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Abstract 

Background Oral squamous cell carcinoma (OSCC) is one of the most prevalent and fatal oral cancers. Mitochondria-
targeting therapies represent promising strategies against various cancers, but their applications in treating OSCC are 
limited. Alantolactone (ALT) possesses anticancer properties and also regulates mitochondrial events. In this study, we 
explored the effects of ALT on OSCC and the related mechanisms.

Methods The OSCC cells were treated with varying concentrations and duration of ALT and N-Acetyl-l-cysteine 
(NAC). The cell viability and colony formation were assessed. The apoptotic rate was evaluated by flow cytometry 
with Annexin V-FITC/PI double staining. We used DCFH-DA and flow cytometry to detect reactive oxygen species 
(ROS) production and DAF-FM DA to investigate reactive nitrogen species (RNS) level. Mitochondrial function was 
reflected by mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP levels. 
KEGG enrichment analyses determined the mitochondrial-related hub genes involved in OSCC progression. Dynamin-
related protein 1 (Drp1) overexpression plasmids were further transfected into the cells to analyze the role of Drp1 in 
OSCC progression. Immunohistochemistry staining and western blot verified the expression of the protein.

Results ALT exerted anti-proliferative and pro-apoptosis effects on OSCC cells. Mechanistically, ALT elicited cell injury 
by promoting ROS production, mitochondrial membrane depolarization, and ATP depletion, which were reversed 
by NAC. Bioinformatics analysis showed that Drp1 played a crucial role in OSCC progression. OSCC patients with low 
Drp1 expression had a higher survival rate. The OSCC cancer tissues presented higher phosphorylated-Drp1 and Drp1 
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levels than the normal tissues. The results further showed that ALT suppressed Drp1 phosphorylation in OSCC cells. 
Moreover, Drp1 overexpression abolished the reduced Drp1 phosphorylation by ALT and promoted the cell viability 
of ALT-treated cells. Drp1 overexpression also reversed the mitochondrial dysfunction induced by ALT, with decreased 
ROS production, and increased mitochondrial membrane potential and ATP level.

Conclusions ALT inhibited proliferation and promoted apoptosis of oral squamous cell carcinoma cells via impair-
ment of mitochondrial homeostasis and regulation of Drp1. The results provide a solid basis for ALT as a therapeutic 
candidate for treating OSCC, with Drp1 being a novel therapeutic target in treating OSCC.

Keywords Oral squamous cell carcinoma (OSCC), Alantolactone (ALT), Reactive oxygen species (ROS), Mitochondrial 
impairment, Dynamin-related protein 1 (Drp1)

Introduction
Oral squamous cell carcinoma (OSCC) is one of the most 
common malignant head and neck carcinomas [1]. Each 
year, the number of new OSCC cases exceeds 370,000, 
with approximately 170,000 people dying from OSCC [2]. 
OSCC is initially characterized by asymptomatic hyper-
plastic lesions on the tongue, buccal mucosa, and gin-
giva [3]. The majority of cases are diagnosed at advanced 
stages with poor prognosis [4], high recurrence rates [5], 
and resistance to traditional therapy [6]. The 5-year sur-
vival rate of OSCC patients is only 60% despite the com-
prehensive and multidisciplinary therapeutic approaches 
[7, 8]. A thorough understanding of the pathological 
etiology of OSCC progression is urgently required for 
developing effective therapeutic strategies.

Oxidative stress (OS) refers to redox imbalance char-
acterized by excessive reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) [9]. Oxidative dam-
age to DNA, proteins, and lipids significantly contributes 
to cancer formation and progression [10]. Additionally, 
antioxidants targeting ROS were long considered defen-
sive weapons in preventing cancer development [11]. 
ROS are primarily generated in mitochondria, which is 
also the principal target of OS [12]. The multiple critical 
roles of mitochondria in cancer progression make them 
important targets for anticancer therapy [13].

Mitochondria-targeting therapies represent promis-
ing treatments for colon cancer [14] and breast cancer 
[15]. The underlying mechanisms include ROS regula-
tion, mitochondrial DNA (mtDNA) interference, and 
mitophagy induction [13, 16, 17]. However, studies on 
mitochondrial-targeting therapy for OSCC are limited 
and need further exploration.

As a compound derived from Inula Racemosa, alan-
tolactone (ALT) possesses numerous biological proper-
ties, including anti-inflammatory and antibacterial [18], 
antioxidant [19], and anticancer effects [20]. Addition-
ally, studies have confirmed that ALT prevented cancer 
progression through regulation of mitochondria [21, 
22]. ALT induced ROS production [23], promoted ROS-
mediated mitochondrial dysfunction [21], and triggered 
mitochondrial-mediated apoptosis [24] in cancers involv-
ing the liver [25], lung [26], and breast [21, 27]. However, 
whether ALT inhibits OSCC progression and the under-
lying mechanism remains elusive. We aimed to evaluate 
the effects of ALT on OSCC and the involved mecha-
nisms. The results revealed that ALT elicited OSCC cell 
death via ROS-mediated mitochondrial impairment and 
suppression of dynamin-related protein 1 (Drp1) phos-
phorylation. Our findings provide evidence that ALT is 
a promising therapeutic agent against OSCC. Further-
more, targeting mitochondria and Drp1 may be promis-
ing treatment modalities against OSCC.

Methods
Materials
The cell culture medium was from Life Technologies 
(Grand Island, NY, USA). Antibodies against Drp1 (sc-
271583, Santa Cruz, CA, USA) and translocase of the 
outer membrane 20 (TOM20) (sc-17764, Santa Cruz, 
CA, USA), the phosphorylated-Drp1 (p-Drp1) anti-
body (AF8470, Affinity Biosciences, USA), the voltage-
dependent anion channel 1 (VDAC1) antibody (ab14734, 
Abcam, Cambridge, UK), GAPDH (10494-1-AP, Protein-
tech Group, China) and secondary antibody (SA00001-2, 
Proteintech Group, China) were used. ALT (A114070, 

Fig. 1 ALT inhibited cell viability and triggered OSCC cell apoptosis. A Chemical structure of ALT. B The inhibitory effects of ALT on PC-9, LOVO, 
U251, CAL27, and SCC9 cells. C, D Cell viability was measured in CAL27 and SCC9 cells after being treated with ALT for 24 h. E, F Cell viability was 
measured in CAL27 and SCC9 cells after being treated with ALT for indicated periods. G–I CAL27 and SCC9 cells were seeded into 6-well plates and 
then treated with various dosages of ALT as indicated. The number of colonies was assessed and quantified by crystal violet staining. J–M Flow 
cytometry analysis after Annexin V-FITC/PI double staining. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 versus the Control group)

(See figure on next page.)



Page 3 of 17Zhang et al. Journal of Translational Medicine          (2023) 21:328  

Fig. 1 (See legend on previous page.)
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Fig. 2 ROS regulation played a critical role in the preventive effect of ALT against OSCC cells. A–C Representative DCFH-DA fluorescent images in 
CAL27 and SCC9 cells treated with ALT. Mean optical density analysis of cellular DCFH-DA staining (green fluorescence; a ROS production indicator). 
Scale bar = 100 µm. D–F Representative DAF-FM DA fluorescent images in CAL27 and SCC9 cells treated with ALT. Mean optical density analysis of 
cellular DAF-FM DA staining (green fluorescence; an indicator of production of RNS). Scale bar = 100 µm. G–I Representative DCFH-DA fluorescent 
images in CAL27 and SCC9 cells treated with ALT with or without NAC. For experiments with NAC, the cells were pre-treated as with 5 mM NAC 
for 2 h. 12 µM ALT was used to treat CAL27 cells, and 8 µM ALT was added to SCC9 cells. Scale bar = 100 µm. (***p < 0.001, ****p < 0.0001 versus the 
Control group, ####p < 0.0001 versus the ALT group)
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Fig. 3 ROS regulation played a critical role in the preventive effect of ALT against OSCC cells. A–C Cell morphology observed by phase contrast 
microscope and cell viability analysis (scale bar = 100 µm). D–F The number of colonies assessed and quantified by crystal violet staining. G–J Flow 
cytometry-based Annexin V-FITC/PI labeling of apoptotic cells. We used 15 µM ALT to treat CAL27 cells and SCC9 cells. (**p < 0.01, ***p < 0.001, 
****p < 0.0001 versus the Control group, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 versus the ALT group)
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Aladdin Industrial Corporation, China) and N-acetyl-
cysteine (NAC) (A7250, Sigma, USA) were applied.

Cell culture and treatment
The human OSCC cells, including CAL27 and SCC9 
cells, were from Wuhan University. CAL27 cells were 
cultured in DMEM and SCC9 cells were cultured in 
F-12K medium. Cells were cultured at 37  °C with 5% 
 CO2. When the cells achieved 80% confluency, they were 
passaged and digested with trypsin. Cultured cells were 
treated with ALT of different concentrations and dura-
tion time. For experiments with NAC, the cells were 
pre-treated with 5  mM NAC for 2  h, according to the 
previous studies [28, 29].

Drp1 overexpressed plasmids were transfected into 
cells to explore the role of Drp1 in OSCC progression. 
The cells were inoculated into a 6-well plate and trans-
fected with control and Drp1 overexpressed plasmids. All 
transfections were performed using Lipofectamine 3000 
(L3000008, Invitrogen, USA) according to the manufac-
turer’s instructions [30]. Transfection efficiency was con-
firmed by western blot.

Cell viability assay
We adopted the Methyl thiazolyl tetrazolium (MTT) 
assay to assess the cell viability. Cells were seeded in a 
96-well plate at a density of 4500 cells/well in a volume 
of 100  μL/well. After incubating with MTT, dimethyl 
sulfoxide was added to the cells to dissolve the formazan 
crystals. The spectrophotometric absorbance was meas-
ured at 490  nm. The average absorbance of the control 
DMSO group was set at 100%, and the absorbance ratio 
reflected the cell viability.

Western blot analysis
Cells were seeded in a 6-well plate at 2 ×  105 cells/well 
density and cultured under different conditions. Total 
proteins were collected using RIPA buffer (P0013, Beyo-
time, China), the concentrations of which were deter-
mined using the Bradford protein assay kit (23236, 
Thermo Fisher Scientific, USA). During the electropho-
resis, we loaded 60–80 µg proteins in each slot in the SDS 
gel. Protein gels were blotted using the Trans-Blot Turbo 
transfer apparatus and PVDF Midi transfer packs (Bio-
Rad). After blocking with 5% non-fat milk in TBST, blots 
were incubated with the primary antibodies with anti-
p-Drp1 (1:1000), anti-Drp1 (1: 1000), and anti-GAPDH 

(1:20,000). After further incubation with secondary anti-
bodies, blots were developed with ECL substrate (32209, 
Thermo Fisher Scientific, USA). NIH Image J software 
(https:// imagej. nih. gov/ ij/) detected the immunoreactive 
band relative to the optical density.

Determination of intracellular ROS and RNS
2,7-Dichlorofluorescein diacetate (DCFH-DA) (S0033, 
Beyotime, China) was used to evaluate the intracel-
lular ROS production. 3-amino,4-aminomethyl-2′,7′-
fluorescein diacetate (DAF-FM DA) (S0019, Beyotime, 
China) was used to detect intracellular RNS level [31]. 
After treatment, the cells were stained with either DCFH-
DA or DAF-FM DA for 20  min and rinsed with PBS. 
Images were taken by fluorescence microscope (Nikon, 
Japan) and evaluated by NIH Image J software (https:// 
imagej. nih. gov/ ij/).

Mitochondria functional and morphology imaging assays
Cells were incubated with MitoSOX red to detect mito-
chondrial ROS (mtROS). Additionally, mitochondrial 
membrane potential (MMP) was evaluated with the 
tetramethylrhodamine methyl ester dye (TMRM). We 
detected the fluorescence signals of MitoSOX (M36006, 
Thrmofisher, USA), TMRM (I34361, Thrmofisher, USA), 
and MitoGreen (M36008, Thrmofisher, USA) at the exci-
tation/emission wavelengths of 357/410 nm, 548/574 nm, 
and 491/513  nm. Fluorescence signals were measured 
using NIH Image J software.

Colony outgrowth assay
Crystal violet (0.5% in 25% methanol) was used to stain 
the cells under different treatment conditions. A micro-
scope (Olympus, Japan) was used to record the images. 
The colony formation areas were evaluated by Image J 
software (https:// imagej. nih. gov/ ij/).

Annexin V‑FITC/propidium iodide (PI) staining assay
An Annexin V-FITC/PI (C1062, Beyotime, China) apop-
tosis detection kit was adopted to detect the apoptotic 
rate. After trypsin digestion without ethylene diamine 
tetraacetic acid, the cells were collected by centrifugation 
and re-suspended. Annexin V-FITC and PI were added 
to the cell suspension in an ice bath. These staining con-
ditions were examined by flow cytometer (CytoFLEX; 
Beckman Coulter, USA).

(See figure on next page.)
Fig. 4 Mitochondrial abnormalities were involved in the inhibitory effect of ALT against OSCC cells. A, B ATP production in the indicated groups. 
10 µM ALT was used to treat CAL27 cells, and 4 µM ALT was added to SCC9 cells. C–F Representative images showing MitoSOX staining and 
quantification in the indicated groups. 12 µM ALT was used to treat CAL27 cells, and 8 µM ALT was added to SCC9 cells. Scale bar = 100 µm. G–J 
Representative images showing TMRM staining and quantification in the indicated groups. 12 µM ALT was used to treat CAL27 cells, and 8 µM ALT 
was added to SCC9 cells. Scale bar = 100 µm. (**p < 0.01, ***p < 0.001, ****p < 0.0001 versus the Control group)

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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Fig. 4 (See legend on previous page.)
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Adenosine triphosphate (ATP) synthesis assays
ATP is primarily produced through oxidative phos-
phorylation in mitochondria and thus represents an 
essential indicator of mitochondrial function [32]. The 
CellTiter-Glo Assay evaluated ATP production. 100  µL 
of ATP detection buffer was added into each well. The 
luminescence was measured after 10  min of incuba-
tion, and the ATP level was normalized based on protein 
concentration.

Immunohistochemistry staining
The specimens were formalin-fixed, paraffin-embedded, 
and cut into sheets of 4  µm. Gradient alcohol dehy-
drated the tissue slides after they were dewaxed with 
xylene. The sections were added with diluted primary 
antibody against p-Drp1 (1:200), Drp1 (1:200), TOM20 
(1:200), and VDAC1 (1:200). Nuclei were counterstained 
with hematoxylin and then sealed in neutral rubber. 
In the final step, the sections were viewed under a light 
microscope.

Patient samples and ethics
Wenzhou Medical University’s Research Ethics Com-
mittee approved protocol KY2022-R156 for this clinical-
laboratory study. From October 2020 to December 2021, 
samples were obtained from 20 paired cancer tissues and 
adjacent tissues from patients at the Department of Oral 
and Maxillofacial Surgery, the First Affiliated Hospital 
of Wenzhou Medical University. Inclusion criteria were: 
(1) Patients complied with the Head and Neck Cancers 
Clinical Practice Guidelines [33]. (2) None of the patients 
had previously been treated with chemotherapy or radi-
otherapy. (3) The patients have no other malignancy or 
autoimmune diseases.

Bioinformatics method
The RNA-seq transcriptome data of 500 head and neck 
squamous cell carcinoma tissues, 44 adjacent normal 
tissues and corresponding clinical data were obtained 
from the Cancer Genome Atlas (TCGA) (http:// cance 
rgeno me. nih. gov/) database. MitoCarta2.0 documented 
the biological pathways and gene sets related to mito-
chondrial metabolism and thus was used in our study. 
Single-sample gene set enrichment analysis was used to 
calculate the infiltrating scores of mitochondrial-related 
metabolic pathways based on the above information. 

A protein–protein interaction (PPI) network was con-
structed using the Interacting Gene Retrieval Search 
tool (https:// string- db. org/) to evaluate the interactions 
of mitochondrial metabolic pathways-related genes 
(MMPRGs). MMPRGs with |log Fold Change| > 0.5 and 
an adjusted p-value < 0.05 were identified as differentially 
expressed MMPRGs. Genes were further evaluated for 
prognostic significance with univariate cox regression 
analysis.

Statistical analyses
Data analysis was performed with GraphPad Prism 8.0. 
Analyses of variance were performed to evaluate the 
data, expressing it as mean ± SD. Statistics were signifi-
cant when p < 0.05. Six photographic fields were detected 
from all the figures and used for analysis. Each experi-
ment was repeated three times. All bioinformatic analy-
ses were conducted by packages and appropriate scripts 
in R (version 4.2.1) (http:// www.R- proje ct. org).

Results
ALT exhibited anti‑proliferative and pro‑apoptotic effects 
on OSCC cells
Alantolactone (ALT) is a natural sesquiterpene lactone 
isolated from Inula helenium (Fig. 1A). We examined the 
effects of ALT on various types of cancer cells, including 
non-small cell lung cancer cell line PC-9, human LoVo 
colon cancer line, human glioblastoma cell lines U251, 
and the OSCC cell lines with CAL27 and SCC9 cells. The 
results showed that the OSCC cells were more sensitive 
to ALT than the other cancer subtypes (Fig. 1B), suggest-
ing the strong inhibitory effect of ALT on OSCC. We fur-
ther investigated the effects of ALT on CAL27 and SCC9 
cell lines at different time intervals. ALT reduced the cell 
viability in a time-dependent way, with lower viability 
early at 12 h than the control group (Fig. 1C, D). In addi-
tion, ALT-treated cells formed smaller and fewer clones 
than their control counterparts in colony outgrowth 
assays (Fig.  1E–G). Taken together, ALT inhibited cell 
proliferation and colony formation abilities, which are 
essential for the formation of OSCC. We further explored 
the impact of ALT on the cell apoptosis rate of CAL27 
and SCC9 cells. ALT increased the apoptotic rate of 
CAL27 and SCC9 cells, respectively, from 18.52 to 66% 
and from 2.81 to 49.75% (Fig. 1H–K).

Fig. 5 Mitochondrial abnormalities were involved in the inhibitory effect of ALT against OSCC cells. A, B ATP production in the indicated groups. 
10 µM ALT was used to treat CAL27 cells, and 4 µM ALT was added to SCC9 cells. C–F Representative images showing MitoSOX staining and 
quantification in the indicated groups. 12 µM ALT was used to treat CAL27 cells, and 8 µM ALT was added to SCC9 cells. Scale bar = 100 µm. G–J 
Representative images showing TMRM staining and quantification in the indicated groups. 12 µM ALT was used to treat CAL27 cells, and 8 µM ALT 
was added to SCC9 cells. Scale bar = 100 µm. (***p < 0.001, ****p < 0.0001 versus the Control group, #p < 0.05, ###p < 0.001, ####p < 0.0001 versus the 
ALT group)

(See figure on next page.)

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://string-db.org/
http://www.R-project.org
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Fig. 5 (See legend on previous page.)
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ROS regulation was essential in the preventive effects 
of ALT against OSCC cells
To check whether ALT affects CAL27 and SCC9 cells 
via the regulation of OS, we measured the cellular total 
ROS level with the fluorescent probe DCFH-DA. ROS 
levels increased dose-dependently after ALT treatment 
(Fig.  2A–C). We further measured the RNS level as an 
additional readout of OS through DAF-FM DA. ALT 
dose-dependently increased the RNS levels in CAL27 
and SCC9 cells (Fig.  2D–F). We further used NAC, a 
ROS scavenger, to identify whether ROS mediates the 
anticancer property of ALT. Compared with the cells only 
treated with ALT, a combination of NAC pretreatment 
and ALT treatment resulted in significantly lower ROS 
production in CAL27 and SCC9 cells, as confirmed both 
by DCFH-DA staining and flow cytometry (Fig.  2G–I). 
Quantitative analysis of MTT and colony outgrowth 
assay also showed that cells cotreated with NAC and ALT 
presented a higher proliferation rate than the lean ALT 
treatment group (Fig.  3A–F). Furthermore, NAC treat-
ments reduced ALT-induced cell apoptosis (Fig.  3G–J). 
These results strongly substantiated that ROS regulation 
played crucial roles in the inhibitory effects of ALT on 
CAL27 and SCC9 cells.

Mitochondrial abnormalities participated in the inhibitory 
effect of ALT against OSCC cells
Regarding the close relationship between ROS and 
mitochondria, it is necessary to investigate whether 
mitochondria play a role in the inhibitory effect of ALT 
on OSCC. ALT treatment decreased the ATP levels in 
CAL27 and SCC9 cells (Fig.  4A, B). To further explore 
whether ALT-induced ROS production was derived from 
mitochondria, we used MitoSOX to indicate the mtROS 
production. The results showed that after ALT treatment, 
mtROS production in CAL27 and SCC9 cells was vitally 
increased (Fig. 4C–F). Besides, TMRM staining indicated 
that ALT markedly decreased MMP (Fig.  4G–J). These 
results suggested that ALT induced remarkable mito-
chondrial impairment, as indicated by increased mtROS 
level and MMP loss.

We further applied NAC to probe the specific role of 
ROS in regulating ALT-elicited mitochondrial impair-
ment. NAC dramatically reversed the ALT-elicited ATP 
depletion in CAL27 and SCC9 cells (Fig. 5A, B). Further-
more, ALT increased the mtROS production, which was 

reversed by NAC cotreatment. These results suggested 
that ALT-induced intracellular ROS production was 
mainly derived from mitochondria (Fig.  5C–F). Moreo-
ver, Cells treated with NAC and ALT had significantly 
higher MMP levels than those only treated with ALT, 
indicating that NAC reversed the MMP loss induced by 
ALT (Fig. 5G–J). These experiments revealed that ROS-
related mitochondrial abnormalities played a crucial role 
in the ALT-elicited CAL27 and SCC9 cell apoptosis.

Mitochondrial regulatory proteins were associated 
with OSCC progression and the inhibitory effect of ALT 
against OSCC cells
To further explore the possible mitochondrial path-
ways involved in OSCC progression, we evaluated the 
gene expression patterns across diverse human OSCC 
and normal tissues with the TCGA database. Results 
showed that compared to the control group, mtDNA 
maintenance and mitochondrial dynamics were the two 
most differentially expressed pathways increased in the 
cancer tissues. Moreover, the pathways, such as amino 
acid metabolism and OXPHOS subunits, decreased sig-
nificantly in the OSCC cancer tissues, which needs fur-
ther exploration (Fig.  6A). Regarding the remarkable 
difference in mtDNA maintenance and mitochondrial 
dynamics between the normal and OSCC patients, we 
next focused on the possible mitochondrial regulat-
ing proteins involved in OSCC progression. Based on 
the STRING database, a PPI network of differentially 
expressed mitochondrial and mtDNA genes were con-
structed (Fig. 6B), and the top 20 proteins were obtained 
(Fig.  6C). Among the top 20 proteins, Drp1 (alias 
DNM1L), TOM20 (alias TOMM20), and VDAC1 differed 
significantly in cancer progression. Therefore, we fur-
ther focused on the role of Drp1, TOM20, and VDAC1 
in OSCC development. We collected cancer and normal 
tissues from 20 OSCC patients during surgery. ATP lev-
els were strikingly higher in the cancer tissues than in the 
normal tissues (Fig. 6D). This result indicated that mito-
chondria played a crucial role in OSCC, as mitochondria 
are the primary source of ATP production. In OSCC 
cancer tissues, p-Drp1, Drp1, and TOM20 expressions 
increased significantly compared with normal tissues. 
Furthermore, the p-Drp1/Drp1 level increased signifi-
cantly in the cancer samples (Additional file  1: Fig. S1). 
By contrast, the VDAC1 level was lower in OSCC cancer 

(See figure on next page.)
Fig. 6 Mitochondrial regulatory proteins associated with OSCC progression and inhibitory effect of ALT against OSCC cells. A TCGA database 
evaluated expression patterns across diverse head and neck squamous carcinoma and normal tissues. B Cancer protein target interaction network. 
C Protein interaction relationship histogram. D ATP synthesis detected in the indicated groups. E Images of immunohistochemistry staining for 
mitochondrial regulating proteins in adjacent non-cancer tissues and OSCC tissues. Scale bar = 50 µm. F Prognostic graphs illustrating the impact of 
Drp1 on overall survival in TCGA. G, H Western blot band of Drp1 protein expression after different treatments. I, J p-Drp1 level expressed relative to 
Drp1 level. (****p < 0.0001 versus the Normal tissue group, *p < 0.05 versus the Control group, #p < 0.05, ##p < 0.01 versus the ALT group)
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Fig. 6 (See legend on previous page.)
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Fig. 7 Drp1 is an important target of ALT against OSCC cells. A, B Western blot band of Drp1 protein expression after different treatments. We used 
15 µM ALT to treat CAL27 cells and SCC9 cells. C, D p-Drp1 level relative to Drp1 level. E, F Cell viability was measured after being treated with ALT 
for 24 h. We used 10 µM ALT to treat CAL27 cells and 4 µM to treat SCC9 cells. (**p < 0.01, ***p < 0.001, ****p < 0.0001 versus the EV group, #p < 0.05, 
####p < 0.0001 versus the EV + ALT group)
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tissues than in normal tissues (Fig. 6E). Also, TCGA data 
revealed that OSCC patients with low Drp1 expression 
in cancer tissues had a higher overall survival rate than 
those with high Drp1 expression (p = 0.008) (Fig.  6F). 
More importantly, we explored whether Drp1 regulation 
participated in the inhibitory effects of ALT on OSCC 
cells. The results revealed that ALT dose-dependently 
downregulated the Drp1 phosphorylation level (Fig. 6G). 
We further investigated to explore the association 
between ROS generation and Drp1 dephosphorylation in 
the inhibitory effect of ALT on OSCC. The results con-
firmed that the ALT-induced decline of Drp1 dephospho-
rylation was reversed by NAC (Fig. 6H–J), indicating that 
ALT inhibited OSCC cell apoptosis by suppressing ROS-
related Drp1 dephosphorylation.

Drp1 participated in the inhibitory effect of ALT 
against OSCC cells
Drp1 overexpression abolished the reduced Drp1 phos-
phorylation by ALT (Fig.  7A–D) and promoted the cell 
viability reduced by ALT (Fig.  7E, F). Drp1 overexpres-
sion also reversed the mitochondrial dysfunction induced 
by ALT, with increased ATP level (Fig. 8A, B), decreased 
ROS production (Fig.  8C–F), and increased mitochon-
drial membrane potential (Fig.  8G–J) compared to the 
control group.

Discussion
In terms of malignancy rate and incidence, OSCC is one 
of the malignant oral carcinomas. Traditional therapies 
against OSCC, including surgery, chemotherapy, and 
radiotherapy, are sometimes ineffective because of drug 
resistance and side effects [7]. Hence, identifying novel and 
effective treatments is imperative. Mitochondria-targeting 
therapies have been proven effective in treating various 
cancers including the colon [14] and breast [15] cancers. 
However, studies on mitochondrial-targeting therapy for 
OSCC are limited and need further exploration. Our find-
ings confirmed that ALT potently restrained the prolif-
eration and triggered apoptosis of OSCC cells by inducing 
mtROS production, reducing MMP, and regulating Drp1 
dephosphorylation.

OS is characterized by redox imbalances caused by 
the overproduction of ROS [9], which plays a vital role in 
developing various diseases [34]. In physiological condi-
tions, the ROS accumulated in cells is rapidly eliminated 

by antioxidant enzymes. However, ROS are overproduced 
in pathological conditions, causing oxidative damage to 
biomolecules and worsening the cellular oxidative status 
[35]. Excessive ROS contribute to cancer development and 
can be used as therapeutic targets [36]. In our study, ALT 
reduced cell viability and enhanced apoptotic rate of OSCC 
cells by promoting ROS generation. Thus, ROS may be a 
promising therapeutic target for OSCC.

Mitochondria play a crucial part in cancer formation 
and progression [17]. Mitochondria have been recognized 
as the major source of ROS, which plays a critical role in 
cancer progression. Numerous studies have clarified the 
differences in mitochondria between normal and cancer 
cells, which might be used for cancer treatment [13–15, 21, 
37]. Mitochondria-targeted therapies have been proven to 
be effective in preventing various cancers [38]. However, 
their application in OSCC treatment needs further explo-
ration. In this study, the bioinformatics analysis revealed 
that mtDNA maintenance and mitochondrial dynam-
ics were closely associated with OSCC. The expressions 
of mitochondrial proteins, including p-Drp1, Drp1, and 
TOM20, were notably higher in the cancer tissues of OSCC 
patients compared with the normal tissues. However, the 
expression of VDAC1 in OSCC tissues was lower than that 
in normal tissues. The specific role of these mitochondrial 
proteins in OSCC needs further exploration. Additionally, 
we elucidated that NAC effectively suppressed the mito-
chondrial membrane depolarization and mtROS produc-
tion induced by NAC. NAC also blocked the ALT-elicited 
ROS production and cytotoxicity in CAL27 and SCC9 
cells. These findings further indicated that ALT promoted 
CAL27 and SCC9 cell apoptosis by promoting ROS pro-
duction and mitochondrial impairment.

ALT contains a wide variety of pharmacological prop-
erties, including anticancer [20], antibacterial [18], and 
anti-inflammatory activities [18]. Additionally, studies 
have proved that ALT prevented cancer progression via 
glutathione depletion, ROS induction [39], and mito-
chondrial impairment [21]. Our results also revealed 
that ALT induced cell death through the enhancement 
of ROS-mediated mitochondrial dysfunction in OSCC, 
implying mitochondrial-targeting therapy as a promis-
ing therapy strategy against OSCC. Drp1, the primary 
regulator of mitochondrial function and dynamics [40], 
is essential for developing various cancers [41]. The 
results illustrated that the p-Drp1 level increased vitally 

(See figure on next page.)
Fig. 8 High expression of Drp1 reversed the abnormal mitochondrial effect of ALT on OSCC cells. A, B ATP production in the indicated groups. 
10 µM ALT was used to treat CAL27 cells, and 4 µM ALT was added to SCC9 cells. C–F Representative images showing MitoSOX staining and 
quantification in the indicated groups. 12 µM ALT was used to treat CAL27 cells, and 8 µM ALT was added to SCC9 cells. Scale bar = 100 µm. G–J 
Representative images showing TMRM staining and quantification in the indicated groups. 12 µM ALT was used to treat CAL27 cells, and 8 µM 
ALT was added to SCC9 cells. Scale bar = 100 µm. (***p < 0.001, ****p < 0.0001 versus the EV group, #p < 0.05, ###p < 0.001, ####p < 0.0001 versus the 
EV + ALT group)
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Fig. 8 (See legend on previous page.)
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in the cancer tissues compared to the adjacent normal 
tissues. According to the bioinformatics analysis, OSCC 
patients with low Drp1 expressions had better overall 
survival than those with high Drp1 levels. Immunohisto-
chemical results further confirmed that p-Drp1 and Drp1 
increased significantly in OSCC cancer tissues com-
pared to normal tissues. Furthermore, the cancer sam-
ples presented enhanced p-Drp1/Drp1 level, suggesting 
the essential role of Drp1 level and Drp1 phosphoryla-
tion in OSCC progression. In addition, ALT inhibited the 
Drp1 phosphorylation in OSCC cells. Our results further 
revealed that Drp1 overexpression abolished the reduced 
Drp1 phosphorylation by ALT and promoted the cell 
viability of ALT-treated cells. Drp1 overexpression also 
reversed the mitochondrial dysfunction induced by ALT. 
Taken together, ALT potentially induced OSCC cell 
apoptosis by downregulating Drp1 phosphorylation. ALT 
is a selective inhibitor of signal transducers and activators 
of transcription 3 (STAT3) [42]. Studies have shown that 

STAT3 is vital for Drp1 activation and mitochondrial fis-
sion [43–45]. Further studies are warranted to investigate 
whether STAT3 is an intermediate factor in the mito-
chondrial pathway mediated by ALT and Drp1.

To date, ALT has been used for treating various dis-
eases through oral administration [21, 23–25]. However, 
the oral bioavailability of ALT is considerably low [46]. 
Nanostructured carriers entrapped with ALT have been 
used to improve bioavailability in treating cancers [47]. 
In most cases, OSCC mainly occurs at superficial sites 
[3]. Therefore, local applications of ALT-entrapped nano-
structured gels or sprays represent promising treatment 
strategies for OSCC [48, 49].

Despite the critical results, this study has some limita-
tions. Firstly, experiments were conducted only in CAL27 
and SCC9 cells, while the normal cells were not involved. 
Further studies with normal cells are warranted. Addi-
tionally, the sample size was relatively small. More sub-
jects should be enrolled to improve the reliability of our 

Fig. 9 Diagram of molecular mechanism. Alantolactone inhibits proliferation and promotes apoptosis of oral squamous cell carcinoma cells via 
impairment of mitochondrial homeostasis and downregulation of Drp1 phosphorylation
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study. Finally, in vivo studies should be conducted to sub-
stantiate the in vitro results in future studies.

In summary, ALT induced OSCC cell apoptosis via 
enhancement of ROS-dependent mitochondria impair-
ment and down-regulation of Drp1 phosphorylation 
(Fig. 9). The results provide a solid basis for the applica-
tion of ALT in treating OSCC, with Drp1 being a promis-
ing therapeutic target for OSCC.

Conclusions
ALT induced OSCC cell injury via promoting mitochon-
drial dysfunction and downregulation of Drp1 phospho-
rylation. Taken together, these findings provide a novel 
paradigm for the ALT treatment against OSCC, with 
Drp1 being a promising therapeutic target for OSCC.
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