and (2) subjects with current asthma 
(Additional file  1: Tables S2 and S3). The associations 
between the overall bacterial community composition 
and  FeNO were not statistically significant when current 
smokers and subjects with current asthma were excluded. 
In other words, in healthy, non-asthmatic subjects the 
contribution of oral bacteria to the production of nitric 
oxide can be attributed to inter-individual variation.

Differential abundance testing with ANCOM‑BC
ANCOM-BC identified 27 differentially abundant bacte-
rial genera from the phyla Firmicutes (12), Bacteroidetes 
(2), Proteobacteria (8), Actinobacteria (4), and Saccha-
ribacteria (1) that significantly differed between the indi-
viduals with high vs. low  FeNO levels while adjusting for 
confounders (Table  3). Of note is that the significances 
of these genera are due to structural zeros [71] and they 
were detected by the presence/absence test. Among those 
taxa, 11 bacterial genera are potential penta-acylated LPS 
producers (Table  3). No hexa-acylated LPS-producing 
oral bacteria were differentially abundant between the 
groups.

We also performed two sensitivity analyses excluding 
(1) current smokers, and (2) subjects with current asthma 
(Additional file 1: Tables S4 and S5). Among 25 differen-
tially abundant bacterial genera, 11 and 8 are potential 
penta-acylated LPS-producing oral bacteria (Additional 
file 1: Tables S4 and S5). Of note is that there is a large 
overlap of differentially abundant taxa between the pri-
mary and sensitivity analyses (23 and 22 bacterial genera, 
respectively).

Discussion
To the best of our knowledge, this study is the first to 
explore the association between LPS-producing oral 
bacteria of different potency and exhaled nitric oxide 
in a population-based adult cohort from Norway. We 
observed a strong association between  FeNO and the 
overall community composition of oral bacteria based on 
several ecologically informative kernels. The Bray–Curtis 
dissimilarity within hexa- and penta-acylated LPS pro-
ducers was associated with increasing  FeNO levels inde-
pendent of covariate adjustment. At a lower taxonomic 
level, 27 penta-acylated LPS-producing bacterial genera 
were more abundant in individuals with low  FeNO vs. high 
 FeNO, while hexa-acylated LPS producers were found not 
to be enriched.

Bacterial LPS may induce various biological responses 
that may be beneficial or harmful for the host, and 

Table 2 Kernel-specific and omnibus p-values for each of the 
analyzed bacterial community compositions (rarefied data) vs. 
 FeNO (a continuous variable)

We adjusted for age, sex, height, weight, smoking habits, gum bleeding, the use 
of asthma medication, and an attack of asthma in the last 12 months.  KU,  KW,  KG, 
and  KBC represent MiRKAT results for the unweighted UniFrac kernel, weighted 
UniFrac kernel, generalized UniFrac kernel with α = 0.5, and Bray–Curtis kernel, 
respectively. The omnibus p-value is computed via the Cauchy combination test 
which allows the weighting of all four kernels equally. Both the kernel-specific 
and omnibus p-values were obtained by the Davies method. Significance < 0.05 
is shown in bold

KU KW KG KBC Omnibus p‑value

Overall community composition

0.005 0.005 0.015 0.159 0.008
Hexa-acylated LPS community composition

0.099 0.150 0.120 0.040 0.081

Penta-acylated LPS community composition

0.144 0.174 0.159 0.024 0.066
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frequent exposure to low levels of LPS early in life is 
essential for the development of a healthy immune sys-
tem [16, 21, 72, 73]. In healthy individuals, Gram-nega-
tive bacteria and their LPS (10 ± 20  pg/mL) have been 
detected in the lower intestine, saliva, dental plaque, 
skin, lungs, respiratory and urinary tracts [3]. The LPS 
biosynthesis is highly conserved in Gram-negative bac-
teria, but there are exceptions [5, 74]. Strongly agonistic 
LPS is comprised of a rather similar set of lipid A types 
[1]. For example, members of Proteobacteria, class Gam-
maproteobacteria (e.g. genera Enterobacter, Escherichia, 
Klebsiella), with a few exceptions, express hexa-acylated 
lipid A forms, whereas Bacteroidetes species (e.g. Bacte-
roides and Prevotella) are known to produce penta- and 
tetra-acylated lipid As that elicit reduced TLR4 responses 
[3, 16]. Contrarily, members of Actinobacteria and Fir-
micutes are Gram-positive and generally do not produce 

LPS [75]. In the oral cavity of our study population, Bac-
teroidetes was the second most abundant phylum com-
pared to Proteobacteria (24.7% and 15.6%, respectively). 
Brix et  al. [14] reported that the lung microbiota of 
healthy individuals present a low ratio of hexa- to penta-
acylated LPS producers compared to the lung micro-
biota of individuals with asthma. We speculate that the 
pro-inflammatory effect of hexa-acylated LPS-producing 
oral bacteria may be counteracted by the dominance of 
the more abundant penta-acylated LPS producers, such 
as Bacteroidetes species, in this population-based adult 
cohort involving mainly healthy individuals. In a healthy 
gut, the prevalence of Proteobacteria and Bacteroidetes 
species and structural and functional differences between 
their lipid A forms were shown to be crucial for the 
maintenance of gut homeostasis [3, 16]. Moreover, most 
lipid A forms produced in the gut inhibit the immune 

Table 3 Differentially abundant bacterial genera between the participants with low  FeNO vs. high  FeNO levels detected by ANCOM-BC 
(n = 477)

Data are presented as relative abundances for each genus per  FeNO category. The lipid A annotation of penta-acylated LPS producers is indicated as “Penta”
a ppb parts per billion

Genus Phylum Low  FeNO Intermediate  FeNO High  FeNO Lipid A annotation
(< 25  ppba) (25–49 ppb) (≥ 50 ppb)

Achromobacter Proteobacteria 0.81 0.19 0.00 Penta

Aerococcus Firmicutes 0.92 0.08 0.00 Gram-positive

Agrobacterium Proteobacteria 0.74 0.25 0.01 Penta

Bacteroides Bacteroidetes 0.73 0.26 0.02 Penta

Bosea Proteobacteria 0.87 0.12 0.00 Penta

Brevundimonas Proteobacteria 0.68 0.32 0.00 Penta

Clostridiales_[F-1][G-2] Firmicutes 0.97 0.03 0.00 Gram-positive

Clostridiales_[F-3][G-1] Firmicutes 0.86 0.14 0.00 Gram-positive

Cutibacterium Actinobacteria 0.80 0.20 0.01 Gram-positive

Dermabacter Actinobacteria 0.65 0.33 0.02 Gram-positive

Erysipelothrix Firmicutes 0.82 0.17 0.01 Gram-positive

Helicobacter Proteobacteria 0.81 0.17 0.02 Penta

Janibacter Actinobacteria 0.79 0.20 0.01 Gram-positive

Kocuria Actinobacteria 0.77 0.22 0.00 Gram-positive

Lachnospiraceae_[G-7] Firmicutes 0.81 0.19 0.00 Gram-positive

Lactobacillus Firmicutes 0.80 0.20 0.00 Gram-positive

Lysinibacillus Firmicutes 0.72 0.26 0.02 Gram-positive

Mitsuokella Firmicutes 0.94 0.06 0.01 Penta

Mogibacterium Firmicutes 0.78 0.22 0.00 Gram-positive

Moraxella Proteobacteria 0.95 0.05 0.00 Penta

Novosphingobium Proteobacteria 0.68 0.31 0.00 Penta

Paenibacillus Firmicutes 0.62 0.36 0.02 Gram-positive

Pedobacter Bacteroidetes 0.64 0.35 0.01 Penta

Peptostreptococcaceae_[XI][G-2] Firmicutes 0.85 0.14 0.01 Gram-positive

Saccharibacteria_(TM7)_[G-4] Saccharibacteria 0.58 0.40 0.02 Gram-negative

Schlegelella Proteobacteria 0.84 0.15 0.01 Penta

Staphylococcus Firmicutes 0.82 0.17 0.01 Gram-positive
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response, with only a small fraction of them functioning 
as a TLR4-agonist [16, 76]. It implies that bacterial LPS 
has the potential to modulate host tolerance and influ-
ence the outcome of microbiota-linked diseases [76] and 
that the composition of bacterial communities, includ-
ing their metabolites, acts as a mediator of inflammation 
[77].

To explore the association between the oral micro-
biota composition and  FeNO, we applied the community- 
(MiRKAT) and genus-level (ANCOM-BC) statistical 
methods. In MiRKAT, the choice of a distance matrix 
to generate an ecologically informative kernel strongly 
affects the statistical power [46, 48]. The use of multiple 
beta-diversity metrics with an omnibus test increases the 
power of analyses and allows distinct distances to capture 
distinct association patterns [48, 51]. Weighted UniFrac 
relies more heavily on the deep structure of the phylog-
eny, whereas unweighted UniFrac and abundance-based 
metrics rely more heavily on the shallow branches in the 
phylogeny [51]. In our study, the overall oral bacterial 
community composition measured via kernels obtained 
by transforming weighted and generalized UniFrac met-
rics was significantly associated with  FeNO; contrarily, 
the association between the community compositions of 
hexa- or penta-acylated LPS producers and  FeNO was sig-
nificant only when Bray–Curtis dissimilarity was used as 
a kernel (Table  2). In addition, only penta-acylated LPS 
producers (11 distinct genera, Table 3) were more abun-
dant in individuals with low vs. high  FeNO, while hexa-
acylated LPS producers were found not to be enriched. 
Based on our finding of a 20-fold higher abundance of 
penta-acylated LPS-producing bacterial genera in the 
oral cavity of this cohort, we speculate that most of the 
oral LPS of adults from the general population, similar to 
the ones from the healthy human gut and lung, is immu-
noinhibitory [14, 16, 76].

The strength of our study is that the findings are based 
on a well-characterized, homogeneous adult cohort 
from the general population with a relatively large sam-
ple size (n = 477). One of the limitations of our study is 
the insufficient resolution of the 16S rRNA gene in delin-
eating ASVs below genus level and unknown but sub-
stantial strain-level diversity which might be unique to 
some individuals [78]. Moreover, amplicon sequencing 
provides detailed taxonomic profiling of bacterial com-
munities but not their functional potential [79]. In addi-
tion, factors not measured in the present study, e.g. diet, 
physical activity, respiratory infections, air pollution, 
and allergen exposure, can positively or negatively affect 
 FeNO levels [35, 61, 80], and therefore their effect on the 
association of the oral bacterial community composition 
and  FeNO remains unknown. Although the measurement 
of  FeNO is a rapid and non-invasive procedure, it reflects 

only some, although not all, aspects of airway inflamma-
tion [81, 82]. Thus, the results presented here should be 
interpreted with caution.

Conclusions
The oral cavity is an open, heterogeneous, and highly 
dynamic environment with distinct bacterial com-
munity composition and complex species interactions 
in both health and disease. To the best of our knowl-
edge, this study is the first to provide evidence that the 
composition of different lipid A variants in the oral 
cavity of healthy subjects may determine the level of 
immune activation triggered by microbiota-derived 
endotoxins. It is likely that the pro-inflammatory effect 
of hexa-acylated LPS producers is counteracted by the 
dominance of the penta-acylated LPS producers which 
may reduce inflammatory processes. Even though the 
pro-inflammatory oral bacteria were present in lower 
abundances, they may reach the lungs through micro-
aspiration or systemic dispersal, e.g. injuries during 
toothbrushing, flossing, or mastication, and thereby 
indirectly contribute to airway inflammation.
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