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Abstract 

Background The human gut microbiota (GM) is involved in the pathogenesis of hypertension (HTN), and could be 
affected by various factors, including sex and geography. However, available data directly linking GM to HTN based on 
sex differences are limited.

Methods This study investigated the GM characteristics in HTN subjects in Northwestern China, and evaluate the 
associations of GM with blood pressure levels based on sex differences. A total of 87 HTN subjects and 45 controls 
were recruited with demographic and clinical characteristics documented. Fecal samples were collected for 16S rRNA 
gene sequencing and metagenomic sequencing.

Results GM diversity was observed higher in females compared to males, and principal coordinate analysis showed 
an obvious segregation of females and males. Four predominant phyla of fecal GM included Firmicutes, Bacteroi-
detes, Actinobacteria and Proteobacteria. LEfSe analysis indicated that phylum unidentified_Bacteria was enriched 
in HTN females, while Leuconostocaceae, Weissella and Weissella_cibaria were enriched in control females (P < 0.05). 
Functionally, ROC analysis revealed that Cellular Processes (0.796, 95% CI 0.620 ~ 0.916), Human Diseases (0.773, 
95% CI 0.595 ~ 0.900), Signal transduction (0.806, 95% CI 0.631 ~ 0.922) and Two-component system (0.806, 95% CI 
0.631 ~ 0.922) could differentiate HTN females as effective functional classifiers, which were also positively correlated 
with systolic blood pressure levels.

Conclusions This work provides evidence of fecal GM characteristics in HTN females and males in a northwestern 
Chinese population, further supporting the notion that GM dysbiosis may participate in the pathogenesis of HTN, and 
the role of sex differences should be considered.

Trial registration Chinese Clinical Trial Registry, ChiCTR1800019191. Registered 30 October 2018 – Retrospectively regis-
tered, http:// www. chictr. org. cn/.
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Background
As a common and chronic medical condition, hyperten-
sion (HTN) has become a global health issue, account-
ing for approximately 10.8 million deaths worldwide [1]. 
HTN is a complex and modifiable risk factor for car-
diovascular diseases (CVDs) and stroke, while a diverse 
range of endogenous and environmental factors contrib-
utes to both HTN onset and progression [2–4]. Although 
an increased risk of HTN has been demonstrated to be 
associated with approximately 900 genetic loci, only < 6% 
of the variance in systolic blood pressure (BP) could be 
explained by common genetic risk variants [5]. Given its 
complexity and heterogeneity, the elucidation of HTN 
pathogenesis remains challenging.

Growing evidence has revealed the potential role of 
the gut microbiota (GM) in host homeostasis and multi-
ple physiological processes [6], and suggests associations 
between GM and various diseases including atheroscle-
rotic CVDs [7]. As the longest organ, the gastrointestinal 
tract is mainly involved in the absorption of nutrients 
and ions which greatly impacts BP [8], and a substantial 
amount of work has supported the role of GM as a poten-
tial factor in BP regulation or even causal determinants 
of HTN pathogenesis [2, 9–11]. There is evidence of gas-
trointestinal pathophysiology in animal HTN models, in 
which fecal transplantation from HTN subjects increases 
BP in germ-free mice [12]. In addition, GM dysregulation 
is also associated with various metabolic diseases and 
HTN-related risk factors, such as obesity, hyperlipidemia 
and diabetes mellitus [13]. Overall, current data strongly 
indicate that GM may play an important role in HTN 
pathogenesis [12, 14–16].

Due to the novel concept of GM-influenced HTN 
pathogenesis [2], it is critical to investigate GM altera-
tions in HTN subjects in different regions with different 
genetic background and dietary habits [2, 16–19]. More-
over, obesity, hyperlipidemia and diabetes could result in 
GM alterations [20], and these variations should also be 
taken into consideration. Of note, few studies have inves-
tigated the associations between GM and HTN subjects 
based on sex differences. Given that sex is important in 
BP regulation [2, 21, 22], we investigated the GM charac-
teristics of female and male HTN subjects, respectively, 
and the associations between GM characteristics and BP 
levels were discussed.

Methods
Study participants and study protocol
From July 2018 to June 2020, we recruited 205 sub-
jects from our outpatient clinics at Honghui Hospital, 
Xi’an Jiaotong University, China. All selected subjects 
were aged between 18 and 80 years old, and were able 
to provide written informed consent. Subjects with one 
of the following conditions were excluded: ① pregnant 
or lactating, or with chronic diseases including can-
cers, inflammation or surgical history in the alimentary 
tract, or serious systematic dysfunctions; ② taking any 
medications that may disrupt their original GM, such 
as fiber supplements, probiotics or prebiotics within 6 
weeks, or antimicrobial drugs within 6 months before 
GM sampling [2, 23]; ③ taking any anti-inflammatory 
agents, acid-suppressing agents, immunosuppressants, 
or anti-HTN medication, which seem to modulate GM 
[2, 24, 25].

This study was approved by the Ethics Committee 
of Honghui Hospital, Xi’an Jiaotong University (Proto-
col Number: 201801022, approved January 8th, 2018), 
and all subjects provided written informed consent 
before enrollment. HTN was diagnosed if systolic BP 
(SBP) ≥ 130 mmHg and/or diastolic BP (DBP) ≥ 80 
mmHg; subjects with normal BP (SBP < 120 mmHg and 
DBP < 80 mmHg) served as controls [26, 27]. The study 
flow is shown in Fig. 1.

Measurements of demographic and clinical parameters
On their first visit, all medical information was 
recorded for the recruited subjects. Body weight and 
height were measured without shoes and with light 
clothing to the nearest 0.1 cm or to the nearest 0.1 kg, 
respectively. Body mass index (BMI) was calculated as 
weight in kilograms divided by the square of height in 
meters. Waist circumference (WC) was measured mid-
way between the lower rib margin and the iliac crest in 
the standing position with a non-expandable tape to the 
nearest 0.1  cm. BP was assessed using a medical elec-
tronic sphygmomanometer (OMRON HEM-7130 pro-
fessional portable blood pressure monitor, OMRON, 
Dalian, China) on the left arm positioned at heart level 
in a seated position with palm face up. The subjects 
were required to rest for at least 3 ~ 5  min before BP 
measurement, and BP was measured in duplicate at a 
1 ~ 2-min interval. The average of the 2 readings was 
calculated. Mean arterial pressure (MAP) was calcu-
lated using the formula [(2 × diastolic BP) + systolic 
BP]/3 [16].

Peripheral venous blood samples were obtained in the 
morning after an overnight (at least 8  h) fast. Levels of 
fasting plasma glucose (FPG), serum triglyceride (TG), 
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total cholesterol (TC), low-density lipoprotein cho-
lesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C) and non-high-density lipoprotein cholesterol 
(non-HDL-C) were measured using an automatic bio-
chemical analyzer (Cobas c701, Roche, Mannheim, Ger-
many). All instruments were calibrated regularly.

Fecal sample collection and DNA extraction
We followed the standard protocols of fecal sample col-
lection and processing [28]. Briefly, fresh fecal samples 
were collected from each participant at home, and tem-
porarily stored in foam boxes with frozen cold packs. 
After immediate transportation to the Clinical Labo-
ratory at Honghui Hospital, Xi’an Jiaotong University 
within 6 h, fecal samples were stored at − 80 °C until fur-
ther processing.

Fig. 1 Study flow diagram. BMI body mass index; WC waist circumference; BP blood pressure; FBG fasting blood glucose; TG triglyceride; TC 
total cholesterol; LDL-C low-density lipoprotein cholesterol; HDL-C high-density lipoprotein cholesterol; non-HDL-C non-high-density lipoprotein 
cholesterol; GM gut microbiota
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Samples were sent in cold-chain with dry ice to Novo-
gene Co., Led. (Beijing, China) for subsequent proce-
dures. Genomic DNA was extracted from feces using 
the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. 
After the evaluation of genomic DNA concentration 
and quality, DNA samples, greater than 1  µg and with 
an OD value between 1.8 ~ 2.0, were qualified for further 
analysis.

16S rRNA gene amplification, sequencing and analysis
The V3 ~ V4 hypervariable regions of the 16S rRNA gene 
were amplified using specific primers (338F: 5ʹ-ACT 
CCT ACG GGA GGC AGC AG-3ʹ; 806R: 5ʹ-GGA CTA 
CHVGGG TWT CTAAT-3ʹ) with barcodes, and all PCRs 
were performed with  Phusion® High Fidelity PCR Mas-
ter Mix (New England Biolabs, Ipswich, MA, USA). 
After mixing the PCR products, the mixture was purified 
using a GeneJET™ Gel Extraction Kit (Thermo Scientific, 
Waltham, MA, USA). Sequencing libraries were gener-
ated using the NEB  Next® Ultra™ DNA Library Prep Kit 
for Illumina (New England Biolabs, Ipswich, MA, USA) 
following the manufacturer’s recommendations, and 
library quality was assessed on the  Qubit® 2.0 Fluorom-
eter (Thermo Scientific, Waltham, MA, USA). Finally, the 
prepared libraries were sequenced on an Illumina HiSeq 
platform (Illumina NovaSeq 6000, PE150, Illumina, San 
Diego, CA, USA).

UPARSE software (Uparse v7.0.1001, http:// drive5. 
com/ uparse/) [29] and Quantitative Insights Into Micro-
bial Ecology (QIIME) software (v1.7.0) [30] were intro-
duced for sequencing analysis. Acquired high-quality 
clean reads with ≥ 97% similarity were de novo clustered 
into the same operational taxonomic units (OTUs), and 
the representative sequence for each OTU was screened 
and used to annotate taxonomic information based on 
the RDP classifier [31]. After OTUs with annotation 
were produced, microbial diversity was assessed using 
QIIME software (v1.7.0) [30]. Alpha-diversity analysis 
was performed based on 4 indices, including Shannon, 
Chao1, Simpson and abundance coverage-based estima-
tor (ACE). Beta-diversity of GM composition was esti-
mated using the unweighted UniFrac method to calculate 
the distances between samples, and then visualized by 
principal coordinates analysis (PCoA). Linear discrimi-
nant analysis (LDA) effect size (LEfSe) algorithm with an 
LDA score threshold of 2 (on a log10 scale) was applied 
to identify the enriched and significant bacteria in each 
group, with a P value < 0.05.

Metagenomic sequencing and analysis
After DNA extraction and quality control, a total of 
1  µg DNA per sample was used for library preparation. 

Sequencing libraries were generated using the  NEBNext® 
Ultra™ DNA Library Prep Kit (New England Biolabs, 
Ipswich, MA, USA) following the manufacturer’s recom-
mendations. Briefly, the qualified DNA was fragmented 
to a size of 350 bp by sonication, and the acquired DNA 
fragments were end-polished, A-tailed, and ligated with 
the full-length adaptor for Illumina sequencing. Then 
PCR amplification was performed, and PCR products 
were purified using the AMPure XP system. Then, librar-
ies were initially quantified using a  Qubit® 2.0 Fluo-
rometer (Thermo Scientific, Waltham, MA, USA) and 
diluted to 2 ng/µL. Finally, libraries were analyzed using 
an Agilent2100 Bioanalyzer for size distribution, and 
then quantified using real-time PCR to ensure the qual-
ity (effective concentration > 3 nM). After clustering, the 
prepared libraries were sequenced on an Illumina HiSeq 
platform (Illumina NovaSeq 6000, PE250, Illumina, San 
Diego, CA, USA).

Short Oligonucleotide Analysis Package 2 (SOAP2) 
software (v2.04, http:// soap. genom ics. org. cn/ soapd 
enovo. html) and Bowtie2.2.4 software were used for 
raw data processing, and the remaining Scaftigs were 
used for subsequent analysis. Genes were predicted 
on Scaftigs (≥ 500  bp) using MetaGeneMark (prokary-
otic GeneMark.hmm v2.10), and a non-redundant gene 
catalog was constructed with CD-HIT (v4.5.8) software. 
For information on the abundance of genes, clean reads 
were realigned to the gene catalog (Unigenes) using Bow-
tie2.2.4 software. Genes with more than 2 mapped reads 
were deemed to be present in a sample [32]. The abun-
dance of genes was calculated by counting the number of 
reads and normalizing based on gene length. Unigenes 
were aligned to the KEGG database (Release 73.1, Ver-
sion: 2018.01, with animal and plant genes removed) for 
gene functional annotation using DIAMOND software 
(version 0.9.9), and GM functions were evaluated and 
compared across groups in the present study.

Statistical analysis
Statistical analyses and figure constructions were con-
ducted using the SPSS PASW v23 (IBM SPSS Inc., Chi-
cago, IL), R platform v4.0.2 (R Foundation, Vienna, 
Austria), GraphPad Prism v5.01 (GraphPad Software 
Inc., San Diego, CA, USA) and MedCalc v19.0.4 (Med-
Calc Software Bvba, Ostend, Belgium) software. Quan-
titative variables are presented as mean ± standard 
deviation (SD), and the normal distribution of quantita-
tive variables was assessed by the Shapiro-Wilk test. The 
t-test was used for comparisons of the demographic and 
clinical parameters between groups, depending on the 
homogeneity of variance. The comparisons of GM diver-
sities between groups were assessed using the Wilcoxon 
rank-sum test. The top 10 GM taxa in each level (phylum, 

http://drive5.com/uparse/
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class, order, family, genus and species) sorted by higher 
relative abundances were identified, and the significant 
differences between groups were assessed using the Wil-
coxon rank-sum test. The “PerformanceAnalytics” pack-
age in R was utilized for Spearman’s correlation analysis 
between any two demographic or clinical parameters of 
the subjects. In addition, Spearman’s correlation test 
was used to analyze the correlations between GM com-
position/KEGG functions and BP levels. A P value < 0.05 
was considered statistically significant, whereas a P 
value between 0.05 and 0.1 was considered a tendency. 
Receiver operator characteristic (ROC) curve analysis 
was performed, and GM functions with an area under 
the curve (AUC) ≥ 0.700 were selected for presentation.

Results
Demographic and clinical characteristics of the study 
subjects
As described above, 87 HTN subjects and 45 controls 
were finally recruited in this study. Table  1 shows the 
demographic and clinical characteristics of the study 
subjects grouped by sex and BP levels. With the excep-
tion of SBP, DBP and MAP (P < 0.05), the other param-
eters showed no significances between HTN and control 
females, as well as HTN and control males. Figure  2 

shows the correlations between any two characteristics of 
the enrolled females and males.

16S rRNA gene sequencing analysis of gut microbiota 
in the study subjects
After 16S rRNA gene sequencing, the species accumula-
tion curve of GM in Fig. 3A and the rarefaction curves in 
Fig.  3B showed a plateau of species richness, indicating 
that the sample numbers and sequencing depth herein 
covered enough information for the following analysis. 
Finally, we acquired a total of 1653 unique OTUs (rang-
ing from 208 to 416 per sample), and please refer to 
Fig. 3C ~ 3E for details.

Initially, we evaluated the α-diversities of GM in 
females and males, which were significantly lower in 
males compared with females (Fig.  4A). Moreover, the 
PCoA model for β-diversity analysis revealed a segrega-
tion between females and males (Fig. 4B). Therefore, the 
study subjects should be divided into female and male 
groups in the following analysis. Then, we conducted the 
α- and β-diversity analyses between the HTN and con-
trol subjects in females and males, respectively. However, 
the differences of GM diversities were not significant 
between either HTN vs. control females (Fig. 4C, D), or 
HTN vs. control males (Fig. 4E, F).

Table 1 Demographic and clinical characteristics of the enrolled subjects for GM 16S rRNA gene sequencing in this study

Data are presented as mean ± standard deviation (SD)

BMI body mass index, WC waist circumference, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure, FBG fasting plasma glucose, 
TG triglyceride, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, non-HDL-C non-high-density lipoprotein 
cholesterol

P values are from t-test depending on the homogeneity of variance, *P < 0.05

Variables Female P value Male P value

HTN control HTN control

Number 45 25 – 42 20 –

Age (year) 55 ± 7 51 ± 11 0.064 54 ± 11 48 ± 12 0.059

Height (cm) 153.2 ± 6.7 152.7 ± 7.7 0.800 165.7 ± 6.4 164.6 ± 8.5 0.564

Weight (kg) 56.9 ± 9.8 55.7 ± 9.8 0.626 64.3 ± 9.6 61.5 ± 8.4 0.262

BMI (kg/m2) 24.2 ± 3.6 23.8 ± 3.3 0.646 23.4 ± 3.2 22.7 ± 2.9 0.411

WC (cm) 85.9 ± 9.2 84.6 ± 8.5 0.554 86.0 ± 8.4 83.3 ± 7.2 0.213

SBP (mmHg) 145 ± 15 110 ± 7 0.000* 142 ± 17 112 ± 7 0.000*

DBP (mmHg) 82 ± 9 68 ± 6 0.000* 86 ± 8 69 ± 5 0.000*

MAP (mmHg) 103 ± 9 82 ± 6 0.000* 105 ± 9 83 ± 5 0.000*

FPG (mmol/L) 5.06 ± 0.94 5.09 ± 0.78 0.889 4.82 ± 1.00 4.81 ± 0.65 0.948

TG (mmol/L) 1.61 ± 0.55 1.51 ± 0.59 0.460 1.40 ± 0.70 1.27 ± 0.77 0.510

TC (mmol/L) 4.40 ± 1.07 4.36 ± 1.62 0.909 3.75 ± 0.70 3.53 ± 1.14 0.428

LDL-C (mmol/L) 2.49 ± 0.78 2.60 ± 1.31 0.653 2.07 ± 0.56 1.99 ± 0.72 0.630

HDL-C (mmol/L) 1.37 ± 0.44 1.20 ± 0.40 0.115 1.22 ± 0.40 1.07 ± 0.47 0.179

non-HDL-C (mmol/L) 3.03 ± 0.84 3.16 ± 1.56 0.646 2.53 ± 0.59 2.46 ± 0.91 0.774
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Fig. 2 Correlation analysis between demographic and clinical characteristics of the study subjects. Correlation analysis between demographic and 
clinical characteristics of the enrolled females (A) and males (B), respectively. Bar plots present the distribution of each parameter, and the scatter 
plots show the distribution for each two parameters. The numbers in this figure indicate the correlation coefficients of each two parameters by 
Spearman method in R, and the red dots and asterisks indicate the degrees of statistical significances, •P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001
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The differences of GM composition between HTN 
and control subjects were taxonomically evaluated at 
six different levels, including phylum, class, order, fam-
ily, genus and species, and the top 10 GM taxa with 
higher relative abundances were summarized in each 
level (Fig.  5). Consistent with previous results, the 
GM taxa were mostly included in four predominant 
phyla, which were Firmicutes, Bacteroidetes, Actino-
bacteria and Proteobacteria. The relative abundances 
of Firmicutes, Bacteroidetes, Clostridia, Bacteroidia, 
Clostridiales, Bacteroidales, Ruminococcaceae, Lach-
nospiraceae and Faecalibacterium were greater than 
0.100 at respective taxonomic levels in HTN and con-
trol females. Of note, the unidentified_Bacteria abun-
dance was greater in HTN females, whereas the relative 

abundances of Bacteroidia, Bacteroidales, Leuconosto-
caceae, Weissella and Weissella_cibaria were lower in 
HTN females compared with control females (Fig. 5A). 
LEfSe analysis indicated that unidentified_Bacteria was 
enriched in HTN females; while, Leuconostocaceae, 
Weissella and Weissella_cibaria were enriched in con-
trol females (Fig. 6A). In contrast, no significant differ-
ences of GM composition were noted between HTN 
and control males except for Erysipelotrichia, which 
was enriched in HTN males (Figs. 5B and 6B). Further-
more, the correlations between GM taxa and SBP/DBP/
MAP levels were investigated in females and males, 
respectively, and data were showed in Additional file 1: 
Tables S1 and S2 in the Additional files.

Fig. 3 The basic information of the 16S rRNA gene sequencing. The species accumulation curve of gut microbiota detected in HTN and control 
subjects in this study (A). The line indicates the averaged accumulated increase of detected OTUs vs. number of samples. The box-plots show 
the 25th, 50th and 75th percentile at each sample size. The rarefaction curve of the number of sequence reads and their corresponding number 
of OTUs in females and males in this study (B). Venn diagrams of observed OTU numbers in different comparison groups: females vs. males (C), 
HTN group vs. control group in females (D) and males (E), respectively. Every circle depicts the number of unique OTUs observed in one group. 
Overlapping OTUs shared by two groups are represented in the areas of intersection among corresponding circles
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Fig. 4 The diversity analysis of gut microbiota in the study subjects. Violin plots of α-diversity analysis in different comparison groups: females vs. 
males (A), HTN group vs. control group in females (C) and males (E), respectively. Each plot represents one index of the α-diversity distribution, 
including Shannon, Chao1, Simpson and ACE indices, for each comparison groups. Wilcoxon rank-sum test was used for the analysis of significant 
differences between different comparison groups. #P < 0.1, *P < 0.05, **P < 0.01. Plots of principal coordinate analysis (PCoA) based on the OTU 
level in different comparison groups: females vs. males (B), HTN group vs. control group in females (D) and males (F), respectively. Each square/
circle indicates one sample. The distance between samples represents the GM similarity or differences in the samples, and the PCoA analysis was 
conducted with unweighted UniFrac method



Page 9 of 17Lv et al. Journal of Translational Medicine          (2023) 21:429  

Metagenomic sequencing analysis of gut microbiota
After the preliminary analysis based on the 16S rRNA 
gene sequencing, we conducted further analysis of GM 
functions by performing matagenomic sequencing. 
A total of 36 HTN subjects (24 females and 12 males) 
and 18 controls (9 females and 9 males) were randomly 
selected for metagenomic analysis. Their demographic 
and clinical characteristics were demonstrated in Table 2 
grouped by sex and BP levels.

After GM gene and functional annotation aligned to 
the KEGG database, the functional changes in the micro-
bial community were evaluated. GM functions showed 
different patterns between HTN and control subjects 
in females and males, as presented in Fig. 7. Our results 
revealed that Cellular Processes and Human Diseases 
represented the enrichment in Level 1 KEGG functions 
in HTN females (P < 0.05), as well as Metabolism, Envi-
ronmental Information Processing and Organismal Sys-
tem (P < 0.1, Fig. 7A). In addition, the relative abundance 

Fig. 5 Relative abundances and comparative analysis of the taxonomic composition of gut microbiota in the study subjects. Relative abundances 
and comparative analysis of the taxonomic composition of gut microbiota in the enrolled females (A) and males (B), respectively. Bar plots show the 
relative abundances of the top 10 taxa at respective levels, including phyla, class, orders, family, genera and species, in HTN and control females and 
males. Each component of the cumulative bar chart indicates a phylum, a class, an order, a family, a genus or a species, respectively. The taxa with 
significant difference between groups are presented using Wilcoxon rank-sum test. #P < 0.1, *P < 0.05, **P < 0.01
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of Signal transduction in Level 2 and Two-component 
system in Level 3 were increased in HTN females com-
pared with controls (P < 0.05, Fig. 7B, C). Please refer to 
Fig.  7D ~ 7  F for detailed information about male sub-
jects. Notably, the relative abundances of Metabolism, 
Environmental Information Processing, Cellular Pro-
cesses, Human Diseases, Carbohydrate metabolism, 
Amino acid metabolism, Membrane transport, Cellular 
community – prokaryotes, ABC transporters and Quo-
rum Sensing were enriched in females compared to males 

(P < 0.05); please refer to Additional file 1: Figure S1 in the 
additional files for details. These data further supported 
our previous strategy of separation of female and male 
subjects in GM analysis.

To explore the implications of altered GM functions 
in HTN pathogenesis, Spearman’s correlation analy-
sis was introduced to evaluate the correlations between 
GM functions and BP levels. Significantly positive cor-
relations of Cellular Processes, Human Diseases, Signal 
transduction and Two-component system with SBP were 
found in females (P < 0.05, Fig.  8A). Besides, the cor-
relation of Human Diseases with MAP was also noted 
(P < 0.05, Fig.  8B). To further explore the altered GM 
functions that could facilitate the identification of HTN 
subjects, ROC curve analysis was introduced herein 
(Fig. 8C, D). The AUCs of GM functions in Level 1 that 
could differentiate HTN females from controls included 
Cellular Processes (0.796, 95% CI 0.620 ~ 0.916), Human 
Diseases (0.773, 95% CI 0.595 ~ 0.900), Environmental 
Information Processing (0.718, 95% CI 0.534 ~ 0.860), 
Organismal Systems (0.718, 95% CI 0.534 ~ 0.860) and 
Metabolism (0.704, 95% CI 0.520 ~ 0.849). Besides, Signal 
transduction (0.806, 95% CI 0.631 ~ 0.922), Two-compo-
nent system (0.806, 95% CI 0.631 ~ 0.922), Carbohydrate 
metabolism (0.722, 95% CI 0.539 ~ 0.863), Metabolism of 
cofactors and vitamins (0.718, 95% CI 0.534 ~ 0.860), and 
Amino acid metabolism (0.708, 95% CI 0.525 ~ 0.853) in 
Level 2 and 3 could effectively distinguish HTN females 
from controls.

Discussion
Hypertension (HTN) is a multifactorial and complicated 
condition [3, 4], and growing evidence suggests a novel 
role of GM in HTN onset and progression [16, 33, 34]. 
The adult GM consists trillions of microorganisms domi-
nated by phyla Firmicutes, Bacteroidetes, Actinobacteria 
and Proteobacteria, and maintains the gut immunity and 
whole-body homeostasis [35]; dysbiosis or imbalance 
in the GM community may have detrimental effects on 
health [36]. Several demographic factors, such as age, 
BMI, sex, ethnicity and culture, geographic location and 
socioeconomic environment, could influence both GM 
and BP levels [2, 15, 21, 24, 37–39], and it is important to 
consider these confounding factors in GM-related stud-
ies on HTN. Although biological sex could shape the host 
GM [40–42], available data directly linking GM to HTN 
based on sex differences are limited [21]. Therefore, resi-
dents with similar dietary habits living in Shaanxi Prov-
ince, China, were recruited to minimize the regional 
differences of GM composition in this study; and the dif-
ferences of GM characteristics between female and male 
subjects were analyzed. Of note, an obvious segregation 
of GM diversity between females and males was found, 

Fig. 6 Linear discriminant analysis (LDA) effect size (LEfSe) analysis 
of gut microbiota taxa in the study subjects. LDA scores indicate 
differentially represented taxa in HTN and control groups in females 
(A) and males (B), respectively. The logarithmic threshold for 
discriminative features was set to 2.0
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supporting a respective analysis for female and male sub-
jects in the subsequent GM analysis.

GM has been implicated in the pathogenesis of HTN 
by means of influencing sodium intake, production of 
certain metabolites, low-grade inflammation, etc. [37, 
43]. Epidemiological data have linked salt and fiber 
intake with changes in BP levels, suggesting a connec-
tion between gut and HTN [3, 4, 44–47]. High sodium 
intake could reduce the relative abundances of certain 
beneficial taxa such as Lactobacillus spp, and GM-pro-
duced metabolites may also influence sodium absorp-
tion [48]. Besides, an increased consumption of dietary 
fiber, which could modulate GM as well as be fer-
mented by GM, has been indicated to decrease BP lev-
els [45, 46, 48, 49]. The potent mechanism may involve 
the production of short-chain fatty acids (SCFAs), such 
as acetate, butyrate and propionate, which are mainly 
derived from the fermentation of indigestible carbohy-
drates and consumption of protein or peptide [15, 49–
52]. GM-produced SCFAs are rapidly absorbed in the 
colon and taken up by the liver or enter the circulation, 
and serve as precursors or substrates in various physi-
ological processes [53–55]. In rodent models, SCFAs 
were reported to bind to G-protein-coupled recep-
tors involved in the regulation of vasoreactivity and 
BP levels [56–58]. The negative correlations between 
the abundances of butyrate-producing bacteria and BP 

levels have been observed in obese pregnant women 
[59], and fiber and acetate supplementation could 
improve GM dysbiosis and increase the relative abun-
dances of certain bacteria that may play a protective 
role in HTN [49]. In summary, SCFAs and a range of 
SCFA-producing taxa could play potent roles in main-
taining GM homeostasis and BP levels [33, 60–62]. It is 
known that Bacteroidetes phylum members could pro-
duce high levels of acetate and propionate, whereas cer-
tain species in Firmicutes may produce high amounts 
of butyrate [63–65]. Consistent with these data, our 
results showed that the relative abundances of Bac-
teroidia and Bacteroidales were greater than 0.10 at 
respective taxonomic levels, and were lower in HTN 
females compared with controls. Besides, Leuconos-
tocaceae, Weissella and Weissella_cibaria were also 
enriched in control females. As Firmicutes phylum 
members, Leuconostocaceae, Weissella and Weissella_
cibaria are producers of SCFAs, and Weissella cibaria 
may have antihypertensive and antioxidant effects in 
spontaneously hypertensive rats models [66, 67], indi-
cating their potential for HTN prevention and further 
supporting our results herein.

Ruminococcaceae is involved in intestinal epithe-
lium maintenance as it is inversely correlated with 
intestinal permeability [68–70], and its abundance was 
found diminished in elderly HTN patients [71]. Lower 

Table 2 Demographic and clinical characteristics of the enrolled subjects for GM metagenomic sequencing in this study

Data are presented as mean ± standard deviation (SD)

BMI body mass index, WC waist circumference, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure, FBG fasting plasma glucose, 
TG triglyceride, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, non-HDL-C non-high-density lipoprotein 
cholesterol

P values are from t-test depending on the homogeneity of variance, *P < 0.05

Variables Female P value Male P value

HTN control HTN control

Number 24 9 – 12 9 –

Age (year) 54 ± 7 54 ± 7 0.925 57 ± 6 52 ± 4 0.040*

Height (cm) 153.1 ± 6.1 153.7 ± 7.4 0.822 167.2 ± 6.5 160.9 ± 7.3 0.052

Weight (kg) 58.7 ± 10.1 55.2 ± 11.0 0.395 66.3 ± 9.8 58.9 ± 11.2 0.126

BMI (kg/m2) 25.0 ± 3.7 23.1 ± 2.9 0.190 23.7 ± 2.9 22.7 ± 3.2 0.453

WC (cm) 88.5 ± 9.8 85.1 ± 11.4 0.405 89.2 ± 9.5 82.4 ± 9.3 0.118

SBP (mmHg) 145 ± 17 105 ± 8 0.000* 136 ± 12 112 ± 6 0.000*

DBP (mmHg) 83 ± 9 65 ± 7 0.000* 83 ± 6 69 ± 6 0.000*

MAP (mmHg) 103 ± 9 78 ± 5 0.000* 100 ± 5 83 ± 5 0.000*

FPG (mmol/L) 5.24 ± 1.15 5.38 ± 0.74 0.740 4.58 ± 0.67 4.84 ± 0.88 0.447

TG (mmol/L) 1.71 ± 0.62 1.68 ± 0.83 0.898 1.40 ± 0.78 1.05 ± 0.55 0.255

TC (mmol/L) 4.35 ± 1.14 5.39 ± 1.99 ± 0.068 3.51 ± 0.95 3.62 ± 0.86 0.780

LDL-C (mmol/L) 2.45 ± 0.82 3.36 ± 1.70 0.155 1.88 ± 0.78 2.01 ± 0.63 0.702

HDL-C (mmol/L) 1.26 ± 0.42 1.34 ± 0.46 0.662 1.11 ± 0.44 1.22 ± 0.48 0.559

non-HDL-C (mmol/L) 3.09 ± 0.90 4.05 ± 2.16 0.226 2.40 ± 0.69 2.40 ± 0.77 0.987
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abundance of Ruminococcus may associate with HTN 
[72–74], and a particular reduction in Ruminococcus was 
also found in SD rats with minocycline-induced pro-
grammed HTN [75]. However, Kim SR et  al. reported 
a higher abundance of Ruminococcus torques in HTN, 
which was significantly associated with SBP [15]; while, 
Dan et  al. showed increased Ruminococcaceae and 
decreased Ruminococcus in HTN subjects [76]. In this 
study, Ruminococcus_bromii, as a member of Firmicutes 
and Ruminococcus, was positively correlate with DBP. In 
other words, certain inconsistent results exist, which may 

be due to variations in genetics, sex, diet and lifestyle, 
geographical differences or other unknown factors [37]. 
Moreover, these data implicated a more important role of 
individual GM taxon than phyla in BP regulation [21].

GM-related studies indicate that GM could exert 
potential influences on various diseases [35, 77–80], 
and certain GM characteristics could be utilized as non-
invasive biomarkers for early diagnosis in clinical prac-
tice [81, 82]. As one of the most prevalent CVDs and 
a leading risk factor of other CVDs, HTN is certainly 
accompanied by GM alterations [83–85]. Exploration 

Fig. 7 Relative abundances and comparative analysis of the annotated KEGG functions of gut microbiota in the study subjects. Relative 
abundances and comparative analysis of the annotated KEGG functions of GM at three levels in HTN and control groups in females (A–C) and males 
(D–F), respectively. The KEGG functions with significant differences between groups are presented with Wilcoxon rank-sum test. #P < 0.1, *P < 0.05, 
**P < 0.01
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of the altered KEGG functions of GM in HTN may help 
illustrate its functional roles in HTN pathogenesis, and 
might provide a new perspective on the interpretation 
of HTN and additional auxiliary diagnosis in the future 
[86]. In this study, we randomly selected HTN and con-
trol subjects from the recruited females and males, who 
also lacked significant differences in the majority of these 
demographic and clinical characteristics, for metagen-
omic sequencing analysis. The relative abundances of 
Human Diseases, Signal transduction and Two-compo-
nent system were increased in HTN females compared 
with controls, positively correlated with increased SBP 

and MAP levels, and contributed to the effective identi-
fication of HTN females from controls. Besides, our data 
indicated that the altered GM functions differed between 
HTN females and males compared to respective controls, 
further supporting the notion that females and males 
should be separately analyzed in GM-related analysis. 
In terms of sex differences in this study, we found higher 
α-diversities of GM in females, as well as an obvious seg-
regation in β-diversity between females and males, and 
the GM composition and functions were also different 
between female and male subjects, which could be con-
tributed by genetic and epigenetic factors, sex steroid 

Fig. 8 Exploration of the altered KEGG functions of gut microbiota in the enrolled HTN females. Correlations of altered KEGG functions of gut 
microbiota with SBP (A) and MBP (B) levels in the enrolled females. The horizontal axis represents the relative abundances of KEGG functions, and 
the vertical axis represents different BP levels. Data was analyzed and plotted with Spearman method in R. Receiver operator characteristic (ROC) 
curve analysis of identification of HTN females from controls based on KEGG functions of gut microbiota (C, D)
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milieu, gonadal status, dietary and lifestyle-related fac-
tors, etc. [40, 87–89]. Specifically, previous data indicated 
that the primary sex steroid hormones, such as estrogen, 
progesterone and testosterone, may participate in the 
regulation of GM diversity, composition and function 
[38, 40, 89]. For example, it was reported that estrogen 
could promote the growth of certain beneficial bacteria 
such as Lactobacillus and Bifidobacterium, which were 
also considered to improve the cardiovascular health 
[18, 89–91]. Moreover, sex differences also exist in life-
style-related factors, such as dietary preferences, sex*diet 
interactions and physical activity levels, which may influ-
ence the GM characteristics and HTN onset and pro-
gression differently in females and males [18, 19, 42]. The 
present study was conducted in northwestern China, and 
regional variations in diet, lifestyle and environmental 
factors may potentially contribute to the observed differ-
ences in GM characteristics between females and males. 
It is crucial to note that the specific mechanisms under-
lying the observed differences herein are multifactorial 
and complicated, and may not be fully elucidated. Fur-
ther researches are needed to better reveal the potential 
causes for the observed sex-based differences in GM, to 
elucidate the underlying mechanisms, and to facilitate 
understanding of the implications of GM for health and 
diseases, including HTN.

Although our data revealed certain GM changes in 
HTN subjects, it has several limitations. First, this inves-
tigation was conducted with a limited sample size due 
to the practical limitations of data availability. Second, 
the subjects were recruited in a single hospital and were 
grouped based on BP levels alone. Third, BP measure-
ment in clinic is used for HTN diagnosis [92] rather than 
office BP monitoring [9]. Nevertheless, certain confound-
ing factors were taken into consideration herein, such 
as genetics, geography, sex and treatment-naive recruit-
ment, thus our data were reliable despite some other or 
unknown factors. Furthermore, evidence directly linking 
GM and sex differences in BP regulation is rather lim-
ited, and the role of GM in sex-dependent HTN is only 
hypothesized [2, 21, 22, 42]. Our data could provide 
evidence of fecal GM characteristics in HTN females 
and males, respectively, which might fill in the gap to a 
certain degree. However, this is only a cross-sectional 
clinical study in China, and it is infeasible to draw any 
definite conclusions about the causal relationships 
between GM and HTN based on sex differences. Issues 
regarding the differences in GM profiles of HTN females 
and males remain to be addressed in future studies [72], 
and detailed evaluations are needed in larger numbers of 
treatment-naive HTN patients.

Conclusions
In conclusion, the pathogenesis of HTN is multifactorial 
and complicated, and evidence suggests that GM may 
play a novel role in HTN onset and progression. This 
study provide the first evidence of GM characteristics 
and alterations in HTN females and males, respectively, 
in northwestern China, further supporting the theory 
that GM dysbiosis underlies HTN pathogenesis. Future 
studies are needed to elucidate the underlying mecha-
nisms and potential therapeutic interventions targeting 
GM for HTN prevention and management [14].
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