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Abstract 

Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease 
characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-
exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracel-
lular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small 
studies have previously described plasma proteins or protein pathways that are associated with ME/CFS.

Methods We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalo-
myelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma 
proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex 
assay and differences between patients and controls were assessed. We then performed multi-omic statistical analy-
ses that considered not only this new data, but extensive clinical data describing the health of the subjects.

Results ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs 
revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among 
plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between 
clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher 
levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor 
Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine 
protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/
CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and 
controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 
0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 
7 proteins.

Conclusions These findings add to the substantial number of objective differences in biomolecules that have been 
identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and 
hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.
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Background
Myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) is a serious disease that can be diagnosed fol-
lowing 6  months of new debilitating fatigue, post-exer-
tional malaise, unrefreshing sleep, and either or both of 
two additional symptoms, cognitive difficulty or ortho-
static intolerance [1]. Most patients report that their 
symptoms arose after a viral-like illness, but the identity 
of the preceding infection is almost always unknown, 
although the enteroviral family has sometimes been 
implicated [2, 3]. Before 2020, 65 million individuals 
world-wide were estimated to experience ME/CFS [4]. 
Since the SARS-COV2 pandemic, a subset of individuals 
who had suffered acute COVID-19 have been continuing 
to experience symptoms [5], and some victims of Long 
COVID fulfill the ME/CFS diagnostic criteria described 
above [6]. Likewise, individuals experiencing Gulf War 
Illness have symptom overlap with both Long COVID 
and ME/CFS [7]. However, a number of assays, such as 
neuroimaging [8], distinguish Gulf War Illness and ME/
CFS. Whether Long COVID and ME/CFS not associated 
with SARS-CoV-2 infection will likewise be differentiated 
through imaging or other measures is not yet known.

Proteins related to the innate immune system and 
involved in the complement cascade as well as in path-
ways related to dopamine signaling have been reported 
to be enriched in ME/CFS patients compared to con-
trols in studies analyzing cerebrospinal fluid [9, 10]. 
Through plasma mass spectrometry analysis, dysregula-
tions in energy, lipid and amino acid metabolism were 
also reported in ME/CFS [11–13]. But more recently, a 
ME/CFS-related plasma proteome analysis using untar-
geted ultra-performance liquid chromatography-tandem 
mass spectrometry identified differing profiles between 
ME/CFS patients, as well as ME/CFS subgroups (with or 
without IBS), and controls and a set of proteins that may 
predict ME/CFS status with a reasonably high degree of 
accuracy (Area Under the Curve (AUC) = 0.774–0.838) 
[14].

It is known that immune function and inflammatory 
responses are regulated by cytokines acting as modula-
tors, and that their secretion can occur in classical secre-
tion manner or via encapsulation in extracellular vesicles, 
protecting them from degrading enzymes [15]. EVs are 
one of the main participants in cell-to-cell communica-
tion and drive inflammatory, autoimmune and infec-
tious disease pathology [16–19] and previous reports 
have shown increased numbers of circulating EVs, not 
only in cancers and Alzheimer’s disease [17, 20–22], but 
also in ME/CFS [23–25]. A recent study on EVs isolated 
from ME/CFS patients and from subjects with idiopathic 
chronic fatigue and clinical depression was able to distin-
guish the two groups with an AUC of 0.802 solely using 

circulating EV numbers, which allowed a correct diagno-
sis in 90–94% of ME/CFS cases [24].

Further molecular characterization of ME/CFS is 
urgently needed to provide insights into the disruptions 
that occur in the illness. Multi-omic studies performed 
on the same set of subjects have high potential to provide 
new hypotheses. Furthermore, being able to distinguish 
ME/CFS subjects from healthy controls at high sensitiv-
ity and specificity would allow monitoring of the effect 
of experimental therapies. Utilization of blood samples 
to assess ME/CFS-associated abnormalities would be 
particularly valuable in comparison to methods that are 
more invasive or cumbersome.

In this study, we isolated extracellular vesicles (EVs) 
from blood samples collected prior to 2020 from ME/
CFS subjects and heathy controls and measured their 
cytokine content. This newly generated data along with 
data already published from a tandem mass-spectrome-
try plasma proteomic analysis [14] and plasma cytokine 
levels determination [26] on the same samples were used 
all together for multiple statistical analysis. We identified 
a suite of EV cytokines that significantly differ in levels 
between ME/CFS subjects and controls. We observed 
correlations between levels of different EV cytokines, 
between levels of plasma cytokines, between EV 
cytokines and plasma cytokines, and between cytokines 
and other plasma proteins. We also detected relation-
ships between plasma cytokines and severity of certain 
ME/CFS symptoms. In controls, levels of four plasma 
proteins were related to health measures. A protein 
involved in hemostasis, SERPINA5, was positively corre-
lated with higher SF-36 function scores. Using machine 
learning, we identified the 20 proteins with the highest 
feature importance values. Using these 20 analytes and 
XGBoost, we could discriminate ME/CFS and controls 
subjects at an extremely high sensitivity and specificity 
(AUC = 0.947).

Methods
Study population
A sub-population of 49 ME/CFS cases and 49 healthy 
controls from the Chronic Fatigue Initiative cohort [27] 
were analyzed in the framework of this current study. All 
cases met the 1994 CDC Fukuda [28] and/or 2003 Cana-
dian consensus criteria for ME/CFS [29]. On the day of 
blood collection, clinical symptoms and baseline health 
status were assessed using the Short Form 36 Health 
Survey (SF-36) [30] and the Multidimensional Fatigue 
Inventory (MFI) scale [31]. Peripheral blood was drawn 
in sodium citrate BD VacutainerTM Cell Preparation 
Tubes and centrifuged to pellet red blood cells. Result-
ing plasma samples were received from four locations 
from supervising physicians as shown: Salt Lake City, 
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Utah (Lucinda Bateman), Incline Village, Nevada (Daniel 
Peterson), Miami, Florida (Nancy Klimas), and New York 
City, New York (Susan Levine) and stored at – 80 ℃ and 
shipped from Columbia University to Cornell University 
on dry ice and stored at – 80 ℃ prior to processing for 
isolation of extracellular vesicles. Written consent was 
obtained from all participants and all protocols were 
approved by the Institutional Review Board at Columbia 
University Irving Medical Center.

Purification of extracellular vesicles
Extracellular vesicles (EVs) were isolated from plasma 
samples by precipitation using the  ExoQuick™ reagent 
(System Biosciences, Palo Alto, CA, USA) as previously 
described [25]. Briefly, plasma samples from each sub-
ject were thawed on ice and centrifuged at 3000 ×g for 
15 min at room temperature to remove cells and debris. 
Thrombin (611 U/ml) (System Bioscience, Palo Alto, CA, 
USA) was added and samples were incubated for 5 min 
at room temperature to remove fibrinogen, centrifuged at 
10,000 ×g for 5  min, and the supernatant was collected. 
The samples were then incubated with  ExoQuick™ for 
60 min at 4 °C, centrifuged at 12,000 ×g for 5 min, and the 
resulting pellet was resuspended in 250 ul of sterile phos-
phate buffered saline 1X, pH 7.4. Samples were aliquoted 
for quantification of cytokines/chemokines and growth 
factors.

Size and quantification of extracellular vesicles
Concentration and size distribution of isolated EVs were 
assayed in samples using a NanoSight NS300 instrument 
(Malvern, Worcestershire, UK) at the Cornell Nanoscale 
Science and Technology Facility. Samples were thawed 
and diluted to 1:2000 in PBS 1X and 1  ml was injected 
through the laser chamber (NanoSight Technology, Lon-
don, UK). Three recordings of 60-s digital videos of each 
sample were acquired and analyzed by the NanoSight 
NTA 2.3 software to determine the size and the concen-
tration of nanoparticles. Results were averaged together.

Immune profiling of plasma and extracellular vesicles
Immune molecules in plasma were previously measured 
using a magnetic bead-based 61-plex immunoassay (cus-
tomized ProcartaTM immunoassay, Affymetrix) [26]. The 
immune profiling of extracellular vesicles was performed 
at the Human Nutritional Chemistry Service Labora-
tory at Cornell University using a human 48-plex mag-
netic bead kit (Bio-Plex Pro Human Cytokine Screening 
Panel, 48-plex, Bio-Rad). Prior to analysis, EV samples 
were treated with Triton 1% to allow the release of encap-
sulated cytokines [32]. Each sample was measured in 
duplicate on a  MAGPIX® Multiplexing System (Luminex 
Corp.). For each well, we used the median fluorescence 

intensity of all beads measured for a given analyte and 
averaged the two replicates and results were accepted 
when the coefficient of variation (CV) was below 15%.

Plasma proteomics
Plasma proteomic profiling was conducted at Columbia 
University as previously described [14]. Samples from the 
49 ME/CFS cases and 49 controls included in this study 
were run in two batches of 20 samples (11 ME/CFS cases, 
9 controls) and 78 samples (38 ME/CFS cases, 40 con-
trols). The 20 samples in the first batch were randomly 
selected. The cases and controls were frequency-matched 
on the same matching variables as the total study popu-
lation. A total of 257 and 279 annotated proteins were 
measured in the 20 subject sample set and 78 subject 
sample set, respectively, with an overlap of 207 annotated 
proteins in both sample sets.

Statistical analysis
All statistical analyses were performed using R version 
4.0.2 (2020-06-22) via RStudio. For each protein ana-
lyte, non-detectable values were replaced with half of 
their minimum value. Protein levels were then log-trans-
formed with base 2 and standardized for further analysis. 
Z scores and P values were calculated for outlier analy-
sis. The non-parametric Wilcoxon signed-rank tests were 
performed to test the significance of differences (p < 0.05) 
between cases and controls for age, BMI, SF-36 survey 
scores, and EV sizes and concentrations. The robust lin-
ear regression was performed using the rlm function 
in the MASS package for determining the significance 
of differences for each analyte in control and ME/CFS 
groups with age, BMI, Irritable Bowel Syndrome (IBS), 
and sex as confounding variables. Robust linear regres-
sion was performed to eliminate contamination with 
outliers or influential observations. Robust linear regres-
sion is a form of weighted least squares regression, and 
we chose M-estimation with Huber weighting [33, 34] for 
further analysis.

Principal Component Analysis (PCA) was used to sim-
plify the data and increase interpretability by reducing 
the dimensionality of the protein levels datasets. PCA 
was performed using the stats package in R. Spearman’s 
rank correlation coefficients were also estimated within 
protein analytes and between proteins and the metadata 
(age, BMI, sex, SF-36 scores, IBS). Point-biserial corre-
lations were used when one of the variables was binary 
(e.g., female vs. male, with vs without IBS). Categorical 
variables were coded as follows: Cohort: control = 0; ME/
CFS = 1; Sex: female = 0; male = 1; IBS: no IBS = 0; with 
IBS = 1. Throughout, all p values were adjusted for mul-
tiple hypotheses using the Benjamini–Hochberg method 
(FDR) [35, 36].
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A machine learning approach was used to identify 
variables discriminating the two groups of samples (fea-
ture selection). Classification of samples as ME/CFS or 
healthy controls was carried out by using three super-
vised learning algorithms: random forest [37] imple-
mented using R’s Random Forest function; XGBoost 
[38] using R’s xgboost package and the Least Absolute 
Shrinkage and Selection Operator (LASSO) penalty 
[39] applied to logistic regression using the R function 
glmnet. As features, the algorithms used all 353 protein 
analytes, EV cytokines, plasma cytokines and plasma 
proteomics. Feature importance for each classifier was 
calculated. For LASSO, the coefficients of “unimportant” 
features are shrunk to zero, hence feature importance can 
be evaluated by “percentage” (out of 250 random resam-
pling cross-validation iterations) in which the predictor’s 
parameter estimate in the best fitting model is nonzero. 
For random forest, “Mean Decrease Accuracy (MDA)” of 
a feature is the decrease in classification accuracy due to 
randomly permuting the values in that feature. For unim-
portant predictors, the permutation should have little 
to no effect on model accuracy, while permuting values 
of important predictors should significantly decrease it. 
Therefore, the greater the importance of a feature, the 
greater the decrease in accuracy when its values are per-
muted. Finally, for XGBoost, the metric “Gain” indicates 
the average gain across all trees that the feature is used in, 
which describes the relative contribution of each feature.

Feature importance was calculated by the average of 
over 250 replications of fivefold cross-validation. Pro-
tein analytes that were ranked in top 20 in importance 
measurements in all three classifiers (Table  5) were fit-
ted as predictors in the same classifiers again. Receiver 
Operating Characteristic (ROC) curves and area under 
the curve (AUC) used to optimize feature selection were 
calculated using the R package caret. The data was log-
transformed and auto-scaled before the ROC curves 
were generated. A lasso penalty is used when there are 
many predictors and variables that are important for 
prediction are selected. Since we were using variables 
already determined to be important, unregularized logis-
tic regression rather than the lasso penalty was used in 
Fig.  8. Average AUCs were calculated with 250 repeats 
of fivefold cross validation, which is intended to derive 
a more accurate estimate of model prediction perfor-
mance. Feature importances were calculated for each of 
the three machine learning algorithms.

Results
Study population characteristics
Within the study population, there were 41 females 
and 8 males and 40 females and 9 males in the ME/CFS 
and healthy controls groups respectively (Table  1). All 

patients who were selected met the 1994 Fukuda defi-
nition for ME/CFS. The average age and Body Mass 
Index (BMI) were similar between ME/CFS and con-
trol subjects and also in comparison of sexes between 
groups (Table  1). Seventy-nine percent of the ME/
CFS patients were able to identify an acute, often flu-
like, illness that immediately preceded the onset of the 
disease, while 20% were unaware of an initiating event 
and considered their onset to be gradual (Table 1), and 
45 out of 49 patients had their illness for more than 
3 years. The MFI-20 scores clearly depict the opposing 
trend of the condition of ME/CFS subjects versus con-
trols, with a higher score reflecting the lower functional 
level of patients compared to the smaller score of fully 
functional controls (Table  1, p < 0.001). Furthermore, 
both the Physical and Mental Component Scores (PCS 
and MCS respectively) derived from the SF-36 short 
survey were, as expected, higher in the control group 
(p < 0.001, Table 1).

The Principal Component Analysis presented in Fig. 1 
was performed on data obtained from the SF-36 and 
MFI-20 questionnaires. The first two principal compo-
nents explained 86.9% (PC-1 75.1%; PC-2 11.8%, Fig. 1a) 
and 92.6% (PC-1 86.89%; PC-2 5.73%, Fig.  1b) of the 
total variance within the data set for SF-36 and MFI-20 
respectively, and two significant clusters were observed, 
separating the ME/CFS group from the control group. 
Neither the season nor site where the blood was collected 
could distinguish groups (Additional file 1: Fig. S1).

Size and concentrations of extracellular vesicles are 
different between ME/CFS and healthy controls
Extracellular vesicles were purified from plasma sam-
ples from ME/CFS patients and healthy individuals by 
precipitation and their size and concentrations analyzed 
by Nanoparticle Tracking Analysis (NTA) to investi-
gate whether there were differences between clinical 
groups. All nanoparticles purified were smaller than 
500 nm, most of them being in the typical exosome size 
range of 30–130  nm [40]. NTA revealed that EV par-
ticles’ size means differed between healthy individu-
als (136.2 ± 18.3  nm, range 97–188  nm) and ME/CFS 
patients (145.3 ± 16.6  nm, range 113–177  nm) (p = 0.01, 
Fig. 2a). The mean total concentration of particles/ml of 
plasma (controls: 8.0 ± 3.8 ×  108; ME/CFS: 10.5 ± 3.9 ×  108, 
p < 0.001, Fig.  2b), the mean concentration of EVs that 
ranged from 30 to 130 nm in size (controls:4.3 ± 1.8 ×  108, 
ME/CFS:5.3 ± 2.4 ×  108, p = 0.05, Fig.  2c) and the mean 
concentration of particles greater than 130  nm (con-
trols: 3.7 ± 2.9 ×  108; ME/CFS: 5.6 ± 2.7 ×  108, p < 0.001, 
Fig. 2d) also exhibited a statistically significant difference 
between groups.
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Outlier analysis results in removal of certain subjects’ data 
from further consideration
We examined the number of outlier analytes across 
datasets. Any analyte with more than half non-detect-
able values was discarded, thus 6 of the 61 plasma 
cytokines were removed. A z-score was calculated for 
each subject and each analyte. Any subject/analyte pair 
with a two-sided q-value (p-value adjusted for FDR) 
less than 0.05 was considered an outlier. The result-
ing q-values suggested that two ME/CFS patients pre-
sented outlier profiles not initially suspected by their 
clinical features and therefore should be removed from 
the EV cytokines dataset as they represented 43% and 
50% of outliers respectively (21 and 24 outliers out of 
48 cytokines). For the plasma cytokines dataset, no 
subject had a particularly high proportion of outliers 
and for plasma proteomics, one ME/CFS patient pre-
sented 35% outliers (73 outliers out of 208 plasma pro-
teins) and thus was not used in further analysis.

Certain EV cytokine and plasma cytokine levels differ 
between ME/CFS and control groups
We investigated differences in levels of analytes 
between ME/CFS patients and controls using non-
parametric signed-rank Wilcoxon tests. Among the EV 
cytokines, levels of Interleukin 2 (IL2) were significantly 
different between controls and patients (q = 0.007) and 
the following 16 EV cytokines exhibited 0.1 < q < 0.2: 
IL12P40, TNFα, IL1β, CXCL8, CXCL1, IL15, CCL7, 
IL17, IL4, GM-CSF/CSF2, IL3, CCL5, NGFβ, IL1α, 
IL7, IL1R1. Figure  3 shows boxplots of the log-trans-
formed protein levels of these 17 cytokines. For plasma 
cytokines [41] and plasma proteomics [14], no analyte 
was significantly different between cases and controls 
after correction for multiple comparison (FDR < 0.2). 
Detailed p-values, q-values, and the ratios of mean pro-
tein analyte level for the ME/CFS group versus controls 
can be found in the Additional file 2: Tables.

Table 1 Study population characteristics

Controls ME/CFS Wilcoxon-test 
(p-value)

Controls ME/CFS Wilcoxon-
test 
(p-value)

(78 set) (78 set)

n 49 49 NA 40 38 NA

Gender Female 41 40 NA 32 29 NA

Male 8 9 8 9

Age All 51.09 ± 11.46 50.89 ± 11.40 p = 0.95 51.16 ± 11.90 51.84 ± 10.92 p = 0.79

Female 50.94 ± 11.39 49.40 ± 11.95 p = 0.59 50.98 ± 11.93 50.08 ± 11.72 p = 0.85

Male 51.85 ± 12.58 57.52 ± 4.82 p = 0.61 51.85 ± 12.58 57.52 ± 4.82 p = 0.61

BMI All 25.44 ± 4.39 26.63 ± 4.87 p = 0.23 25.56 ± 4.53 27.22 ± 4.70 p = 0.08

Female 25.35 ± 4.62 26.47 ± 5.23 p = 0.38 25.47 ± 4.86 27.17 ± 5.18 p = 0.15

Male 25.92 ± 3.11 27.34 ± 2.86 p = 0.17 25.92 ± 3.11 27.34 ± 2.86 p = 0.17

Type of onset Acute NA 79.59% NA NA 78.95% NA

Gradual NA 20.41% NA NA 21.05% NA

Disease duration  < 3 years NA 4 NA NA 2 NA

 > 3 years NA 45 NA NA 36 NA

Season Fall 48.98% 44.90% NA 47.50% 42.11% NA

Summer 51.02% 55.10% NA 52.50% 57.89% NA

Site Miami, FL 18.37% 20.41% NA 17.50% 15.79% NA

Salt Lake City, UT 30.61% 28.57% NA 30.00% 28.95% NA

Incline Village, NV 22.45% 22.45% NA 22.50% 23.68% NA

New York, NY 28.57% 28.57% NA 30.00% 31.58% NA

MFI-20 General fatigue 7.61 ± 2.78 17.28 ± 3.70 p < 0.001 7.80 ± 2.80 17.42 ± 3.46 p < 0.001

Physical fatigue 6.71 ± 2.45 16.57 ± 3.54 p < 0.001 6.70 ± 2.38 16.82 ± 3.50 p < 0.001

Reduced activity 6.29 ± 2.47 15.47 ± 4.08 p < 0.001 6.25 ± 2.52 15.76 ± 3.93 p < 0.001

Reduced motivation 6.88 ± 2.45 12.45 ± 4.17 p < 0.001 6.95 ± 2.47 12.50 ± 4.39 p < 0.001

Mental fatigue 7.55 ± 3.29 14.8 ± 4.21 p < 0.001 7.45 ± 3.40 15.03 ± 4.28 p < 0.001

SF-36 Physical component score 55.49 ± 3.64 27.91 ± 9.68 p < 0.001 55.16 ± 3.57 27.67 ± 9.85 p < 0.001

Mental component score 54.02 ± 7.30 40.18 ± 10.74 p < 0.001 54.13 ± 5.23 40.83 ± 10.72 p < 0.001



Page 6 of 22Giloteaux et al. Journal of Translational Medicine          (2023) 21:322 

Additionally, we compared sample types within sub-
jects with Principal Component Analysis. A total of 
36 common analytes from the 48-plex EV and 55-plex 
plasma immunoassays were used for this analysis. The 
percentage of variability explained by each dimension 
was 46.2% for the first axis and 15% for the second axis, 
and two significant clusters were observed (Fig. 4).

Numerous correlations exist within and between protein 
datasets
Spearman correlation analyses were performed between 
datasets and are plotted as correlograms showing only 
significant correlations with coefficient r ≥ 0.6 (Fig.  5). 
A total of 316 positive significant correlations were 
found in ME/CFS subjects and 300 in controls between 
cytokine levels in EV samples (q < 0.01) and 88 and 73 
had strong Spearman correlation coefficients (r ≥ 0.6) in 
the ME/CFS and control groups, respectively (Fig.  5a). 
Thirty-four of them were common to both groups (pink 
squares, Fig.  5a). When correlating plasma cytokines to 
each other, the ME/CFS cohort had 710 significant cor-
relations including 327 at r ≥ 0.6 (q < 0.01), and the con-
trol group had 394 with 146 at r ≥ 0.6 (q < 0.01); 136 were 
common to both groups (Fig. 5b). In both EV and plasma 
cytokine correlation analysis, no significant negative cor-
relations were found, and there was a higher number of 
positive correlations in the ME/CFS cohort as compared 
to the healthy individuals (Fig. 5a, b).

We also investigated correlations between the 55 
plasma and 48 EV cytokine levels (Additional file  1: 
Fig. S2). No negative and few positive significant cor-
relations were found in both groups (15 and 13 for 
ME/CFS and controls respectively at r ≥ 0.5, with 4 
common to both groups). Amongst these significant 
correlations, levels of LIF in EVs correlated with 8 
plasma cytokines in ME/CFS (CCL3, IL15, LIF, IL17, 
IL21, IFNβ, TGFα and TGFβ) and 5 in the control 
group (CCL3, IL1α, IL17, IL21 and IFNβ) (Supplemen-
tal Fig. 2).

For plasma proteomics, 160 and 130 significant posi-
tive correlations were found in the ME/CFS and con-
trol groups, respectively, with a Spearman coefficient 
r greater than 0.8 (q < 0.01) (Fig. 5c) and 42 were com-
mon to both groups (pink squares, Fig. 5c). Six pairs of 
proteins were significantly and negatively correlated in 
the ME/CFS group only (orange squares, Fig. 5c), with 
3 including SERPINA7, and one unique to the control 
group (SERPINA1/KNG1, r = − 0.82, q < 0.01, light blue 
square, Fig. 5c).

When analyzing relationships between the plasma 
proteomics dataset with either the EV cytokines or the 
plasma cytokines datasets, only one significant cor-
relation was found between an EV protein and a pro-
tein assayed by mass spectrometry in the control group 
(CXCL12-ev/PROZ, r = 0.69, q = 0.014).

Fig. 1 Principal Component Analysis with 95% confidence ellipses of SF-36 scores (a) and MFI-20 scores (b) in ME/CFS and controls
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Correlations of protein levels with clinical metadata 
indicate their importance in disease state
All proteins were analyzed for correlations with the 
clinical metadata using the same methods previously 
described. Only significant results after adjustment for 
multiple comparison (q < 0.1) are shown in Table 2. There 
were significant correlations between plasma cytokines, 
plasma proteomics and the clinical metadata, but none 
were found with the EV cytokine dataset (Table 2).

Within the plasma cytokine dataset, both Colony Stim-
ulating Factor 2 (CSF2) and leptin were negatively corre-
lated with sex and positively correlated with BMI in both 
the ME/CFS and control groups (Fig.  6a). Interestingly, 
individuals with ME/CFS and IBS have higher concentra-
tions of CSF2 and leptin than people with ME/CFS and 
without IBS, and these correlations were not observed in 
the control group (Fig. 6b).

The ME/CFS cohort also revealed unique significant 
correlations with the health questionnaire data related to 
physical function (SF-36) and fatigue (MFI-20) that were 

not found in the control group. CSF2 and leptin were 
negatively correlated with Physical Function (r = − 0.539, 
q = 0.002 for CSF2; r = −  0.558, q = 0.002 for leptin) and 
the Physical Component Summary (r = − 0.459, q = 0.035 
for CSF2; r = − 0.445, q = 0.035 for leptin), and positively 
correlated with General Fatigue (r = 0.439, q = 0.047 for 
CSF2; r = 0.436, q = 0.047 for leptin) (Table 2, Fig. 6c).

We found other significant correlations between 
cytokines and the clinical data in ME/CFS subjects that 
were not found in controls: CCL2, CXCL10, and CCL11 
were positively correlated with age (r = 0.440, q = 0.060 
for CCL2; r = 0.394, q = 0.099 for CXCL10; r = 0.431, 
q = 0.060 for CCL2) (Fig.  6d). Both (TNFα and IL1RA 
were positively correlated with BMI (r = 0.543, q = 0.001 
and r = 0.468, q = 0.010 respectively), and negatively cor-
related with the Physical Function category of the SF-36 
(r = − 0.508, q = 0.004 and r = − 0.480, q = 0.007 for TNFα 
and IL1RA respectively) (Fig. 6e). Lastly, IL13 positively 
correlated with the Reduced Activity score from the MFI-
20 questionnaire (r = 0.482, q = 0.025).

Fig. 2 Sizing and quantification of Extracellular Vesicles. Size in nm (a), total concentration (b), 30–130 nm concentration (c) and > 130 nm 
concentration (d) of particles per ml of plasma in ME/CFS subjects and healthy controls as determined by Nanoparticle Tracking Analysis. The yellow 
diamond represents the mean
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Fig. 3 Comparison of EV log-transformed cytokine levels in ME/CFS and control subjects. Only box plots of cytokine EV levels meeting significance 
criteria (q < 0.2) are represented. The yellow diamond represents the mean after outliers were omitted. Wilcoxon signed-rank tests were performed, 
followed by Benjamini–Hochberg multiple comparison adjustment. Q-values are shown on each boxplot
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As mentioned above, additional significant correla-
tions were found between the plasma proteomics dataset 
and the clinical metadata. There were 9 significant cor-
relations in the control group and only two in the ME/
CFS subjects (Table 2, bottom part). In control samples, 
Protein S (PROS1) and Fc Receptor Like 3 (FCRL3) were 
negatively correlated with Vitality (r = − 0.590, q = 0.015 
for PROS1, r = −  0.538, q = 0.039 for FCRL3). Addition-
ally, PROS1 was negatively correlated with the SF-36 
Physical Component Summary (r = −  0.608, q = 0.008) 
and positively correlated with the MFI-20 General 
Fatigue score (r = 0.590, q = 0.016). The Cholesteryl Ester 
Transfer Protein (CETP) was positively correlated with 
General Fatigue (r = 0.547, q = 0.032) and Total scores 
from the MFI-20 (r = 0.557, q = 0.025), and the Hemo-
globin Subunit Alpha 1 (HBA1) was negatively corre-
lated with the two same scores (r = − 0.558, q = 0.046 and 
r = −  0.556, q = 0.025 respectively) (Fig.  7a). In the ME/
CFS group, Serpin Family A Member 5 (SERPINA5) 
was positively correlated with General Health (r = 0.646, 
q = 0.004) and Social Functioning (r = 0.593, q = 0.027) 
from the SF-36 questionnaire (Fig. 7b).

Robust linear regression reveals additional relationships 
between certain proteins and clinical information
In order to better understand the relationship between 
proteins and the metadata, we performed robust lin-
ear regression and t-tests for the estimated coefficients. 

Robust linear regression was performed for EV cytokines, 
plasma cytokines, and plasma proteomics, respectively. 
Each model included a specific protein level as the pre-
dicted variable and the cohort (ME/CFS or control), sex, 
age, BMI, and Irritable Bowel Syndrome (IBS) as a covari-
ate. Interactions between cohort and the metadata covar-
iates were also included in the model. The interactions 
test the hypothesis that the relationship between the 
metadata and the level of a protein is different in ME/CFS 
than in the control group. The significant effects are sum-
marized in Table 3. It is standard practice in biostatistics 
to include both main effects whenever two variables have 
a statistically significant interaction. The reasoning here 
is that the interaction shows that the variables are having 
effects even if the main effect does not achieve statistical 
significance. We followed this practice. In Table 3, Male 
is a dummy (indicator or 0–1) variable that equals 1 for 
males and 0 for females. Similarly, ME/CFS is a dummy 
variable that is 1 or 0 for cases or controls, respectively, 
and IBS is a dummy variable equal to 1 or 0 for subjects 
with or without IBS, respectively. ME/CFS:Age is the 
product of ME/CFS and Age and so is equal to 1for ME/
CFS cases and equal to 0 for controls. ME/CFS:Male is 
the product of two dummy variables and so is equal to 
1 for males in the ME/CFS group and equal to 0 for all 
other subjects. ME/CFS:( +) IBS is equal to 1 for ME/CFS 
cases with IBS and 0 otherwise.

In EV cytokine samples, age was significant for predict-
ing CXCL1 level (β = − 0.013, q = 0.035) and CCL11 level 
(β = 0.032, q = 0.035). Thus, CXCL1 decreases with age 
but CCL11 increase with age. (Table 3).

In plasma cytokines, both BMI and Male signifi-
cantly predicted Leptin and CSF2 levels. The effect for 
the dummy variable Male is the difference between the 
means for males and female. For example, the mean 
of the variable Leptin (or CSF2) is, all else equal, 1.119 
(or 1.230) lower for males compared to females. For 
both CCL2 and CSF3, the main effect of age, and the 
interaction term between age and cohort were signifi-
cant. The intercepts for the regression of CCL2 on age 
are 0.690 and 0.690−  2.696 = −  2.006 for controls and 
cases, respectively. For every one-year increase in age, 
the average of CCL2 will decrease by 0.037 in controls 
and increase by 0.075–0.037 = 0.038 in cases. The inter-
cepts for the regression of CSF3 on age are 0.576 and 
0.576−1.994 = −  1.418 for controls and cases, respec-
tively. For every one-year increase in age, the average of 
CFS3 will decrease by 0.047 in controls and increase by 
0.075–0.047 = 0.028 in cases.

In plasma proteomics data, age was also significant 
for predicting SAA1 level (β = 0.047, q = 0.049). For 
PFN1, the interaction between ME/CFS and sex was 
significant (β = −  1.901, q = 0.030). The mean of PFN1 

Fig. 4 Principal Component Analysis with 95% confidence ellipses of 
36 cytokine levels measured in extracellular vesicles and plasma from 
ME/CFS and controls
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Fig. 5 Correlograms showing correlations between EV cytokines, with coefficient |r|≥ 0.6 (a), between plasma cytokines, with |r|≥ 0.6 (b), and 
between plasma proteomics, with |r|≥ 0.8 (c). Filled-in boxes indicate significant correlation q < 0.01
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is 0.809 for female controls, 0.809−0.996 = −  0.187 for 
female cases, 0.809 + 0.081 = 0.890 for male controls, 
and 0.809 + 0.081−0.996−1.901 = −  2.007 for males 
cases. Thus, mean PFN1 is higher in controls than in 
cases for both sexes, but the difference is much greater 
in males (0.809 + 0.187 = 0.996 for females versus 
0.890 + 2.007 = 2.897 for males).

For IGHA2, the interaction between ME/CFS 
and IBS was significant (β = 3.467, q < 0.001). The 
mean of IGHA2 is 0.454 for controls without IBS, 

0.454−2.048 = −  1.594 for ME/CFS cases without IBS, 
0.454−2.811 = −  2.357 for controls with IBS, and 0.45
4−2.048−2.811 + 3.467 = −  0.938 for cases with IBS. 
Therefore, mean IGHA2 is higher for controls than 
cases for subjects without IBS but higher in cases 
than controls for subjects with IBS. For LRG1, the 
interaction between ME/CFS and IBS was signifi-
cant (β = 3.093, q < 0.001). The mean of LRG1 is 0.261 
for controls without IBS, 0.261−1.082 = −  0.821 for 
ME/CFS cases without IBS, 0.261−2.502 = −  2.241 for 

Table 2 Correlations between clinical data and plasma cytokines (top) and plasma proteomics (bottom)

Plasma cytokines Cohort Metadata Correlation P-value Q-value

CSF2 ME/CFS Sex (0 = female, 1 = male) − 0.474 0.001 0.032

Control Sex (0 = female, 1 = male) − 0.465 0.001 0.042

ME/CFS IBS (0 = without IBS, 1 = with IBS) 0.437 0.002 0.052

ME/CFS BMI 0.596 0.000 0.000

Control BMI 0.448 0.001 0.023

ME/CFS Physical function (SF-36) − 0.539 < 0.001 0.002

ME/CFS Physical component summary (SF-36) − 0.459 0.001 0.035

ME/CFS General Fatigue (MFI-20) 0.436 0.002 0.047

Leptin ME/CFS Sex (0 = female, 1 = male) − 0.414 0.003 0.086

Control Sex (0 = female, 1 = male) − 0.427 0.002 0.061

ME/CFS IBS (0 = without IBS, 1 = with IBS) 0.433 0.002 0.052

ME/CFS BMI 0.577 < 0.001 < 0.001

Control BMI 0.475 0.001 0.018

ME/CFS Physical function (SF-36) − 0.558 < 0.001 0.002

ME/CFS Physical component summary (SF-36) − 0.445 0.001 0.035

ME/CFS General fatigue (MFI-20) 0.439 0.002 0.047

CCL2 ME/CFS Age 0.440 0.002 0.060

CXCL10 ME/CFS Age 0.394 0.005 0.099

CCL11 ME/CFS Age 0.431 0.002 0.060

TNFα ME/CFS BMI 0.543 < 0.001 0.001

ME/CFS Physical function (SF-36) − 0.508 < 0.001 0.004

ME/CFS Physical component summary (SF-36) − 0.432 0.002 0.035

IL1RA ME/CFS BMI 0.468 0.001 0.010

ME/CFS Physical function (SF-36) − 0.480 < 0.001 0.007

IL13 ME/CFS Reduced activity (MFI-20) 0.482 < 0.001 0.025

Plasma proteomics Cohort Metadata Correlation P-value Q-value

PROS1 Control Physical component summary (SF-36) − 0.608 < 0.001 0.008

Control General fatigue (MFI-20) 0.590 < 0.001 0.016

Control Vitality (SF-36) − 0.590 < 0.001 0.015

FCRL3 Control Vitality (SF-36) − 0.538 < 0.001 0.039

IGHV3-23.IGHV3-30 Control Vitality (SF-36) 0.527 < 0.001 0.039

SERPINA5 ME/CFS General health (SF-36) 0.646 < 0.001 0.004

ME/CFS Social functioning (SF-36) 0.593 < 0.001 0.027

CETP Control General fatigue (MFI-20) 0.547 < 0.001 0.032

Control Total (MFI-20) 0.557 < 0.001 0.025

HBA1 Control Mental fatigue (MFI-20) − 0.558 < 0.001 0.046

Control Total (MFI-20) − 0.556 < 0.001 0.025
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Fig. 6 Significant plasma cytokines correlation plots with metadata. Blue dots and lines are for ME/CFS subjects and pink dots and lines for controls
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controls with IBS, and 0.261−1.082−2.502 + 3.093 = 
0.230 for cases with IBS. We see that mean LRG1 is 
higher in controls than cases for subjects without IBS 
but higher in cases than controls for subjects with IBS 
(Table 4).

IBS has opposite effects in cases and controls on 
IGHA2 and LRG1 (Table 4). Although these differences 

are statistically significant, it should be noted that there 
was only one control subject with IBS.

Three machine learning approaches result in predictive 
and discriminative models
The top 20 protein analytes and feature importance val-
ues for each of the three machine learning approaches 

Fig. 7 Significant plasma proteomics correlation plots with metadata in controls (a) and in ME/CFs (b)
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can be found in Table  5. All three methods had an 
excellent performance at distinguishing ME/CFS from 
controls using the top 20 protein analytes with 250 rep-
lications of fivefold cross-validation. Figure 8 shows the 
ROC curves and the AUROC values from these three 
classifiers with the top 20 proteins ranked in impor-
tance measurements. The XGBoost classifier performed 
the best with a high degree of accuracy (86.1%, Addi-
tional file  1: Fig. S3a) with a cross-validated AUROC 
value of 0.947 (95% CI 0.895–0.998). Furthermore, 
using the top 8 proteins from each classifier, logistic 
regression (LASSO) gave the best results with an AUC 
of 0.873 (95% CI 0.792–0.953) and accuracy of 78.6% 
(Fig. 8b and Additional file 1: Fig. S3b). Finally, Random 

Table 3 Effects of clinical data on EV, plasma cytokines and plasma proteomics according to robust linear regression

Similarly, ME/CFS:Age or ME/CFS:( +) IBS indicate the interaction term between ME/CFS and age or subjects with IBS. ( +) IBS denotes subjects with IBS. Categorical 
variables were coded as follows: Cohort: control = 0; ME/CFS = 1; IBS: no IBS = 0; with IBS = 1
a ME/CFS:Male indicates the interaction term between ME/CFS and males

EV cytokines Covariate-Interactiona β coefficient P-value Q-value

CXCL1 Age − 0.013 0.001 0.035

CCL11 Age 0.032 0.001 0.035

Plasma cytokines Covariate-Interactiona β coefficient P-value Q-value

Leptin BMI 0.123 < 0.001 < 0.001

Male − 1.119 < 0.001 0.001

CSF2 BMI 0.123 < 0.001 < 0.001

Male − 1.230 < 0.001 < 0.001

CCL2 Intercept 0.690 0.486 0.900

ME/CFS − 2.696 0.046 0.886

Age − 0.037 0.006 0.152

ME/CFS:Age 0.075 < 0.001 0.009

CSF3 Intercept 0.576 0.573 0.900

ME/CFS − 1.994 0.151 0.886

Age − 0.047 0.001 0.038

ME/CFS:Age 0.075 0.001 0.009

Plasma proteomics Covariate-Interactiona β coefficient P-value Q-value

SAA1 Age 0.047 < 0.001 0.049

PFN1 Intercept 0.809 0.322 0.996

ME/CFS − 0.996 0.417 0.914

Male 0.081 0.795 0.967

ME/CFS:Male − 1.901 < 0.001 0.030

IGHA2 Intercept 0.454 0.561 0.996

ME/CFS − 2.048 0.084 0.907

( +) IBS − 2.811 0.001 0.137

ME/CFS:( +) IBS 3.467 < 0.001 0.019

LRG1 Intercept 0.261 0.727 0.996

ME/CFS − 1.082 0.336 0.907

( +) IBS − 2.502 0.001 0.153

ME/CFS:( +) IBS 3.093 < 0.001 0.026

Table 4 Means of the log-transformed protein levels PFN1, 
IGHA2, and LRG1 for subpopulations defined by pairs of binary 
variables

( +) or (− ) IBS denote subjects with or without IBS respectively

Proteins Controls ME/CFS

PFN1 Female 0.809 − 0.187

Male 0.890 − 2.007

IGHA2 (− ) IBS 0.454 − 1.594

( +) IBS − 2.357 − 0.938

LRG1 (− ) IBS 0.261 − 0.821

( +) IBS − 2.241 0.230
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Forest with 7 protein analytes common to all three top 
20 lists (bold proteins in Table  5) distinguished ME/
CFS from the controls with an AUROC value of 0.891 
(95% CI 0.817–0.966) and accuracy of 79.1% (Fig.  8c 
and Additional file 1: Fig. S3c).

Discussion
In this study, we utilized samples and data from 98 
of the 100 subjects who previously provided samples 
that were analyzed for fecal metagenomics and plasma 
cytokines [26] and also for plasma proteins assayed by 

Table 5 Top 20 proteins ranked in importance measurements in LASSO, Random Forest and XGBoost

Direction is measured relative to controls. Proteins followed by “p” or “ev” come from the plasma and EV cytokines datasets respectively, all other proteins are from the 
plasma proteomic dataset

Logistic Regression with LASSO penalty Random Forest XGBoost

Protein Name Direction Percentage Protein Name Direction MDA Protein Name Direction Gain

IL2-ev Increased 46.4 CRTAC1 Decreased 2.939 CRTAC1 Decreased 0.044

CAMP Increased 43.2 CCL5-ev Increased 2.759 CCL5-ev Increased 0.033

IGHA1 Decreased 40 IGF1 Decreased 2.509 CAMP Increased 0.033

IGLV1-47 Decreased 36 NGFB-ev Increased 2.423 IGF1 Decreased 0.022

CRTAC1 Decreased 36 CXCL8-ev Increased 2.394 IGLV1-47 Decreased 0.021

LRG1 Decreased 30.8 IL2-ev Increased 2.377 IL2-ev Increased 0.020

IGF1 Decreased 28.8 CPB2 Increased 2.325 LRG1 Decreased 0.019

PVR Decreased 24.8 IL12p70-p Decreased 2.14 CXCL8-ev Increased 0.018

KNG1 Increased 22.8 IGLV1-47 Decreased 1.897 IL22-p Decreased 0.015

TUBA1B/A/C Decreased 7.6 IGLV3-10 Decreased 1.828 TNFα-p Increased 0.013

IGFALS Decreased 6 IGFALS Decreased 1.794 IGFALS Decreased 0.012

VEGF-ev Increased 5.2 CAMP Increased 1.758 IGHA1 Decreased 0.012

IGLV2-11 Decreased 5.2 CCL7-ev Increased 1.593 GSN Decreased 0.011

C4BPB Increased 2.4 LRG1 Decreased 1.486 TUBA1B/A/C Decreased 0.011

BTD Decreased 1.2 HBB Increased 1.366 CXCL10-ev Decreased 0.011

IL7-p Decreased 0.4 IL15-ev Increased 1.337 HBB Increased 0.010

TNFα-p Increased 0.4 TUBA1B/A/C Decreased 1.196 MASP1 Decreased 0.009

IGKV1D-16 Increased 0.4 LCAT Decreased 1.048 HYI Decreased 0.009

APOC1 Increased 0.4 IGFBP3 Decreased 1.024 CCL7-ev Increased 0.009

MBL2 Increased 0.4 PKM Decreased 1.021 IGLV3-10 Decreased 0.009

Fig. 8 Predictive performance (AUROC) for distinguishing ME/CFS from controls with the top 20 (a), top 8 (b) and the 7 protein analytes common 
to all three classifiers (c). Unregularized logistic regression rather than the lasso penalty was used in this figure, since we were using variables known 
to be important
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mass spectrometry [14]. Furthermore, extracellular vesi-
cles were isolated from these 98 samples, and we found 
that the mean size and concentrations of particles were 
significantly higher in ME/CFS (Fig. 2). Although a previ-
ous report using the same EV purification method as the 
present study found that the mean size of ME/CFS EVs 
was reduced [42], the authors analyzed EVs isolated from 
10 ME/CFS patients and 5 healthy controls vs. 49 ME/
CFS and 49 controls in this study, did not use thrombin 
to remove fibrinogen and used low centrifugal forces to 
pellet EVs (1500 g vs. 12,000 g in this study). All together 
this could explain the different results observed with our 
current study. Finally, our results confirmed other find-
ings reporting higher concentration of vesicles in ME/
CFS [24, 25, 42] and these observations are also seen in 
conditions such as Alzheimer’s disease [17] and cerebro-
vascular disease [20].

Our work demonstrates the value of using multiple 
assays on the same samples, and also the importance of 
performing correlations with clinical data. Doing so has 
allowed us to identify a number of associations of par-
ticular proteins with patient symptoms. Importantly, 
we demonstrate that the data can distinguish between 
patients and controls at high accuracy. ME/CFS has long 

been incorrectly viewed by some as a psychological ill-
ness. Being able to separate patients and controls through 
analyses of plasma is a strong demonstration of the bio-
logical natures of the illness. A summary of our experi-
mental assays and key findings is shown in Fig. 9.

Our current analysis of 98 samples agrees with the 
prior comparison of plasma cytokines in 100 ME/CFS 
and controls, which did not identify any significant dif-
ferences between cohorts after adjustment for multiple 
testing [26]. In contrast, we identified 17 EV cytokines 
that distinguish patients and controls with adjusted 
p-values of less than 0.2, all higher in ME/CFS subjects. 
Out of these 17 proteins, the majority (10 out of 17) are 
known to be pro-inflammatory cytokines/chemokines 
(TNFα, IL1β, CXCL8, CXCL1, IL15, CCL7, IL17, CCL5, 
IL1α and IL1R1), 5 are related to adaptive immunity (IL2, 
CSF2, IL3, IL4 and IL7), IL12p40 has anti-inflammatory 
properties and NGFβ is both pro- and anti-inflammatory. 
Higher levels of pro-inflammatory cytokines are in line 
with previous reports [43–45].

Although differences in EV cytokine levels did not 
reach statistical significance after correction for multiple 
comparison in a prior pilot study with only 38 subjects, 
13 of the 17 EV cytokines in the present study were also 

Fig. 9 Graphical summary of key findings from this study
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found at higher levels in EVs from ME/CFS subjects in 
comparison to controls [25]. The most significant differ-
ence was IL2 (q = 0.007, Fig. 3). IL2 is a secreted cytokine 
produced by activated CD4 + and CD8 + T lymphocytes 
and promotes strong proliferation of activated B-cells 
and subsequently immunoglobulin production. It plays 
a pivotal role in regulating the adaptive immune system 
by controlling the survival and proliferation of regulatory 
T-cells. IL2 levels were found to be higher in cerebro-
spinal fluid [46] and plasma from ME/CFS patients [47]. 
The higher levels of IL2 found in EVs in the present study 
might be part of a specific immune response in ME/CFS. 
A number of cytokines/chemokines which were observed 
to be dysregulated are either produced by B cells or are 
also B cell regulators (e.g. CXCL1 and CXCL12).

Correlations of cytokines with other cytokines provide 
information about the networks of interactions between 
signaling molecules. Several other studies demonstrated 
that the networks of plasma or extracellular vesicle 
cytokines differ between ME/CFS subjects and controls 
[25, 41, 44, 48]. We have chosen to display correlations 
between the three types of data: plasma and EV cytokines 
and plasma proteomics—using correlograms. Inspec-
tion of the visual representation of these protein–protein 
interactions immediately reveals that there are positive 
correlations between EV cytokines and between plasma 
cytokines that occur in cases but not controls and vice 
versa (Fig.  5). A particularly striking observation is a 
greater number of positive correlations between plasma 
cytokines in ME/CFS than in controls (Fig. 5b), indicat-
ing that cytokine signaling is substantially different, per-
haps reflective of an inflammatory environment.

Seventy-one proteins characterized by mass spectrom-
etry exhibited significant correlations with other plasma 
proteins (Fig.  5c). For example, F2 exhibited 31 positive 
correlations with other proteins, of which eleven were 
seen in cases but not controls. F2 is coagulation fac-
tor II or thrombin, and converts fibrinogen to fibrin and 
activates factors V, VII, VIII, XIII. Thrombin promotes 
platelet activation and aggregation, but it is also thought 
to have other functions during inflammation and wound 
healing [49].

Despite not observing significant differences in lev-
els of plasma cytokines between the two cohorts, we 
did observe correlations of plasma cytokines with clini-
cal data. CSF2, also known as Granulocyte Monocyte 
Colony Stimulation factor (GM-CSF), is lower in males 
in both ME/CFS and controls and increases with BMI in 
both cohorts according to both the robust linear regres-
sion and correlation analyses (Fig. 6a, Tables 2 and 3). In 
the ME/CFS cohort, with increasing CSF2, scores on the 
SF36 Physical Function and the MFI-fatigue scales indi-
cate greater impact of physical and fatigue symptoms, 

respectively. Increase in GM-CSF is associated with 
chronic inflammation [50]. GM-CSF induces classi-
cal monocytes to differentiate into monocyte-derived 
dendritic cells and macrophages in  vitro [51]. Classical 
monocytes exhibit a unique gene expression pattern in 
ME/CFS compared to controls [52], and elevated GM-
CSF could be a signaling factor involved in this response.

Increases in levels of three cytokines, CCL2, CXCL10, 
and CCL11 were associated with increasing age only in 
the ME/CFS cohort, according to Spearman correlations. 
CCL2, also known as MCP-1 (Monocyte Chemoattract-
ant Protein-1), attracts monocytes across the endothe-
lium into tissues [53], and could also be a factor in the 
altered monocyte gene expression profile [54]. CCL2 was 
also observed to decrease with age in the total cohort 
by both robust linear regression and Spearman correla-
tion, but increases in the ME/CFS cohort with increasing 
age, according to Spearman correlation (Fig. 6d, Table 3). 
Using robust linear regression, plasma CCL11 was not 
significantly increasing with age but EV CCL11 was pre-
dicted to be higher with increasing age. CXCL10 (IP10) 
is also involved in cell migration, in particular, attrac-
tion of macrophages, monocytes and activated T and 
NK cells [55]. CCL11, also known as eotaxin, is known 
to increase with aging and higher levels are associated 
with decreased neurogenesis [56]. Two large studies pre-
viously observed an association of leptin, GM-CSF, IP10, 
and eotaxin with ME/CFS severity [43] or higher eotaxin 
in long-term ME/CFS cases [41]. Almost all of the ME/
CFS subjects in this study have been ill more than 3 years.

Higher leptin is correlated with female sex and higher 
BMI in both patients and controls both by robust lin-
ear regression and correlation analyses (Tables 2 and 3). 
Higher leptin is also associated with IBS in the patient 
cohort (Fig.  6b). Increase in leptin is also correlated 
with worse scores on the SF36 physical function meas-
ures and MFI-fatigue scale (Fig.  6c). Leptin was previ-
ously correlated with fatigue and severity in ME/CFS [43, 
54]. Increasing levels of another inflammatory cytokine, 
TNFα, also correlates with lower patient Physical Func-
tion scores on the SF36 and has previously been reported 
to be elevated in ME/CFS [41, 57, 58] (Fig. 6e).

Higher levels of IL1-RA, which antagonizes IL1 inflam-
matory cytokines, were associated with higher BMI and 
lower SF-36 Physical Function in ME/CFS cases (Fig. 6e). 
Although IL1-RA could be considered to be anti-inflam-
matory, it is known that IL1-RA levels are higher in obe-
sity [59] and higher levels are considered to be a marker 
for metabolic dysregulation [60], which could be result-
ing in the lower physical ability.

We observed that lower levels of the anti-inflamma-
tory cytokine IL13 were associated with lower activity 
in the ME/CFS cases. IL-13 was previously reported 
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to be lower in females with ME/CFS vs. controls [61]. 
In contrast, higher IL13 was correlated with increased 
symptom severity in one study [43], while no difference 
between cases and controls was seen in another [41].

Higher levels of another protein associated with 
hemostasis, PROS1, is correlated with poorer health in 
the controls but has no significant association with the 
ME/CFS cohort (Fig.  7a). PROS1, also known as Pro-
tein S, is a well-known regulator of hemostasis, with 
important anti-coagulant effects [62]. The fact that it 
has no correlation with health of ME/CFS patients may 
reflect disturbed control of hemostasis in the disease.

Higher levels of CETP, Cholesteryl Ester Transfer 
Protein, are associated with increased fatigue on the 
MFI-20 (Fig.  7a). This protein controls the exchange 
of cholesteryl esters and triglycerides between HDL 
and low-density lipoproteins (LDL), and higher CETP 
would be expected to result in a less favorable LDL/
HDL ratio, which is associated with heart disease [63]. 
Immune cells in ME/CFS patients have been observed 
to exhibit altered fatty acid oxidation, which could be 
related to differences in plasma fatty acid composition 
[64].

Higher levels of SERPINA5 were associated with better 
scores on the SF-36 general health and social functioning 
scales (Fig. 7b). SERPINA5 is a secreted serine protease 
inhibitor whose functions are not completely understood 
[65]. It was originally identified as an inhibitor of the anti-
coagulant protease-activated protein C [66]. While this 
fact suggests that higher SERPINA5 might increase coag-
ulation, an in  vitro study demonstrated that SERPINA5 
can serve as both an anti-coagulant and a pro-coagulant 
depending on the presence of thrombomodulin [67]. 
Platelets contain SERPINA5 mRNA and can also take 
up the protein from the external milieu [68]. Our find-
ing of a correlation of ME/CFS health status with a pro-
tein involved in hemostasis may be relevant to the recent 
findings of activated platelets and microclots in ME/CFS 
[69], as well as altered platelet gene expression profiles 
[52]. Furthermore, variants in the SERPINA5 gene have 
previously been associated with ME/CFS [70].

Correlations with several proteins were detected 
through robust linear regression that were not found 
through Spearman correlation (Table  3). CSF3, also 
known as Granulocyte colony-stimulating factor, 
increases with age in the ME/CFS cohort but is lower 
with age in the total cohort, perhaps indicating an 
inflammatory state in the patient cohort. EV chemokine 
CXCL1, which attracts neutrophils to regions of infection 
or injury, decreases with age in the total cohort. PFN1, 
profilin-1, which regulates actin polymerization, is pre-
dicted to be higher in males in the total cohort but lower 
in males with ME/CFS.

We used machine learning classifiers to identify pro-
teins that discriminate between cases and controls. Pre-
viously, the proteomics dataset had been subjected to 
a similar analysis using LASSO, Random Forest, and 
XGBoost [14]. Seven proteins are common to the top 
20 lists of all three machine learning methods. In addi-
tion to EV IL2, there were CAMP, IGLV1-47, CRTAC1, 
LRG1, IGF1, and TUBA1. Four of these were also in the 
group of 8 proteins that were common to the three meth-
ods in the prior study which analyzed only the plasma 
proteomics data [14]. IGF1 and TUBA1ABC were not in 
the top 20 when the total cohort was considered in the 
prior study. Among the seven common proteins, only 
EV IL2 and CAMP (Cathelicidin AntiMicrobial Protein) 
were increased in cases vs controls, and both are pro-
inflammatory. The significance of a reduction in ILGVI-
47 (Immunoglobulin Lambda Variable 1–47) in cases is 
difficult to predict but could reflect some unknown geno-
typic effect on susceptibility to ME/CFS. CRTAC1 (Car-
tilage Acidic Protein 1) is an extracellular matrix protein 
of unknown function, but improved growth of dermal 
fibroblasts in vitro, so lower levels could be detrimental. 
LRG1 (Leucine Rich Alpha-2-Glycoprotein 1) is secreted 
from hepatocytes and neutrophils, and higher levels are 
associated with beneficial functions (promoting wound 
healing) but also with a variety of diseases; thus, the sig-
nificance of its reduction is unknown [71]. Lower levels of 
IGF1 (Insulin Like Growth Factor 1) are likely to be unfa-
vorable for health, given its growth-promoting properties 
and effects on metabolism [72, 73]. TUBA1A, TUBA1B, 
and TUBA1C genes encode tubulin, an essential compo-
nent of the cytoskeleton [74]. Tubulin signaling has been 
found to be disrupted following chemotherapy and is 
hypothesized to have a role in the neurocognitive impair-
ment that often results following treatment [75].

EV-located IL2 is found in all three lists. IL2 was the 
only EV cytokine to distinguish cases and controls at 
q < 0.05 (Fig. 3). In our prior pilot study of EV cytokines 
in 35 cases and 35 controls, we did not find any signifi-
cant difference in IL2 between cohorts [25]. Other EV 
cytokines that featured in the top 20 are VEGF, NGFB, 
IL15, CXCL8, CXCL10, CCL5, and CCL7, although 
VEGF, IL15, and CXCL10 did not discriminate cases 
and controls at q < 0.2, according to Wilcoxon tests 
(Fig. 3). Plasma cytokines IL7, TNFα, IL12p70, and IL22 
were included on one or two of the top 20 lists. While 
no significant differences in any plasma cytokines were 
detected following correction for multiple testing, before 
correction TNFα was increased in cases at p = 0.016 [26]. 
Previously, Hornig et  al. [41], who performed a larger 
study, with 298 cases and 348 controls, did not find sig-
nificant differences between cases and controls for these 
cytokines. The cytokine profiling literature in ME/CFS 
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has not resulted in consistent conclusions regarding 
altered cytokine levels between ME/CFS and controls.

This work does have some limitations. First, our study 
has a small sample size, especially given the heterogene-
ity of the symptoms of the illness and when measuring a 
large number of variables. The robustness of our findings 
needs to be verified in more diverse and larger cohorts.

Although ME/CFS has a higher disease burden in 
females [76] and an increasing number of sex differences 
in its pathophysiology have been discovered recently [77, 
78], we were unable to report disaggregated sex data in 
our study due to sample size limitations (8 and 9 males 
compared to 41 and 40 females for the control and ME/
CFS populations, respectively). Therefore, statistical 
comparisons between sexes were not feasible in our cur-
rent study.

This study examined only peripheral blood and did 
not analyze other compartments such as cerebrospinal 
fluid. However, despite a small sample size, abnormalities 
in proteins of ME/CFS patients have been identified in 
cerebrospinal fluid studies [9, 46, 79]. Future proteomic 
research on peripheral blood of ME/CFS patients should 
strive to establish correlations with these findings.

Here, cytokine measurement in plasma and EVs was 
performed using different multiplex assays. Specifically, a 
61-plex from Affymetrix was used to analyze cytokines in 
plasma samples, whereas a 48-plex from Biorad was used 
to measure cytokine content in EVs.

We opted for a precipitation method for EV isolation 
due to limited sample volumes (500  μl) and to enable 
analysis of the complete EV population. Using precipi-
tating reagent ExoQuick tends to yield lower purity for 
EV isolated fractions compared to other methods such 
as ultracentrifugation and size exclusion chromatogra-
phy. Future studies comparing these methods in cytokine 
analysis will be informative to ensure our results are 
reproducible using other EV isolation methods. Further-
more, EVs were not separated into different fractions by 
size or by the presence of particular surface molecules to 
allow analysis of these fractions separately. It is certain 
that distinct patterns will arise indicating the selective 
packaging of specific proteins into specific EVs.

It should be noted that the correlations reported in 
this study do not indicate cause-effect relationships, and 
further research is required to establish causality. For 
instance, since the diet of the subjects was not controlled 
in this study, discrepancies in cytokine profiles between 
different groups could be attributed to differences in their 
diets [80–82]. Thus, we cannot rule out the possibility 
that dietary factors may have influenced our results.

Ultimately, since this study employed a cross-sectional 
approach; examining longitudinal changes in EVs would 
require further exploration. Moreover, one-time sample 

collection prevents determining whether associations 
between symptoms and protein profiles in plasma and 
EVs of ME/CFS patients stem from disease progression. 
Future research is crucial to establish whether patients 
with ME/CFS consistently exhibit a specific cytokine sig-
nature and disease severity classification over time, or if 
these factors fluctuate.

Conclusions
This work demonstrates the importance of collecting 
clinical data to determine whether particular molecules 
are correlated with the subjects’ conditions, allowing 
conclusions to be drawn about them even if their median 
values differ little between cases and controls. We have 
again demonstrated that cytokine/chemokine signaling 
networks in the circulation are altered between ME/CFS 
cases and controls. Finally, we have identified 20 proteins 
whose levels provided very high sensitivity and speci-
ficity for distinguishing ME/CFS and control samples. 
A more manageable subset of 7 of the 20 proteins still 
allows considerable separation of patients from controls 
(AUROC = 0.891, Fig. 8). These findings await confirma-
tion in a larger dataset to determine whether they can be 
clinically useful for diagnosis or monitoring response to 
treatment.
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