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Abstract 

Purpose To evaluate a new class of blood-based biomarkers, anti-frameshift peptide antibodies, for predicting both 
tumor responses and adverse immune events to immune checkpoint inhibitor (ICI) therapies in advanced lung cancer 
patients.

Experimental design Serum samples were obtained from 74 lung cancer patients prior to palliative PD-(L)1 thera-
pies with subsequently recorded tumor responses and immune adverse events (irAEs). Pretreatment samples were 
assayed on microarrays of frameshift peptides (FSPs), representing ~ 375,000 variant peptides that tumor cells can be 
informatically predicted to produce from translated mRNA processing errors. Serum-antibodies specifically recogniz-
ing these ligands were measured. Binding activities preferentially associated with best-response and adverse-event 
outcomes were determined. These antibody bound FSPs were used in iterative resampling analyses to develop pre-
dictive models of tumor response and immune toxicity.

Results Lung cancer serum samples were classified based on predictive models of ICI treatment outcomes. Dis-
ease progression was predicted pretreatment with ~ 98% accuracy in the full cohort of all response categories, 
though ~ 30% of the samples were indeterminate. This model was built with a heterogeneous sample cohort from 
patients that (i) would show either clear response or stable outcomes, (ii) would be administered either single or com-
bination therapies and (iii) were diagnosed with different lung cancer subtypes. Removing the stable disease, combi-
nation therapy or SCLC groups from model building increased the proportion of samples classified while performance 
remained high. Informatic analyses showed that several of the FSPs in the all-response model mapped to translations 
of variant mRNAs from the same genes. In the predictive model for treatment toxicities, binding to irAE-associated 
FSPs provided 90% accuracy pretreatment, with no indeterminates. Several of the classifying FSPs displayed sequence 
similarity to self-proteins.

Conclusions Anti-FSP antibodies may serve as biomarkers for predicting ICI outcomes when tested against ligands 
corresponding to mRNA-error derived FSPs. Model performances suggest this approach might provide a single test to 
predict treatment response to ICI and identify patients at high risk for immunotherapy toxicities.
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Introduction
Immune checkpoint inhibitors (ICIs) are arguably the 
most singular advancement in cancer treatment since 
chemotherapy became the standard of care many decades 
ago. Currently the most frequently used immunothera-
pies target the PD-(L)1 pathway [1]. Over expression of 
this ligand on many tumors enables inhibitory immune 
signaling in the tumor microenvironment (TME). ICIs 
have been widely used for non-small cell lung cancer 
(NSCLC) following the demonstration of significant 
anti-tumor activity with anti-PD-(L)1 therapy in meta-
static patients [2–6]. Lung cancer is the leading causes of 
cancer deaths world-wide [7]; NSCLC represents 85% of 
this population [8]. Several anti-PD-(L)1 agents adminis-
tered as monotherapies or in combination regimens have 
received FDA approval [9, 10]. They are now first-line 
therapies for lung and several other cancers [11]. None-
theless, current enthusiasm is tempered by low patient 
response rates [12, 13]. Concomitantly, costs are high and 
immune-related adverse effects (irAEs) can occur. These 
side effects arise from aberrant activation of autoreac-
tive T cells and can affect nearly every organ, increasing 
the risk of therapy-related mortality and morbidity. Their 
onset and duration are unpredictable and predisposing 
factors for developing them remain unclear [14, 15].

For all cancer patients, the level of PD-L1 protein 
expression on the surface of biopsied tumor cells, 
assessed by immunohistochemistry (IHC), serves as a 
guidepost for recommending treatment [16]. However, 
PD-L1 is an imperfect biomarker since protein expres-
sion i) is a continuous variable, ii) carries temporal and 
spatial heterogeneity within the tumor and iii) scoring 
criteria are not standardized [17]. A significant unmet 
need in oncology is a robust, simple test to accurately 
predict patient responses to ICI therapy and their risk of 
experiencing irAEs.

Other biomarkers currently in clinical use as predic-
tive markers for response to ICIs are tumor mismatch 
repair deficiency (dMMR), microsatellite instability-
high (MSI-H) status and high tumor mutational bur-
den (TMB) [16, 18–20]. The higher mutational loads 
associated with all three of these states are thought to 
increase the number of neoantigens expressed by the 
tumor, thereby increasing potential anti-tumor activ-
ity. This set of response biomarkers requires tumor 
biopsies for DNA extraction, and status is assessed by 
comprehensive genomic profiling by NGS or targeted 
whole-exome sequencing. Results have been helpful 

in decision making even though predictive values are 
modest [21–25]. Some promising tests under develop-
ment use RNA extracted from tumor tissue for expres-
sion profiling [26, 27] or sequencing of targeted gene 
panels [28, 29]. Non-sequencing approaches to TME 
assessments have included measuring T cell diversity 
[30] or quantifying tumor-infiltrating T lymphocytes 
[31]. However, tumor tissue is not always available or 
existent and intratumor heterogeneity is confounding 
[19]. A liquid biopsy test is now commercially available 
based on extracting circulating free tumor (cf )DNA 
from a blood sample and sequencing a panel of genes 
combined with determining MSI-H and TMB status 
[32]. This and several other recently developed blood 
tests show strong concordance with the biopsied tissue-
based versions of the same sequencing analyses [32, 33] 
though modest correlations with ICI response. Other 
cfDNA sequencing-based approaches being explored 
rely on microRNA and methylated DNA [34, 35]. In 
sum, clinical biomarkers correlated with ICI response 
in either blood or tissue play a role in guiding treat-
ment decisions, but each has limitations [19, 36]. A 
simple test for accurate prediction of a patient’s benefit 
from ICI treatment is desirable. Furthermore, a simple 
test for predicting irAEs is needed, since they increase 
the risk of therapy related mortality and morbidity [11, 
37, 38]. Identifying these patients can help clinicians 
tailor treatment plans and minimize interruptions, 
help recognize toxicities early, and prepare mitigation 
strategies.

We have studied a distinct source of cancer-specific 
biomarkers: antibodies to neoantigens generated by 
translation of RNA-level errors. In all cells, errors in 
RNA transcription and processing occur more than 
100-fold more frequently than errors in DNA replica-
tion [39]. Error rates in tumors are even further esca-
lated relative to healthy cells, and the normal repair 
systems are compromised or overwhelmed. Conse-
quently, many of these RNA errors are translated into 
frameshifted peptide variants. For example, exon-skip-
ping during splicing can create transcripts that result in 
alternative protein coding frames. Indels resulting from 
RNA polymerase slippage through microsatellite loci 
can also create transcripts that will lead to the transla-
tion of alternative protein coding frames. Downstream 
of these variant transcripts, the incorrect amino acids 
create aberrant C-terminal protein tails. As these are 
neoantigens, not self-antigens, they are highly likely to 
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elicit T and B cell responses. Frameshift neoantigens 
(FSN) arising from RNA mis-processing in tumor cells 
have been shown to generate highly immunogenic pep-
tides in mice and dogs [40].

We have shown that peripheral-blood antibodies to 
portions of these FSNs, termed frameshift peptides 
(FSPs), are measurable in cancer patients as well as in 
mouse tumor models [40–42]. When tumor-bearing 
mice are vaccinated with FSPs that their tumors express, 
therapeutically protective responses are achieved [40, 
41]. We hypothesized that the diversity of antibod-
ies against FSPs in cancer patients would be sufficiently 
informative as predictive biomarkers to classify them by 
future ICI outcomes.

To search this immense biomarker cache, compris-
ing the millions of FSPs a tumor might produce, we have 
developed a technology to functionally screen 100’s of 
thousands of them simultaneously. We designed and pro-
duced high-density, in situ-synthesis peptide microarrays 
that display informatically predicted tumor FSPs. Each 
array contains 374,082 15-mer peptides corresponding 
to 190,865 predicted frameshift neoantigens that could 
be generated from (i) exon splicing errors, (ii) exon 1 
translational mis-initiation or (iii) transcriptional slip-
page within microsatellite regions [43]. An out-of-frame 
translation of an mRNA produces a deviant peptide 
string. We used these microarrays in massively paral-
lel, competitive serological assays to detect antibodies in 
patients’ blood that recognize the variant ligands. These 
quantitative measurements of functional antibody activ-
ity are performed on samples collected prior to PD-(L)1 
ICI therapy regimens. Here we report on the feasibility 
of this FSP microarray assay for predicting lung cancer 
patients’ responses and likelihood of irAE toxicities, in a 
single test.

Methods
Blood collection and processing
Peripheral blood samples were commercially collected 
and biobanked by Indivumed, Inc. (Hamburg, Germany). 
All blood samples were collected at baseline, prior to 
ICI therapy. Tumor radiologic response was determined 
using the Best Response Evaluation Criteria in Solid 
Tumors 1.1 (RECIST v1.1). “Responders” are defined as 
radiologic complete response (CR) and partial response 
(PR) [44]. “Non-progressors” are defined as responses of 
CR, PR and also stable disease (SD). Patient irAEs were 
evaluated as grades (G) 0–4 [45]. All participants pro-
vided written informed consent for the collection, and 
transfer to our labs was approved under IRB Ci-002 from 
WCG WIRB. Purchased aliquots were received on dry 
ice and stored at – 80 °C prior to use.

FSP array serological assay
High density FSP arrays were in-situ synthesized on sili-
con wafers using t-BOC chemistry and photolithography 
as previously described [43, 46]. The wafers were diced 
into 13 slides of 75 mm x 25 mm. Each slide contains 16 
peptide arrays of 7.67 mm × 7.67 mm, displaying 374,084 
peptides. To prepare for the sero-assay, serum samples 
were diluted 1:50 into an incubation buffer (0.75% casein 
in phosphate buffered saline with 0.25% tween20, PBST). 
The diluted sera samples (200µl) were incubated in indi-
vidual arrays using a gasketed cassette at room tempera-
ture for 24 h. Following 3 washes with 1 × PBST, peptide 
bound antibodies were detected by incubation with 4 nM 
of Dylight 550 labeled goat anti-human Fc IgG secondary 
antibody (ThermoFisher Scientific, Cat# SA5-10,135) in 
0.75% casein/PBST at 37  °C for 1 h. Slides were washed 
3 times with 1 × PBST, twice with  dH2O and once each 
with 40% and 100% isopropanol. Slides were dried by 
centrifuging at 800 RPM for 2 min. The fluorescent signal 
of bound secondary antibody was detected in an InnoS-
can 910 laser scanner (Innopsys, France) and the raw 
relative fluorescent units (RFU) were extracted and tabu-
lated using MAPIX (Innopsys, France) gridding software.

As control for our peptide synthesis platform, the 
arrays include peptides corresponding to well established 
monoclonal antibody epitopes and immunogenic pep-
tides from several viruses (HCV, HSV, and HIV). Test 
arrays are assayed with titrations of i) the correspond-
ing monoclonals or ii) sera-converted samples using the 
same protocol described above. Strong antibody-dose 
dependent signal on the cognate epitopes, and only back-
ground signal on the non-cognate peptides and FSPs, are 
confirmed prior to wafer use for sera analyses [46].

Statistical methods
A total of 74 serum samples from unique patients were 
analyzed. For the response analyses, patients were 
required to have participated in immune checkpoint 
inhibitor therapy for at least 6 weeks prior to radiologic 
assessments. This excluded 8 samples, leaving 66 for eval-
uation. Samples were analyzed for response correlations 
as a full cohort as well as subgroups intended to reduce 
cohort heterogeneity stemming from patients with stable 
disease, chemotherapy co-treatment or SCLC subtype 
diagnosis. For the adverse event analysis, 14 patients of 
the 74 were removed because irAE annotations were not 
available. For the remaining 60 samples, all irAEs and the 
time of event since treatment were recorded.

Serum samples were run in quadruplicate on the FSP 
arrays as described. For each of the samples, peptides 
were scored as patient-positive for the presence of anti-
body binding if at least 2 of the 4 replicate arrays showed 
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signal over 20,000 RFUs or approximately 50-fold above 
background signal. This returned 5445 peptides from the 
374,084 screened. Only these 5445 FSPs were included 
in the study’s statistical analyses. Across the 66 samples 
used for the response analysis, 3722 of the 5445 FSPs 
were patient-positive in 3 or more of the 66 serum sam-
ples. Across the 60 samples used for the adverse event 
analysis, 4209 of the 5445 FSPs were patient-positive in 
3 or more of the serum samples. These 3722 and 4209 
were the only peptides sufficiently represented in the 
cohort to be included in the respective chi-square con-
trast analyses.

The FSP sero-assays do not generate log normal dis-
tributions. Although the array readout of fluorescence 
is continuous, the biological measurements of FSPs are 
discontinuous. Another characteristic is a sparseness of 
positive binding readouts. For any single serum sample, 
only ~  103 of the peptides on the array will typically dis-
play reproducibly positive signals 50-fold above back-
ground; the remaining FSPs on the array will be scored 
negative. This drives distributions that are bimodal and 
positively skewed. As a result, linear models commonly 
used to analyze microarray data were not considered 
optimal.

For the initial step in the analysis, a resampling method 
was used wherein 80% of the samples were selected with-
out replacement and a chi-square test was performed 100 
times. Peptides with p-values less than 0.05 in at least 
70 of the 100 subsets were retained for the model. Each 
peptide was assigned as associated with one or the other 
of a contrast group based on which group had scored 
more positive samples for the peptide. For example, if a 
retained peptide had 10 positive samples from responder 
patients and zero from non-responder patients, the pep-
tide would be assigned as a responder-associated peptide. 
This example indicates an antibody response preferen-
tially present in responder patients. The peptides were 
contrast coded as either + 1 or − 1 depending on whether 
it was associated with responders or non-responders, 
respectively. If a sample was not scored positive for a 
peptide, its score for that peptide was zero. The sum of 
the scores for all model peptides was calculated for each 
patient sample. This score was used to classify a sample 
into a predicted outcome group. The summed score for 
a sample could be zero either because it did not score 
positive for any of the model peptides or because it was 
positive for an equal number of peptides associated with 
both groups of a contrast. These samples were considered 
indeterminate.

For adverse event modeling, a similar analysis was 
performed. Cohort resampling of 80% for feature selec-
tion were performed at least 100 times. Unlike the 
response analysis, a unidirectional scoring was used 

for the holdout samples because the 11 peptides recur-
rently identified as differentially bound in 70 of the 100 
iterations were exclusively associated with the high irAE 
patient samples. Samples scoring as positively bound for 
1 or more of the 11 high irAE-associated peptides were 
model-predicted to experience an irAE. The response 
and adverse event analyses were independently repeated 
for validation.

Results
A cohort of 74 serum samples from patients with 
advanced lung cancer were tested, comprised of 86% 
NSCLC and 14% small cell lung cancer (SCLC). Follow-
ing blood sample collection, each patient was treated pal-
liatively with either anti-PD-1 or anti-PD-L1 monoclonal 
antibody as ICI monotherapy (60%) or in combination 
regimens with chemotherapy (40%). Best radiologic 
responses were categorized per RECIST v1.1 as CR, PR, 
SD or PD [44]. Toxicities were categorized as events 
with guidelines for treatment suspension or re-dosing 
(G 2–4) or not (G 0, 1) [47, 48]. The distribution of treat-
ment outcome categories across the cohort is shown in 
Table 1. Individual tumor responses and irAEs during the 
patients’ time in the trial are reported in Additional file 1: 
Table S1. Detailed treatment regimens, response assess-
ments, toxicity timepoints, and additional patient clinical 
information are provided in Additional file 1: Table S2.

Best radiologic response prediction
For developing a model for response to ICI treatment, 8 
samples were excluded that had received treatment for 
less than 6 weeks. The remaining 66 lung cancer patient 
serum samples were analyzed. These were assigned 
by best response criteria as non-progressors: com-
plete response, partial response, stable disease (CR/PR/
SD, n = 39) and progressors: progressive disease (PD, 
n = 29). Stable disease patients have been categorized 

Table 1 Summary of ICI outcomes within the lung cancer 
cohort

Best Radiologic Response Category n (%)

Complete response 1 (1)

Partial response 25 (34)

Stable disease 13 (18)

Progressive disease 27 (36)

Treatment < 6 weeks 8 (11)

Toxicity grade n (%)

irAE G 0 or 1 42 (57)

irAE G 2–4 18 (24)

Unknown 14 (19)
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with either responders or non-responders in different 
studies because assessments are often mixed relative to 
the response criteria, making these an ambiguous group 
[49]. For our initial analysis we included SD patients with 
the responders and therefore this inclusive model more 
accurately reflects progression versus non-progression of 
disease.

For model development, 80% of the serum samples 
were randomly pulled as an analytic sampling set. Chi-
square analyses were conducted for differential FSP 
binding activity between the non-progressors and pro-
gressors. Random sampling of another 80% subset and its 
analysis was repeated 100 times. Using this iterative resa-
mpling approach, we identified 66 non-progressor-asso-
ciated FSPs and 160 progressor-associated FSPs, such 
that both positive and negative biomarkers of response 
were being measured (Additional file  1: Table  S3). The 
226-peptide model was used to calculate an aggregate 
contrast score for each sample, which would define its 
predicted outcome group. A sample was classified if it 
had a non-zero score as described in the Methods. An 
outcome was predicted for 69.7% of total patients with 
97.8% accuracy. The remaining 30.3 of the samples were 
considered indeterminate because these samples were 
not bound to any of the model peptides or because their 
cumulative model binding score was zero. These results 
are visually depicted in Fig. 1 and tabulated in Table 2. A 
list of FSPs comprising this model is provided (Additional 
file 1: Table S5). Two of the serum samples in the cohort 
were collected from patients with epidermal growth fac-
tor receptor (EGFR)-mutant NSCLC, which are clini-
cally observed to be non-responders (or progressors). 

Consistent with this, the predictive model classified both 
as progressors. To test the robustness of the resampling 
approach, the entire analysis was repeated; nearly identi-
cal peptides and the similar model metrics were obtained 
(data not shown).

Since SD patients can present with inconsistent 
readouts for the factors comprising best response cri-
teria [49], we excluded these samples and explored 
a response model with the remaining 53 samples. We 
considered this a more clear responder/non-responder 
contrast. For model development, two-factor chi-
square tests were used to identify FSP binding activi-
ties associated with responders or non-responders. 
We found 59 responder-specific FSPs and 207 non-
responder-specific FSPs (Additional file  1: Table  S4). 
Of these 266 FSPs, 173 overlapped with the 226 pep-
tides of the all-response model. This less heterogeneous 
response model was 100% accurate in predicting 78.7% 
of the samples. This is displayed in Fig. 2, top panel. The 
same algorithm was next used to predict the 13 pre-
treatment samples from patients that would have SD 
outcomes and had been left out of model building. Four 

Fig. 1 The ordered-scores map displays performance of the predictive model for disease progression compared to observed outcomes. Both 
observed and predicted non-progressor samples and FSPs are shown in green; observed and predicted progressor samples and FSPs are shown in 
red; indeterminate samples are in white. FSPs are represented on the X-axis; predicted outcomes of patients are shown on the right Y-axis; observed 
outcomes of patient are represented on the left Y-axes. NProg-FSPS non-progressor associated FSPs; Prog-FSPs progressor associated FSPs; Indtrm 
Indeterminate

Table 2 Performance matrix of disease progression model

Predicted
Non-
progressor

Predicted
Progressor

Indeterminate

Observed
Non-progressor

23 1 15

Observed
Progressor

0 22 5
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of them were predicted as responders (30%), 6 (47%) as 
non-responders and 3 (23%) were indeterminate. The 
distribution of SD patient classification is consistent 
with the known diversity of their response assessments. 
This is shown in Fig. 2, lower panel. This response mod-
el’s performance is summarized in Table  3 and a list 
of FSPs comprising the model is provided (Additional 
file 1: Table S5).

Another type of heterogeneity in the 66-patient inclu-
sive responses cohort was treatment regimen. Each 
received anti-PD-(L)1 but 24 patients also received 
chemotherapy at the same time (Additional file  1: 
Table  S2). Since there is likely contribution from both 
components (chemotherapy and immunotherapy) to 
therapy outcomes, we explored the performance of a 

model comprised of the 40 monotherapy patients. This 
model carried a significantly greater number of inform-
ative peptides (525 versus 226), with 125 overlapping 
with the 66 sample inclusive response model. Despite 
its basis on a smaller cohort, prediction accuracy was 
93.8% and 80% of the samples could be classified, as vis-
ualized in Fig. 3. The results are detailed in Table 4 and 
a list of FSPs comprising this model is provided (Addi-
tional file 1: Table S5).

SCLC is histologically and clinically distinct from 
NSCLC [50]. Our 66-patient cohort included 9 with 
SCLC. To explore the impact of subtype heterogeneity, 
we built a model with the 57 NSCLC patient samples. 
This model carried a similar number of peptides (281) 
relative to the full cohort model, was 100% accurate and 
showed a marginal improvement in sample classifica-
tion coverage (73.2%). The list of FSPs comprising this 
model is provided (Additional file 1: Table S6).

Fig. 2 The ordered-scores map displays performance of the model for ICI response trained without SD patient samples. Top panel shows 
predictions from the peptides derived from the iterated 80% resampling analysis; lower panel displays independent model testing on serum 
samples from SD patients. Both observed and predicted responder samples and responder associated FSPs are shown in green; observed and 
predicted non-responder samples and non-responder associated FSPs are shown in red. Observed stable disease samples are shown in tan. Axes 
labels and other abbreviations are defined in Fig. 1. R-FSP, responder associated FSPs; NR-FSPs, non-responder FSPs

Table 3 Performance matrix of response model built on 
responders and non-responders then tested on stable disease 
patient samples

Predicted
Responder

Predicted
Non-
Responder

Indeterminate

Observed
Responder

17 1 8

Observed
Progressor

0 24 3

Observed
Stable Disease

4 6 3

Table 4 Performance matrix of predictive model of disease 
progression in patients to be treated with ICI monotherapy 
regimens

Predicted 
non-
progressor

Predicted 
progressor

Indeterminate

Observed non-progressor 19 1 3

Observed Progressor 1 11 5
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The Venn diagram in Fig.  4 displays the number of 
overlapping and unique FSPs comprising these 4 mod-
els of predicted response outcomes. There are 120 
peptides shared among all of them; the monotherapy 
model has the largest number (389) of unique classify-
ing peptides.

In summary these results show that accurate pre-
dictive models of ICI treatment response can be built 
using differential binding profiles of anti-FSP antibod-
ies queried against their peptide ligands. Reducing the 
heterogeneity of the patient samples with respect to 

radiologic response criteria, therapy complexity or can-
cer subtype increased the proportion of samples that 
can be classified.

irAE prediction
For developing a predictive model for irAE, we grouped 
clinically symptomatic irAEs (G 2–4) for the develop-
ment of irAE prediction model. This is the population of 
patients for whom treatment modifications could be rec-
ommended if anticipated. Of the 60 patient samples for 
which we had irAE annotation, 18 patients were reported 
to have had irAEs of G 2–4 and 42 patients had G 0 or 1. 
We performed the same chi-square scoring on 80% resa-
mpling without replacement at least 100 times. We iden-
tified 11 irAE classifying peptides which were recurrent 
in at least 70 of the 100 resampling iterations (Additional 
file  1: Table  S7), and all of these were exclusively posi-
tive in the symptomatic irAE group. This diverges from 
the response to treatment analyses in which there was a 
balance of positive FSPs correlated with both groups of 
a contrast (e.g. responders and non-responders). This 
unidirectional structure of the FSP binding activity sug-
gested a one-sided scoring approach could be used rather 
than the two-sided scoring with indeterminates. The 60 
samples were contrast-scored against the 11 irAE-spe-
cific FSPs. Patient samples with a threshold number of 
positive model FSPs were classified into the symptomatic 
irAE group with 87.5% sensitivity and 91% specificity. 
Samples from 7 patients with observed symptomatic (G 
2–4) events did not meet the threshold for positive model 
peptides. Since these were defaulted to the asymptomatic 
(G 0,1) irAE group, prediction accuracy was 90% with 

Fig. 3 The ordered-scores map displays performance of the model for predicting disease progression following anti-PD-(L)1 monotherapy. Sample 
color codes, FSP color codes and axes labels and other abbreviations are defined in Fig. 1

Fig. 4 Venn diagram of FSPs shared across 4 models of outcome 
prediction following ICI therapy. Parenthetic numbers indicate model 
sizes. numbers within venn petals indicate unique versus overlapping 
FSPs among the models
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no indeterminates. To confirm robustness, the entire 
resampling analysis was repeated, and similar results 
were achieved. In Fig. 5, these results are displayed in a 
bar graph. This representation highlights the one-sid-
edness of positive features and allows the samples to be 
ordered by their prediction score. Table 5 shows the 2 × 2 
prediction model matrix. None of the irAE model pep-
tides overlapped with any of those in the tumor response 
models.

For the irAEs, we were unable to explore the impact of 
more homogeneous lung cancer subtypes or treatments 
because holding out the corresponding samples reduced 
the symptomatic irAE group size below that required for 
a statistically meaningful analysis.

In summary these results show that the same antibody 
binding profiles established on the FSP arrays used for 
best response prediction can also be analyzed for devel-
oping a predictive model for experiencing irAEs.

Informatic analysis
For the full cohort, all-response model, a mapping 
analysis of the 226 informative peptides to the human 
reference genome was conducted. We found the infor-
matically predicted RNA-error derived neoantigens of 

3 genes were each the source of 2 different classifying-
FSPs. For 1 of these 3 neoantigen source genes, its 2 asso-
ciated classifying-FSPs mapped to different parts of the 
same predicted neoantigen (Table  6). The positive scor-
ing of multiple FSPs derived from RNA-errors in the 
same genes is consistent with a biological relevance to 
the antibody measurements.

A gene ontology (GO) Oncology analysis was used to 
assess whether there was any enriched molecular or cel-
lular function or components in the 224 source genes 
corresponding to the mRNA mis-processing events that 
would have produced the 226 classifying FSPs in the full-
cohort response model. No enriched pathway was found. 
However, the source genes of some of the FSPs used to 
build the predictive models of clear response-only (no 
SD) and monotherapy-only (no combination therapy) 
were enriched in a few pathways (Additional file  1: 
Table S8).

The FSPs are predicted as tumor cell errors, however 
the frameshifted variants generate random peptides 
that might share identity or similarity with a self-protein 

Fig. 5 Bar graph displays ordered, positive contrast scores for irAE prediction. A set of 11 irAE-specific FSPs were statistically selected to build a 
model for irAE prediction. Patients with 1 or more positive FSPs (left Y axis) are predicted to have irAE ≥ G 2. Red bar: patient with observed irAE ≥ G 
2. Green bar: patient with observed irAE = G 0 or G 1. Black line: cut-off score for irAE ≥ G 2 prediction. Predictions are shown on right Y-axis

Table 5 Performance matrix of predictive model for irAEs

Predicted symptomatic 
irAE

No predicted 
symptomatic 
irAE

Observed symptomatic 
irAE

14 4

No observed sympto-
matic irAE 

2 40

Table 6 Response-classifying FSPs from neoantigens predicted 
from the same genes

a 2 classifying FSPs map to the same predicted frameshift neoantigen of this 
gene

Response FSP FSP related gene

PAPGEPWEAGGPHAG DOK7a

PPPAFFSACPVCGGL

PAPFWPARPLLSAGI CBARP

PAPLQALLGRPPAPQ

GPPPEEAADGTAASN FDXR

PPGPRGHLRETACAL
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and potentially induce an autoimmune response. The 11 
FSPs predictive of G 2–4 irAEs were blasted to the latest 
(08/19/2022) reference protein sequences of the GRCh38 
with local BLAST + under the default setting of blastp-
short. Four of these classifying FSPs carry sequence 
strings of 8–10 amino acids with at least 80% identity to 
7 self-proteins, including 1 FSP (DPPASASQ) with 100% 
identity to 4 proteins (Table  7). A GO Oncology analy-
sis of these 7 genes showed no biological enrichments. 
However, most of these genes are preferentially expressed 
in organs often affected by ICI toxicities such as lung, 
colon and testis [51] (Additional file 1: Table S9). Addi-
tional serum samples would be needed to investigate any 

correlations between organ-specific gene expression and 
toxicities.

These informatic analyses show some FSP sequences 
that are ligands for response outcome-associated anti-
bodies correspond to variant transcripts of the same 
genes. FSPs that are ligands for irAE-associated antibod-
ies share similarity with several self-proteins. Altogether, 
this study indicates that antibodies to frameshift neo-
antigens can serve as predictors of checkpoint inhibi-
tor treatment outcomes relative to disease progression, 
tumor response, therapy complexity and adverse events.

Table 7 Toxicity-classifying FSPs with self-protein homology

Protein fragment Identity (%) Fragment length Protein name Protein ID

DPPASASQ 100 8 DNA (cytosine-5)-methyltransferase 1 (DNMT1) NP_001124295.1

NP_001305660.1

nuclear valosin-containing protein-like (NVL) NP_001230075.1

XP_016856867.1

XP_047277577.1

XP_047277591.1

XP_016856869.1

XP_011542498.1

XP_016856873.1

XP_047277569.1

XP_016856874.1

rab5 GDP/GTP exchange factor (RABGEF1) NP_001354672.1

NP_001354673.1

SEC14-like protein 4 (SEC14L4) XP_047297303.1

XP_047297304.1

LSPSARPRS 88.9 9 septin-4 (SEPTIN4) NP_001185642.1

NP_001243711.1

NP_001355701.1

NP_004565.1

NP_536340.1

NP_536341.1

XP_006722012.1

XP_047292265.1

ESRARRSSYA 80 10 phospholipid-transporting ATPase IK (ATP8B3) NP_001171473.1

NP_620168.1

NLLRPEVR 87.5 8 ECT2L epithelial cell transforming 2 like (ECT2L) NP_001071174.1

NP_001181966.1

XP_006715535.1

XP_011534097.1

XP_011534099.1

XP_016866317.1

XP_016866318.1

XP_016866319.1
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Discussion
In overview, our feasibility study demonstrates the util-
ity of a new class of blood biomarkers, anti-FSP antibod-
ies, that can be measured by probing sera against large 
libraries of novel frameshift neoantigens synthesized 
as peptides on a silicon wafer. The presented study uses 
blood samples collected from a cohort of 74 lung can-
cer patients before receiving PD-(L)1 immunotherapy. 
Antibody biomarkers were used to build models to pre-
dict therapy outcomes. All 4 response models that were 
built predicted outcomes with nearly complete accuracy. 
However, the proportion of a cohort that could be pre-
dicted by a model was influenced by the patient hetero-
geneity. Using the same binding assay data, a model was 
developed to predict adverse immune events that dis-
played 90% accuracy with all samples predicted. Some of 
these predictive FSPs show similarity to self-proteins. A 
study flow chart and summary of the models with their 
performances are presented in Fig. 6.

For developing the first, most heterogeneous predic-
tive model of ICI response, sera from the 66 patients who 
were treated for at least 6  weeks were analyzed. Differ-
ential anti-FSP antibody activities were identified on the 
FSP arrays that correlated with future outcomes. We 

demonstrated that 226 FSPs preferentially bound by an 
outcome group could predict response with 97.8% accu-
racy in the patient samples showing cumulative non-zero 
model scores (69.7%). Within the study cohort there were 
2 EGFR-mutant NSCLC patients. Compared with EGFR 
wild-type tumors, those with EGFR mutations show 
more heterogeneity in the expression level of PD-L1, 
TMB, and other TME characteristics. Trials have shown 
no response to ICI treatments in NSCLC patients with 
EGFR-mutant tumors [52]. Here we show that the EGFR-
mutant patients were classified as future progressors, 
consistent with their historically observed non-respon-
sive outcomes.

A second response model was built in which the SD 
patient samples were excluded. We anticipated that build-
ing a model with only samples from patients with clear 
response outcomes (not stable disease) might increase 
the number of positively-bound FSPs shared within a 
group and the number differentially bound between the 
groups. Accuracy and model size were similar and as 
hypothesized, the proportion of samples classified, with 
non-zero model scores, increased to 78.7%. This model 
was applied to the SD samples excluded from model 
building; their classifications showed a distribution 

Fig. 6 A checkpoint inhibitor trial enrolled 74 patients diagnosed with advanced lung cancer. Venous blood draws were collected followed by 
initiation of their ICI treatment regimen. Adverse events were continuously observed; tumor responses were regularly monitored. Best radiologic 
response was used as the observed response for analysis in our study. The serum samples collected pretreatment were analyzed on the FSP/
Antibody assays to develop models of predicted response and adverse event. NP non-progressor, P progressor, R responder, NR non-responder, Acc 
accuracy, Class classified
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between the observed outcome groups. These results are 
consistent with their ambiguous response characteristics.

In a third model, patients who had received ICI in 
combination with chemotherapy were excluded. Accu-
racy was only marginally reduced, even though this was 
the smallest sample cohort size of the models tested. 
Outcome-associated model-peptides increased more 
than twofold and the proportion of predicted samples 
increased to 80%. The larger number of outcome-asso-
ciated FSPs likely contributed to the reduction in inde-
terminates. We might hypothesize that the pre-existing 
immune profiles unleashed by anti-PD-(L)1 are different 
than those unleashed by anti-PD-(L)1 plus secondary 
therapies. Therefore, the number of shared biomarkers 
within any outcome group would be less frequent in the 
combination cohort versus the monotherapy one. Accu-
rate prediction of monotherapy response might guide a 
decision for not pursuing a chemotherapy combination 
regimen.

In a final model, samples from patients with the more 
aggressive SCLC subtype were excluded. This model of 
response prediction, built with only NSCLC patient sam-
ples, showed high 100% accuracy in predicted 73.2% of 
the samples. This was the smallest increase in sample 
coverage relative to the original full cohort model, sug-
gesting that the immune heterogeneity of these clinically 
very different lung cancers [50] are not greatly different.

We anticipated that the response models would consist 
of anti-FSP binding activity present in samples of patients 
with positive response outcomes and absent from the 
other. This would be consistent with generating anti-
tumor immune responses that had been unsuppressed 
by ICIs. However, in all 4 models we observed differen-
tial binding events associated with both the positive and 
negative groups of the response contrasts. The negative 
group- associated antibodies might be correlated with 
ineffective immune activities. Alternatively, these FSPs 
correspond to inhibigens, which have been noted as neo-
antigens that actively have suppressive effects on T -cell 
responses [53].

The GO Oncology enrichment analyses of the models 
in this study did not reveal any strong pathway themes. 
This suggests that the differences in antibody binding 
activity in both the response and toxicity contrasts are 
not predominantly driven by gene transcript mistakes 
in functionally related proteins or pathways. Instead, it 
may be a characteristic of how the source genes’ tran-
scription or transcript processing is recurrently altered 
in tumor cells. This hypothesis fits well with the observa-
tion that variant versions of 3 gene transcripts were each 
the source of more than one FSP in the full cohort, all-
response model.

A variety of molecular biomarkers have been studied 
toward developing a test for predicting patient responses 
to ICI therapeutics. Some recent approaches have shown 
encouraging predictive value; however, biomarker extrac-
tion or testing is elaborate, and sometimes not possible. 
By contrast, antibodies are immune effectors and there-
fore they directly read out immune activity. Antibody 
biomarkers are massively amplified by B cells that have 
been activated because of their recognition of tumors. 
This specific amplification of the desired biomarker 
facilitates their measurement. In general support of the 
utility of antibodies as biomarkers, a very recent study 
showed that antibodies against self-antigens can serve 
as biomarkers of melanoma recurrence following adju-
vant therapy [54]. The antibody biomarkers against non-
self, neoantigens described here are additionally unique 
measurements of patient status. For example, they are 
elicited by a diverse and plentiful source of frameshifted 
peptide variants that exist in tumors from the transla-
tion of RNA-level mistakes. These out-of-frame variants 
occur at high frequencies in tumor cells because of the 
relaxation of normal processing and editing systems. 
Frameshift peptides are more likely to be immunogenic 
since the full peptide sequence is variant versus a single 
amino acid change within an otherwise normal sequence, 
or versus self. Furthermore, our sero-assay measures 
IgG antibodies, which require CD4 T-cell help for affin-
ity maturation. Therefore, these T cells are implicated as 
direct players in anti-tumor immune responses. In sum, 
these abundant, immunogenic biomarkers are useful har-
bingers of future patient outcomes.

We also investigated whether the anti-FSP antibody 
biomarkers could predict which patients would experi-
ence irAEs. An earlier study supports this possibility. The 
autoimmune antibody marker rheumatoid factor was 
found significantly correlated with patients who would 
subsequently experience irAEs [55]. We considered that 
anti-FSP immune activity might cause autoimmunity in 
the host even though FSPs are variants and therefore pre-
sumably non-self. However, some of these frameshift var-
iants might have homology to normal host proteins and 
serve as unintended mimotopes of self, even though we 
had removed peptides from the library design with high 
homology. By contrast, the FSPs comprising the response 
models are preferentially associated with immune 
responses to the “foreign” tumor and therefore likely to 
be distinct from self. This hypothesis is consistent with 
observed lack of overlap in classifying FSPs between the 
response and toxicity models.

Our model provided 90% accuracy in predicting tox-
icity with no indeterminates. All 11 FSPs selected for 
building this predictive model were associated with the 
symptomatic irAE group. This bias in group-associated 
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peptides is not what was observed in the response mod-
els but is consistent with ICIs stimulating an immune 
response against self in the toxicity group, which would 
be absent in the non-toxicity group. A recent study 
showed that T-cells recognizing an epitope of Napsin 
A are associated with irAEs in lung cancer [56]. In our 
study, we found that 5 of the 11 predictive FSPs showed 
significant homology to stretches of host proteins.

Identifying patients that may experience untoward 
autoimmune events is not likely to rule them out for ICI 
therapy because irAEs have been linked to some positive 
tumor responses [19, 57]. Instead, these patients would 
be closely monitored during the treatment schedule, with 
possible suspension or alternative dosing. Recent studies 
indicate the correlation between irAEs and response may 
be complex [37]. For instance, the presumed cross-reac-
tivity between tumor and host tissue appears to be lim-
ited to late onset events (> 3 months following treatment) 
or those related to certain tissues [57, 58]. These results 
suggest a distinct biology between irAEs of different 
onset timing or development sites. We did not have suffi-
cient sample numbers from patients with irAEs to analyt-
ically stratify these clinical subgroups. Another limitation 
of this study is that we had filtered out peptides from the 
library design with strong homology to the proteome. 
Consequently, the FSPs with the highest likelihood of 
autoimmune activity would not have been assayed here. 
Though accurate, this may explain the small number of 
FSPs comprising the irAE predictive model.

The small, retrospective collection of samples from a 
clinically heterogeneous cohort of lung cancer patients 
limits this study. It is also limited by the incompleteness 
of the FSP library used here. Less than 20% of the pos-
sible 2.1 million FSP antibody-ligands were included 
in these arrays. Test accuracy was high, but a propor-
tion of the samples were not classified because, among 
the peptides measured on the array, these sera did not 
show differentially bound FSPs that were shared by those 
of the rest of the cohort. Expanded, prospective sample 
collections queried on more comprehensive FSP arrays 
will enable validation of these results and increase the 
number of informative FSPs for each subgroup. This is 
anticipated to provide for significantly higher cohort cov-
erage and more detailed evaluations of clinical and treat-
ment subgroups. This test might also be combined with 
another liquid biopsy test to ensure full patient coverage.

Conclusions
In summary, we present the feasibility of a simple, accu-
rate, serological test that uses a small amount of blood 
to predict ICI outcomes. It works by measuring a new 
class of biomarkers (anti-FSN antibodies) that are suffi-
ciently comprehensive to inform both future ICI clinical 

responses and toxicities. These biomarkers represent an 
orthogonal determination of patient status relative to 
others explored for predicting response, and a new one 
for predicting irAEs. Future efforts will focus on improv-
ing this approach for addressing specific needs in lung 
cancer treatment and for evaluating this ICI predictive 
test platform for other cancers.
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