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Abstract 

Background Chronic kidney disease (CKD) is one of the most significant cardiovascular risk factors, playing vital roles 
in various cardiovascular diseases such as calcific aortic valve disease (CAVD). We aim to explore the CKD‑associated 
genes potentially involving CAVD pathogenesis, and to discover candidate biomarkers for the diagnosis of CKD with 
CAVD.

Methods Three CAVD, one CKD‑PBMC and one CKD‑Kidney datasets of expression profiles were obtained from 
the GEO database. Firstly, to detect CAVD key genes and CKD‑associated secretory proteins, differentially expressed 
analysis and WGCNA were carried out. Protein‑protein interaction (PPI), functional enrichment and cMAP analyses 
were employed to reveal CKD‑related pathogenic genes and underlying mechanisms in CKD‑related CAVD as well as 
the potential drugs for CAVD treatment. Then, machine learning algorithms including LASSO regression and random 
forest were adopted for screening candidate biomarkers and constructing diagnostic nomogram for predicting 
CKD‑related CAVD. Moreover, ROC curve, calibration curve and decision curve analyses were applied to evaluate the 
diagnostic performance of nomogram. Finally, the CIBERSORT algorithm was used to explore immune cell infiltration 
in CAVD.

Results The integrated CAVD dataset identified 124 CAVD key genes by intersecting differential expression and 
WGCNA analyses. Totally 983 CKD‑associated secretory proteins were screened by differential expression analysis of 
CKD‑PBMC/Kidney datasets. PPI analysis identified two key modules containing 76 nodes, regarded as CKD‑related 
pathogenic genes in CAVD, which were mostly enriched in inflammatory and immune regulation by enrichment anal‑
ysis. The cMAP analysis exposed metyrapone as a more potential drug for CAVD treatment. 17 genes were overlapped 
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between CAVD key genes and CKD‑associated secretory proteins, and two hub genes were chosen as candidate bio‑
markers for developing nomogram with ideal diagnostic performance through machine learning. Furthermore, SLPI/
MMP9 expression patterns were confirmed in our external cohort and the nomogram could serve as novel diagnosis 
models for distinguishing CAVD. Finally, immune cell infiltration results uncovered immune dysregulation in CAVD, 
and SLPI/MMP9 were significantly associated with invasive immune cells.

Conclusions We revealed the inflammatory‑immune pathways underlying CKD‑related CAVD, and developed SLPI/
MMP9‑based CAVD diagnostic nomogram, which offered novel insights into future serum‑based diagnosis and thera‑
peutic intervention of CKD with CAVD.

Keywords Chronic kidney disease, Calcific aortic valve disease, Immune cell infiltration, Diagnostic value, Secretory 
proteins

Introduction
Chronic kidney disease (CKD) is becoming a severe pub-
lic-health concern, currently affecting over 8% population 
worldwide with the increasing incidence [1, 2]. A growing 
body of studies showed that CKD not only manifested as 
renal function decline but also featured as excessive min-
eral deposition, the inflammatory cascade and oxidative 
stress [3-6], all of which were strongly associated with the 
pathogenesis of various cardiovascular diseases, includ-
ing atherosclerotic, myocardial infarction and aortic 
valvular cardiac disease [7]. Calcific aortic valve disease 
(CAVD) is the one of the most prevalent valvular diseases 
and is considered as the primary reason for aortic valve 
stenosis (AVS), which may eventually lead to devastat-
ing cardiac outcomes, such as severe heart failure and 
sudden cardiac death [8, 9]. Recent studies showed that 
CAVD was more commonly observed in CKD than in 
general populations, and CKD represents an independ-
ent risk factor for the prognosis of CAVD [3, 4], suggest-
ing that CKD patients may exhibit a heightened risk of 
CAVD. Nevertheless, the underlying molecular mecha-
nisms leading to CKD-related CAVD are complicated 
and obscure.

Increasing studies have proposed that excessive endog-
enous and exogenous mediators could induce sterile 
inflammation in CKD, releasing a variety of pro-inflam-
matory cytokines (e.g. IL-6, IL-1β and IL-18) which have 
been implicated in the progression of CKD and develop-
ment of subsequent cardiovascular diseases [10]. Fur-
thermore, CKD is characterized as pre-mature cellular 
senescence and displays a senescence-associated pheno-
type with the secretion of inflammatory mediators, Wnt/
β-catenin signaling-related ligands [11] and TGF-β [12], 
leading to a cascade of ageing of the kidney and other tar-
geted organs or tissues [13]. It should be noted that age-
ing is significantly involved in the pathological process of 
various diseases, especially in vascular calcification [14]. 
These studies suggest that CKD may contribute to sub-
sequent complications including CAVD, at least partly 
through secretory proteins.

Over the past few decades, it has been widely acknowl-
edged that CKD initiates and accelerates CAVD, which 
in turn increases the risk of death in CKD patients [15]. 
Therefore, early detection of CAVD in CKD patients 
is necessary, in order to conduct medical intervention 
before they develop clinical symptoms. As a result, it 
is urgent to develop a more comprehensive diagnostic 
model constructed with novel potential serum biomark-
ers for the early diagnosis of CAVD, especially of those in 
CKD patients, with high sensitivity and specificity.

In this study, we employed multiple integrative bio-
informatics tools to reveal the hub genes and potential 
mechanism underlying CKD-related CAVD by collect-
ing three CAVD datasets and two CKD datasets from 
the Gene Expression Omnibus (GEO) database. Potential 
compounds with therapeutic efficiency in CAVD were 
also identified. Furthermore, machine learning was car-
ried out to construct a diagnostic nomogram model for 
CAVD prediction on the basis of the hub genes (SLPI 
and MMP9) that were discovered in CKD-related patho-
genic genes. We validated the expression pattern of the 
hub genes and evaluated the diagnostic efficiency of the 
constructed nomogram in a small cohort of patients from 
our hospital. Finally, we explored the immune cells sig-
natures of CAVD to uncover the association of the hub 
genes with the immunological landscape.

Methods
Microarray data collecting and processing
Three raw expression profile datasets of CAVD and 
control groups, including GSE12644, GSE51472 and 
GSE83453, were downloaded from the GEO database 
(https:// www. ncbi. nlm. nih. gov/ geo/) [16]. The microarray 
datasets of peripheral blood mononuclear cells (PBMC) 
(GSE37171) and kidney tissues (GSE66494) from CKD 
patients were also obtained from GEO as well. Detailed 
descriptive information of datasets was shown in Table 1. 
The integrated CAVD expression data was obtained by 
the batch correction of three CAVD datasets based on 
the combat function of “SVA” package [17] in R software 

https://www.ncbi.nlm.nih.gov/geo/
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(version 4.2.1), which finally contained 34 calcified sam-
ples and 23 control samples.

Differentially expressed genes (DEGs) analysis
Background correction, normalization and gene sym-
bol conversion were performed on the CAVD integrated 
dataset and CKD datasets (GSE37171 and GSE66494). 
Later, DEGs in CAVD and CKD datasets were identified 
using the “Limma” package [18] in R software. Therefore, 
DEGs in CAVD dataset were screened upon the thresh-
olds of adjusted p ≤  0.05 and |log2 (fold change)| ≥  1, 
whereas DEGs in CKD datasets were identified upon 
the thresholds of adjusted p  ≤  0.05 and |log2 (fold 
change)| ≥  0.585. Subsequently, the expression patterns 
of DEGs were visualized in the form of volcano plots and 
heatmaps with the “ggplot2” package and “pheatmap” 
package in R software, respectively.

Weighted Gene Co‑Expression Network Analysis (WGCNA) 
and key module genes identification
As a systematic biological approach, WGCNA was 
employed to reveal the gene association patterns among 
different samples and to detect the candidate biomarker 
genes or therapeutic targets according to the intercon-
nectedness of gene sets together with the association 
between gene sets and phenotypes. As shown in Step1, 
the median absolute deviation (MAD) of each gene in 
the CAVD integrated dataset was calculated and then 
genes with MAD of 0 were removed from each sam-
ple. In Step2, the “goodSamplesGenes” function of the 
“WGCNA” package [19] was employed to examine the 
unqualified genes and samples. In Step3, the one-step 
network construction function of the “WGCNA” pack-
age was employed to construct a scale-free co-expression 
gene network. Meanwhile, the appropriate soft threshold 
power (β = 5) was taken as the weight value in this experi-
ment. In Step4, after obtaining the modules, the different 
module eigengenes (ME) were obtained based on the first 

principal component of the module expression, while the 
module-trait relationships were evaluated in line with the 
association between MEs and clinical characteristics. In 
Step5, the modules with the most significant positive and 
negative correlations of module-trait relationships were 
screened. Then, MM and GS scores in modules were also 
evaluated to state the module significance (MS).

Secretory proteins access
Secretory proteins were downloaded from The Human 
Protein Atlas database (https:// www. prote inatl as. org/) 
[20]. A total of 3970 genes coding secretory proteins were 
downloaded from the protein class of “SPOCTOPUS 
predicted secreted proteins” (https:// www. prote inatl as. 
org/ search/ prote in_ class% 3ASPO CTOPUS+ predi cted+ 
secre ted+ prote ins).

The construction of protein–protein interaction (PPI) 
network
To excavate the interactions between CKD-associated 
secretory proteins and the CAVD key genes, a PPI net-
work linked with CKD and CAVD was established on 
the basis of the STRING database (https:// www. string- 
db. org) [21], with a medium confidence score of > 0.4. 
Later, the PPI network was visualized by the Cytoscape 
software (version 3.8.2). Moreover, we further performed 
the Cytoscape plug-in molecular complex detection 
(MCODE) to detect the significant modules. Modules 
with top2 highest scores were chosen for performing fur-
ther analysis.

Functional enrichment analysis
To explore the biological function and concrete mecha-
nism of the CKD-related pathogenic genes, we carried 
out Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment anal-
ysis by importing the genes into the DAVID database 
(https:// david. ncifc rf. gov/) [22]. A threshold of p < 0.05 

Table 1 Descriptive statistics of the GEO datasets

GEO accession Platform Origin Sample Species

Control CAVD

GSE12644 GPL570 Heart valve 10 10 Homo sapiens

GSE51472 GPL570 Heart valve 5 5 Homo sapiens

GSE83453 GPL10558 Heart valve 8 19 Homo sapiens

GEO accession Platform Origin Sample Species

Control CKD

GSE37171 GPL570 PBMC 40 75 Homo sapiens

GSE66494 GPL6480 Kidney 5 47 Homo sapiens

https://www.proteinatlas.org/
https://www.proteinatlas.org/search/protein_class%3ASPOCTOPUS+predicted+secreted+proteins
https://www.proteinatlas.org/search/protein_class%3ASPOCTOPUS+predicted+secreted+proteins
https://www.proteinatlas.org/search/protein_class%3ASPOCTOPUS+predicted+secreted+proteins
https://www.string-db.org
https://www.string-db.org
https://david.ncifcrf.gov/
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was regarded to be significant enrichment. Additionally, 
the findings of functional enrichment analysis were dis-
played via bubble diagram and circos plot.

Connectivity map (cMAP) analysis
CMAP (https:// clue. io) [23], is a gene expression pro-
file database based on the intervention of gene expres-
sion signatures, which can reveal relationships between 
diseases, genes, and small molecule compounds. In this 
study, upregulated genes from significant modules, which 
had the top2 highest scores identified in the CKD-CAVD 
PPI network, were incorporated into cMAP online data-
base to discover the potential small-molecular drugs for 
CAVD treatment. Finally, the top10 compounds with 
highest enrichment scores were identified.

Machine learning
To identify the candidate biomarkers and establish a 
diagnostic model of CAVD, the least absolute shrink-
age and selection operator (LASSO) algorithm, a logistic 
regression method for filtering variables to enhance the 
predictive performance, was initially adopted in this work 
to screen the candidate biomarkers with the “glmnet” 
package [24]. Next, the random forest (RF) algorithm, 
integrating multiple trees through the idea of ensemble 
learning to gain better accuracy, was employed to narrow 
down the candidate biomarkers with the “randomForest” 
package [25] as well. The overlapping genes of LASSO 
model and the genes with the MeanDecreaseGini > 2 
from RF model were defined as hub genes for developing 
a diagnostic model of CKD-related CAVD.

The construction of nomogram and the assessment 
of diagnostic marker prediction model
The nomogram was constructed based on the two hub 
genes by using the “rms” package [26]. The area under 
the receiver operating characteristic (ROC) curve was 
drawn to evaluate the performance of each hub gene and 
the nomogram in the diagnosis of CAVD. Furthermore, 
ROC curve was performed to determine whether the 
nomogram-based decision was conducive to aortic valve 
sclerosis diagnosis. Finally, the calibration curves and 
decision curve analysis (DCA) were carried out in order 

to assess the nomogram predictive efficiency in CKD-
related CAVD.

Immune infiltration analysis
The “CIBERSORT” package [27] was executed to assess 
the number of the immune cell infiltration from the 
CAVD gene expression profile. The abundance and pro-
portion of the immune infiltration were presented for 
each sample as barplot using the “ggplot2” package. The 
differences of the proportion of 22 types of immune cells 
between calcified and control aortic valve samples were 
compared by adopting Wilcoxon test, where p < 0.05 was 
regarded to be of statistical significance and was dis-
played by Stacked histogram based on the “ggplot2” pack-
age. Subsequently, the association of 22 types of invading 
immune cells was shown with the use of the “corrplot” 
package. Finally, Spearman’s rank correlation coefficient 
was adopted for the correlation analysis between the 
expression of diagnostic biomarkers and the content of 
infiltrated immune cells, and p < 0.05 was thought to be of 
statistical significance.

Patients’ samples collection
Human calcified (n = 7) and non-calcified control (n = 5) 
aortic valve biopsies were obtained from the patients 
experiencing aortic valve replacement surgery from 
Sun Yat-sen Memorial Hospital of Sun Yat-sen Univer-
sity, Guangzhou, China. Moreover, human serum sam-
ples from healthy control individuals (n = 24), patients 
with CAVD (n = 24), and CKD patients (stage 3–5) with 
(n = 10) or without CAVD (n = 22), were also collected 
from Sun Yat-sen Memorial Hospital. Patients with 
congenital aortic valve abnormality, rheumatic disease, 
and endocarditis were excluded. The clinical informa-
tion of patients was shown in Table  2. The protocols of 
human samples obtained approval from the Institutional 
Research Ethics Committee at Sun Yat-sen Memorial 
Hospital of Sun Yat-sen University.

The validation of the expression of hub genes 
between control and CAVD groups
Total RNA extraction was adopted using the Trizol rea-
gent (Thermo Fisher Scientific, Darmstadt, Germany), 

Table 2 The clinical characteristics of patients from our cohort

Clinical variables Control  (n = 24) CAVD  (n = 24) CKD (n = 22) CKD with CAVD (n = 10)

Female/male (n) 11/13 12/12 6/16 3/7

Age 61 (48–74) 67 (57–77) 65 (56–74) 73 (62–84)

Serum creatinine (Scr, µmol/L) 71.36 ± 15.19 79.54 ± 13.57 533.93 ± 466.78 253.01 ± 344.48

Estimated glomerular filtration rate
(eGFR, mL/min)

90.29 ± 17.44 78.14 ± 12.13 20.46 ± 19.43 43.50 ± 21.59

https://clue.io
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followed by reverse transcription with a Reverse Tran-
scription Kit (Ruizhen Bio, Guangzhou, China) following 
the instruction of the manufacturer. Real-time quan-
titative PCR (RT-qPCR) was performed by adopting a 
SYBR Green PCR Kit (Ruizhen Bio). All reactions were 
conducted in duplicate, and the relative mRNA expres-
sion was calculated based on the  2−ΔΔCt approach. Primer 
sequences are listed as follows: SLPI-F, 5ʹ-GAG ATG TTG 
TCC TGA CAC TTGTG-3ʹ; SLPI-R, 5ʹ-AGG CTT CCT 
CCT  TGT TGG GT3ʹ; MMP9-F, 5ʹ-ACG CAG ACA TCG 
TCA TCC AGT-3ʹ; MMP9-R, 5ʹ-G GAC CAC AAC TCG 
TCA TCG TC-3ʹ; GAPDH-F, 5ʹ-GAG TCA ACG GAT TTG 
GTC G T-3ʹ;   GAPDH-R, 5ʹ-GAC AAG CTT CCC GTT 
CTC AG-3ʹ.

The evaluation of diagnostic models in the external cohort
Serum samples were obtained from control individuals 
and CAVD patients as well as CKD patients with or with-
out CAVD. In addition, the serum SLPI and MMP9 levels 
were determined with the indicated ELISA kits (Cusabio, 
Wuhan, China) in line with the manufacturer’s protocols.

Statistical analysis
GraphPad Prism version 9.0.2 (GraphPad Software Inc., 
San Diego, CA, USA) was used for statistical analy-
sis. Results were displayed as mean ± SD. Differences 
between the two groups were compared by unpaired 
Student′s t-test. P < 0.05 was regarded as statistical 
significance.

Result
Data processing
The strategy of bioinformatics analysis is performed as 
shown in Fig. 1. Three raw datasets of calcified and con-
trol aortic valve samples were collected from the GEO 
database and combined after carrying out batch effect 
removal. After batch correction, the integrated CAVD 
dataset was obtained and normalized, including 34 cal-
cified samples in the CAVD group and 23 control sam-
ples in the control group. As shown in Fig.  2A and B, 
the differences among three datasets were significantly 
decreased after batch effect removal.

Identification of differentially expressed genes in calcific 
aortic valve disease
Differential analysis between combined calcified and 
control aortic valve samples revealed 173 differentially 
expressed genes (DEGs) with the cut-off criterion of 
adjusted p ≤ 0.05 and |log2 (fold change)| ≥ 1, containing 
119 upregulated and 54 downregulated genes. Volcano 
plot and heatmap were applied to depict the expression 

pattern of DEGs in the integrated CAVD dataset (Fig. 2C 
and D).

The construction of weighted gene co‑expression network 
and the identification of key modules in CAVD
In order to further explore the key genes in CAVD, 
weighted gene co-expression network analysis 
(WGCNA) was carried out to identify the most rel-
evant gene modules in calcified aortic valve samples. 
According to the scale independence and average con-
nectivity, the soft-thresholding power of 5 was chosen 
(Fig.  3A). Totally 14 modules were generated using 
that power and the cluster dendrogram of the mod-
ules was presented in Fig.  3B. The clustering of mod-
ule eigengenes was displayed in Fig.  3C. Furthermore, 
this study explored the correlation between CAVD and 
gene modules (Fig.  3D). These data showed that the 
pink module exhibited the highest positive correlation 
with CAVD (358 genes, r = 0.84, p = 5e−16), whereas 
the yellow module displayed the most negative relation 
to CAVD (769 genes, r = − 0.72, p = 2e−10). On this 
basis, the pink and yellow modules were considered 
as the key modules for subsequent analysis. Moreo-
ver, we found a strong association between module 
membership and gene significance in the pink (r = 0.4, 
p = 3.5e−15) and yellow modules (r = 0.6, p = 2.2e−76), 
respectively (Fig.  3E, F). Therefore, 1127 crucial genes 
that were significantly associated with CAVD were 
identified in the pink and yellow modules. In addition, 
we further intersected genes from DEGs and crucial 
genes from WGCNA in calcified aortic valve samples 
to identify the key genes in CAVD, obtaining totally 124 
genes, which were further subjected to later analysis 
(Fig. 3G).

Identification of differentially expressed secretory proteins 
in chronic kidney disease
It is well known that CKD is causally linked to CAVD 
and possibly accelerates the occurence and progres-
sion of CAVD [15]. To investigate the pathogenic genes 
involved in CKD-related CAVD, we firstly re-analyzed 
the expression profiles of CKD peripheral blood mono-
nuclear cell (PBMC) and CKD kidney tissues from the 
GEO database. As visualized via volcano plot and heat-
map in Fig.  4A and D, totally 2681 DEGs were identi-
fied in CKD PBMC, while 4111 DEGs were discovered 
in CKD kidney tissues in line with the thresholds of 
adjusted p ≤ 0.05 and |log2 (fold change)|   ≥  0.585. 
Considering that CKD may promote the onset and 
development of CAVD mainly by releasing secretory 
proteins, we then obtained the CKD-associated secre-
tory proteins through the combination of 376 and 607 
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Fig. 1 Flow chart of this study design
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differentially expressed secretory proteins from CKD 
PBMC (Fig.  4E) and kidney tissues datasets (Fig.  4F), 
respectively.

Protein–protein interaction network and functional 
enrichment of the pathogenic genes involved 
in CKD‑related CAVD
To reveal the potential pathogenic genes and underly-
ing mechanism in CKD-related CAVD, the interaction of 
the CKD-associated secretory proteins and the key genes 
in CAVD was collected by the STRING database with a 
medium confidence score of > 0.4. The pathogenic genes 

in CKD-related CAVD were presented by the Cytoscape 
software and the top2 most significant modules were 
identified by adopting MCODE, in which the included 
76 genes were identified as the CKD-related pathogenic 
genes. (Fig.  5A and B). To better understand the func-
tion and particular mechanism of the pathogenic genes, 
we imported the CKD-related pathogenic genes from the 
top2 significant modules into DAVID online database 
to perform functional enrichment and KEGG analysis. 
Biological process (BP) of Gene Ontology (GO) term 
analysis illustrated that the pathogenic genes in CKD-
related CAVD were mostly enriched in “inflammatory 

Fig. 2   The integration of CAVD datasets and differential expression analysis of the integrated CAVD dataset. A PCA of three original CAVD datasets 
before batch‑effect correction. B PCA of the integrated CAVD dataset after batch‑effect correction. C The volcano plot representing CAVD DEGs 
in the integrated CAVD dataset. The upregulated genes are presented in red dots, whereas, the downregulated genes are presented in blue dots. 
D The heatmap showing the top 30 upregulated and 30 downregulated DEGs in the integrated CAVD dataset. CAVD calcific aortic valve disease, 
PCA principal component analysis, DEGs differentially expressed genes
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Fig. 3   Screening of key module genes in the integrated CAVD dataset via WGCNA and identification of CAVD key genes through the intersection 
of key module genes and DEGs. A The scale‑free topology model was utilized to identify the best β value, and β = 5 was chosen as the soft 
threshold based on the average connectivity and scale independence. B The network heatmap showing the gene dendrogram and module 
eigengenes. C The cluster dendrogram presenting module eigengenes. D The heatmap revealing the relationship between module eigengenes 
and status of CAVD. The correlation (upper) and p‑value (bottom) of module eigengenes and status of CAVD were presented. The pink and yellow 
modules correlated with CAVD exhibited the highest and lowest correlation coefficients, respectively, which were identified as the key modules 
in CAVD. E The correlation plot between the pink module membership and the gene significance of genes in the pink module. F The correlation 
plot between the yellow module membership and the gene significance of genes in the yellow module. G A total of 124 key genes in CAVD were 
identified by taking the intersection between key modules genes and DEGs via the venn diagram. WGCNA weighted gene co‑expression network 
analysis, CAVD calcific aortic valve disease, DEG differentially expressed genes
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Fig. 4   Identification of CKD‑associated secretory proteins through differential expression analysis on secretory proteins in PMBC and kidney 
tissues of CKD. A The volcano plot revealing DEGs in the CKD‑PMBC dataset. B The heatmap representing the top 30 upregulated and 30 
downregulated DEGs in the CKD‑PBMC dataset. C The volcano plot displaying DEGs in the CKD‑Kidney dataset. D The heatmap displaying the 
top 30 upregulated and 30 downregulated DEGs in the CKD‑Kidney dataset. E The intersection of CKD‑PMBC DEGs with genes coding secretory 
proteins via the venn diagram. F The intersection of CKD‑Kidney DEGs with genes coding secretory proteins via the venn diagram, and altogether 
983 CKD‑associated secretory proteins were identified. CKD chronic kidney disease, PBMC peripheral blood mononuclear cells, DEG differentially 
expressed genes
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Fig. 5   PPI analysis between CKD‑associated secretory proteins and CAVD key genes, and followed by enrichment analysis of the PPI‑screened 
nodes. A The PPI network of module1 genes with the top1 highest score based on Cytoscape plug‑in MCODE analysis. Salmon nodes are marked as 
members of CAVD key genes, yellow nodes as members of CKD‑associated secretory proteins, while red nodes as common genes of the two sets. 
B The PPI network of module2 genes with the top2 highest score according to MCODE analysis. C–F The bubble plots showing the GO enrichment 
analysis results, including biological process (C), cellular component (D), and molecular function (E) of genes included in module1 and module2. 
F Circos plot representing the KEGG analysis results of genes included in module1 and module2. PPI protein‑protein interaction, CKD chronic kidney 
disease, CAVD calcific aortic valve disease, MCODE molecular complex detection
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response” and “immune response” (Fig. 5C). In terms of 
cellular component (CC) of GO term analysis, the patho-
genic genes were mostly located in “integral component 
of membrane” and “extracellular region” (Fig. 5D). Con-
cerning molecular function (MF) analysis, the results 
indicated that “protein binding” and “identical protein 
binding” were the most relevant items of the pathogenic 
genes (Fig. 5E). KEGG pathway analysis showed that the 
pathogenic genes in CKD-related CAVD were strongly 
associated with “cytokine-cytokine receptor interaction”, 
“PI3K-Akt signaling pathway” and “NF-Kappa B signaling 
pathway” (Fig. 5F).

Identification of candidate small‑molecular compounds 
for CAVD treatment
To further investigate the potential small-molecular 
drugs that might exert a therapeutic effect in CKD-
related CAVD patients, upregulated genes in calcified 
aortic valve samples from CKD-related pathogenic genes 

were imported into the connectivity map (cMAP) data-
base to predict small-molecule compounds that could 
reverse the altered expression of CKD-related patho-
genic genes in CAVD. Following the significant inquiry, 
the top10 compounds including metyrapone, gefitinib, 
dilazep, aminopentamide, methoxsalen, forskolin, CGP-
37157, IKK2-inhibitor, vidarabine and TG-101348 with 
the highest negative scores were considered to be poten-
tial pharmacological therapeutic agents for the treatment 
of CKD-related CAVD (Fig.  6A). The description of the 
targeted pathways and chemical structures of these 10 
compounds were displayed in Fig. 6B, C.

Screening of hub genes harboring diagnostic value 
via machine learning and construction of a diagnostic 
model in CKD‑related CAVD
Since the common differentially expressed secretory pro-
teins between CAVD and CKD may play critical roles in 
CKD-related CAVD patients, 17 common genes were 

Fig. 6   Screening of the potential small‑molecular compounds for the treatment of CAVD via cMAP analysis. A The heatmap presenting the top10 
compounds with the most significantly negative enrichment scores in 10 cell lines based on cMAP analysis. B The description of those top10 
compounds. C The chemical structures of those 10 compounds were shown. cMAP connectivity map
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identified in the junction of CKD-associated secretory 
proteins and the key genes in CAVD, and they were sub-
jected to subsequent construction of a CAVD diagnostic 
model which might distinguish CKD patients with or 

without CAVD (Fig.  7A). The LASSO regression algo-
rithm was applied to identify eight potential candidate 
genes out of 17 common genes with a great effect on 
diagnosing CKD-related CAVD patients (Fig. 7B, C). To 

Fig. 7   Identification of potential diagnostic biomarkers for CKD‑related CAVD by the machine learning methods. A The venn diagram showing the 
17 overlapping genes of CKD‑associated secretory proteins, CAVD DEGs and CAVD key modules genes. B, C The minimum (B) and lambda values (C) 
of diagnostic biomarkers (n = 8) were identified by the LASSO logistic regression algorithm. D The RF algorithm presenting the MeanDecreaseGini of 
the 17 genes in CAVD and 6 biomarkers with the score more than 2.0 were selected. E The venn diagram displaying two common genes between 
LASSO and RF algorithms, which were identified as the hub genes in CKD‑related CAVD. CKD chronic kidney disease, CAVD calcific aortic valve 
disease, DEGs differentially expressed genes, LASSO least absolute shrinkage and selection operator, RF random forest
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further narrow down the diagnostic biomarkers, Ran-
dom Forest (RF) machine learning algorithm was also 
carried out to rank the 17 common genes in the lights 
of the variable importance of each gene, and the genes 
with the MeanDecreaseGini > 2 were extracted (Fig. 7D). 
Interestingly, after superposing the eight candidate genes 
from LASSO and six potential genes from RF, only two 
hub genes were overlapped in both subsets, contain-
ing secretory leukocyte protease inhibitor (SLPI) and 
matrix metalloproteinase 9 (MMP9) (Fig.  7E). For the 
better performance in diagnosis and prediction, nomo-
gram was constructed on the basis of the two hub genes 
by performing logistics regression analysis (Fig.  8A). 
The receiver operating characteristic (ROC) curve was 
applied to evaluate the area under the curve (AUC) val-
ues of each hub gene and nomogram to determine their 
sensitivity and specificity for the diagnostic efficacy of 
CKD-related CAVD. As we expected, both two hub genes 
displayed AUC values > 0.9 and nomogram presented a 
higher AUC value than each hub gene, suggesting that 
nomogram may have a strong diagnostic value for CKD-
related CAVD (Fig. 8B–D). The calibration curves uncov-
ered that the predicted probability of the constructed 
nomogram diagnostic model was almost identical to that 
of the ideal model (Fig. 8E). Moreover, the DCA for the 
nomogram was also performed, showing that decision-
making according to the nomogram model may be ben-
eficial for the diagnosis of CKD-related CAVD (Fig. 8F). 
Sclerosis was the early stage of CAVD. The nomogram 
also demonstrated an ideal predictive value among CKD 
patients with sclerotic aortic valve in the GSE51472 
dataset of the GEO database, which included 5 samples 
of human sclerotic aortic valve tissues and 5 samples of 
human normal aortic valve tissues (Fig.  8G), implying 
that the nomogram model could exhibit good diagnostic 
efficacy for early CAVD patients with CKD as well.

Immune cell infiltration and correlation analysis of hub 
genes with invading immune cells in CAVD
We found that the function and pathway analysis of 
CKD-associated pathogenic genes in CAVD showed a 
close association with inflammatory and immune pro-
cesses. The CIBERSORT algorithm was performed to 
derive the characteristics of immune cells and explore 
the immune regulation as well as the correlation of 
diagnostic biomarkers with immune cell infiltration in 
CAVD. Figure  9A revealed the proportion of 22 types 
of immune cells in each sample, and significant differ-
ences were obtained between calcified and control aor-
tic valve samples in 10 immune cell subpopulations. 
Compared with control group, CAVD displayed higher 
proportions of Macrophages M0, T cells CD8 and T 
cells regulatory (Tregs), whereas lower proportions of B 

cells naive, Dendritic cells activated, Macrophages M2, 
Mast cells activated, NK cells activated, Plasma cells and 
T cells CD4 naive (Fig.  9B). In addition, the correlation 
analysis of 22 types of immune cells indicated that T 
cells CD4 naive showed significantly positive correlation 
to Tregs (r = 0.57, p < 0.05), and that Mast cells activated 
were negatively associated with Dendritic cells activated 
(r = − 0.68, p < 0.05) (Fig.  9C). Moreover, the association 
between the expression of two hub genes and the pro-
portion of differentially infiltrated immune cell types was 
further explored. As displayed in Fig. 9D, the hub genes, 
SLPI and MMP9, both demonstrated significant correla-
tion to immune cell accumulation in CAVD.

The validation of the expression pattern of two hub 
genes and the evaluation of the diagnostic value 
of the nomogram models
To further confirm the accuracy of the above inte-
grated bioinformatics analysis, we firstly examined the 
expression pattern of the two hub genes in the recruited 
patients from our external cohort. The RT-qPCR results 
confirmed consistent upregulated expression pattern of 
two hub genes in calcified aortic valve samples in com-
parison with control aortic valve samples (Fig.  10A). 
Moreover, SLPI and MMP9 could be detected in the 
serum by ELISA and the levels were significantly elevated 
in CKD and CAVD patients as well as CKD patients 
with CAVD (Fig.  10B). Then, we developed a CAVD 
diagnostic nomogram model (named nomogram A) 
based on our cohort to predict the possibility of CAVD 
from control and CAVD groups (Fig.  10C). According 
to the ROC curves, the highest AUC of nomogram A 
could be observed between control and CAVD patients 
when compared to that of each biomarker (Fig.  10D). 
In addition, the calibration curves and DCA for assess-
ing nomogram A showed that decision-making based 
on the nomogram A may favor the prediction of CAVD 
(Fig. 10E, F). Furthermore, another diagnostic nomogram 
model (named nomogram B) was also constructed to dis-
tinguish CKD patients with or without CAVD (Fig. 10G). 
Similarly, ROC and calibration curves as well as DCA 
indicated ideal predictive value of nomogram B for the 
CKD patients with CAVD (Fig. 10H–J).

Discussion
In recent years, with the widespread applications of 
microarray and sequencing methods, the molecular 
landscape and potential mechanisms of miscellane-
ous diseases can be easily explored [28, 29]. In addition, 
integrative bioinformatics analysis and machine learn-
ing tools are increasingly performed to explore the novel 
genes, potential diagnostic/prognostic biomarkers, 
underlying mechanisms, and prospective therapeutic 
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targets based on the big data, which can shed more lights 
on the diseases [30, 31].

By applying a variety of comprehensive bioinformat-
ics analysis approaches, to our knowledge, the present 

study is the first to excavate CKD-related pathogenic 
genes to elucidate the association between CKD and 
subsequent CAVD. It was surmised that inflamma-
tory and immune processes together with signaling 

Fig. 8   Development of the diagnostic nomogram model and efficacy assessment. A The nomogram was constructed based on the diagnostic 
biomarkers. B–D The ROC curve for the diagnostic performance of each candidate biomarker including SLPI (B), and MMP9 (C) and the nomogram 
model (D) constructed for CKD‑related CAVD. E The calibration curve of nomogram model prediction in CKD‑related CAVD. The dash line is marked 
as “Ideal”, which represents the standard curve, and is on behalf of the perfect prediction of the ideal model. The dotted line is marked as “Apparent”, 
which indicates the uncalibrated prediction curve, while the solid line is marked as “Bias‑corrected” and represents the calibrated prediction curve. 
F DCA for the nomogram model. The black line is marked as “None”, which stands for the net benefit of the assumption that no patients have 
CAVD. The grey line is marked as “All”, which indicates the net benefit of the assumption that all patients have CAVD, and the purple line is marked 
as “Nomogram”, and represents the net benefit of the assumption that CKD‑related CAVD are identified according to the diagnostic value of CAVD 
predicted by the nomogram model. G The ROC curve for the diagnostic performance of our nomogram model in predicting patients with sclerotic 
aortic valve from the GEO database. ROC receiver operating characteristic, DCA decision curve analysis, CAVD calcific aortic valve disease
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pathways including “cytokine-cytokine receptor inter-
action”, “PI3K-Akt signaling pathway” and “NF-Kappa 
B signaling pathway” might be the potential mecha-
nisms underlying CKD-related CAVD. Moreover, two 
immune-related hub genes, SLPI and MMP9, were 
employed to develop diagnostic nomogram mod-
els to predict the risk of CAVD by machine learn-
ing approaches. According to our results, these two 
hub genes displayed ideal predictive performance for 
CAVD, as assessed by the ROC curve. At last, through 
the external validation of our cohort, the upregulated 
expression patterns of SLPI and MMP9 were con-
firmed to be consistent with the obtained datasets, and 
the diagnostic nomogram models based on SLPI and 
MMP9 levels performed well in significantly differenti-
ating CAVD, particularly CAVD in CKD patients.

Increasing clinical studies have suggested that patients 
with CKD suffer a significantly increased incidence [32] 
and accelerated progression of CAVD [33]. As speculated 
in previous studies, CKD contributes to vascular calcifi-
cation through calcium deposition, hyperphosphatemia 
and reactive oxygen species (ROS). Additionally, CKD is 
assumed to play a significant role in cardiovascular dis-
eases partially by means of excreting secretory proteins, 
such as pro-inflammatory cytokines, TGF-β and bone-
related proteins [34]. However, the potential factors and 
mechanisms participating in CKD-related CAVD are not 
fully understood.

CAVD is previously considered as a degenerative dis-
ease that occurs with age, however, a growing amount of 
evidence starts to realize that CAVD is an active patho-
logical change, which is driven by a series of proactive 
multifactorial processes, including cellular transforma-
tion, apoptosis, oxidative stress and immune response 
[35]. Lately, the roles of inflammation and immunoreg-
ulation in the pathogenesis of CAVD have aroused an 
increasing attention. According to a previous report, the 
number of leukocytes in the aortic valve increases from 
5% at birth to about 12% at 60 days of age [36]. Besides, 
local macrophages, CD4+ and CD8+ T lymphocytes 
are found to be activated in the calcified valve, lead-
ing to the production of more proinflammatory factors 
[37]. Furthermore, valvular osteoblast differentiation 
of valvular interstitial cells (VICs) may be promoted by 
invading monocytes and macrophages, at the same time, 
these cells themselves undergo calcification via secreting 

tumor necrosis factor (TNF) [38]. In this study, the GO-
biological process annotation and KEGG enrichment 
analyses showed that the CKD-related pathogenic genes 
for CAVD were mostly enriched in the inflammatory and 
immunological relevant pathways, indicating that the 
inflammatory-immune pathways might be the potential 
mechanism in CKD-related CAVD.

Currently, the effective pharmacotherapy for the treat-
ment of CAVD is still lacking, in this regard, it is urgently 
needed to explore the potential drugs. Numerous impor-
tant breakthroughs have been made in the past few years 
in identifying small-molecular compounds with thera-
peutic potential in a variety of diseases. Small-molecular 
compounds exhibit several advantages, including high 
tissue penetration, a tunable half-life and oral bioavail-
ability, making them more effective on treating patients 
[39]. Quinazoline-4-piperidine sulfamides (QPS) have 
been depicted as the inhibitors of Ectonucleotide pyroph-
osphatase/PDE1 (NPP1), which can attenuate the high 
phosphate-induced mineralization in a cellular model of 
CAVD [40]. However, no previous studies have disclosed 
potential small-molecular compounds for therapeutic 
application of CAVD based on gene expression signa-
tures in the calcified aortic valve via high-throughput 
screening. Herein, by cMAP analysis, this study provided 
a novel perspective linking CKD-related pathogenic 
genes to discover the potential compounds targeting 
CAVD. The upregulated CKD-related pathogenic genes 
in the calcified valve were applied to cMAP analysis, 
and 10 small-molecular compounds (metyrapone, gefi-
tinib, dilazep, aminopentamide, methoxsalen, forskolin, 
CGP-37157, IKK2-inhibitor, vidarabine and TG-101348) 
were selected as candidates. Of note, metyrapone, a 
potent inhibitor of 11-beta hydroxysteriod dehydroger 
and mineralocorticoid receptor as well as cytochrome 
P450, showed the highest negative enrichment score 
in cMAP analysis, implying that it maximally reversed 
the expression of upregulated CKD-related pathogenic 
genes in CAVD. Although no direct link is found between 
metyrapone and calcification, increasing studies have 
reported that metyrapone can ameliorate numerous car-
diovascular disease such as cardiac remodeling [41] and 
endothelial dysfunction [42] by abrogating corticosterone 
signaling. Interestingly, the previous studies have estab-
lished the pathogenic roles of CKD-related corticosterone 
signaling in vascular calcification [43, 44]. In addition, 

Fig. 9   Immune cell infiltration analysis in CAVD. A Stacked histogram displaying the immune cell proportions between CAVD and control groups. 
B Violin plot showing the comparison of 22 kinds of immune cells between CAVD and control groups. Red and blue stars represent the increased 
and decreased proportions of immune cells in CAVD group, respectively. C The heatmap revealing the correlation of 22 kinds of immune cells 
infiltration upon the threshold of p < 0.05. D The correlation map representing the association of the differentially infiltrated immune cells with two 
hub genes upon the threshold of p < 0.05. CAVD calcific aortic valve disease. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns not significant

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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the metyrapone-mediated corticosterone inhibition also 
suppresses the production of pro-inflammatory factors, 
expression of adhesive molecules and accumulation of 
monocytes in neurovascular disorder [45]. On the basis 
of the above previous findings, the therapeutic effects of 
metyrapone make it possible to be a potential agent for 
the treatment of inflammatory and immunological dis-
eases including CAVD. Thus, it is speculated that early 
medical intervention with metyrapone in CKD patients 
may not only improve the kidney function but also 
inhibit the initiation and progression of CAVD, finally 
significantly prolong the life span of patients.

Over the past few decades of life, CAVD is usually 
asymptomatic, but once symptoms occur, CAVD has 
often stepped into the severe stage. In this case, aor-
tic valve replacements, either by surgical or transcath-
eter approach, are the only effective treatments, which 
are associated with the disadvantages of high costs and 
a high complication rate. Consequently, it is beneficial 
to diagnose and prevent CAVD in the early stage. It is 
estimated that one third of the aged population are diag-
nosed with the early stage of CAVD features, as indicated 
by the echocardiographic or radiological evidence [46]. 
Limited by the skills of the echocardiography operator 
and the quality of the imaging, it is needed to identify 
more conventional serum biomarkers for the early diag-
nosis of CKD patients with CAVD. Most noteworthily, a 
more comprehensive diagnostic nomogram model was 
established based on two hub genes in this study, which 
presented a  higher diagnostic value for CKD-related 
CAVD than that of an independent biomarker. Moreover, 
the nomogram model was efficient in diagnosing patients 
with sclerotic aortic valve, indicating that this diagnostic 
nomogram was also potent in predicting the early stage 
of CAVD. Furthermore, external validation from our 
cohort revealed the elevated SLPI and MMP9 mRNA lev-
els in aortic valve tissues of CAVD groups compared with 
control groups. Serum SLPI and MMP9 levels were also 
increased in patients with CAVD and higher in patients 
with CAVD and CKD, and our constructed diagnosis 
nomogram was capable of significantly distinguishing 
CAVD as well as CAVD in CKD patients.

SLPI belongs to the family of whey acidic proteins 
[47], which plays an important role in inhibiting human 

neutrophil-derived serine proteases, such as elastase and 
cathepsin G [48, 49]. Previous evidence suggests that 
SLPI may be a novel biomarker and target candidate for 
acute kidney injury (AKI), indicated by upregulation of 
SLPI mRNA levels in AKI allografts as well as elevated 
protein levels of SLPI in plasma and urine of AKI patients 
[50]. Moreover, it was identified as a novel biomarker for 
CKD patients with CAVD in our study. SLPI is principally 
expressed in epithelial cells, but it can also be secreted by 
endothelial cells, adipocytes and host-defense effector 
cells [49, 51, 52]. SLPI has been extensively reported to 
exert its function via several significant biological pro-
cesses, such as host defense, inflammatory response and 
cell fate regulation [48]. Upregulation of SLPI increases 
the levels of osteoblast-related markers including Runx2, 
Sp7 and Col1a1 in MC3T3-E1 cells (the mouse osteo-
blast cell line), and promotes the proliferation of MC3T3-
E1 cells [53]. Therefore, SLPI activation can strengthen 
osteoblast differentiation and proliferation. Noteworthily, 
aortic VIC undergoing osteoblast differentiation is found 
to have a critical effect on the development process and 
promote the progression of CAVD [54, 55]. However, the 
mechanisms regarding of SLPI in CAVD have not been 
elucidated yet. In this study, SLPI, as an important regu-
latory factor for inflammation and immunology, showed 
increased expression in calcified aortic valve in compari-
son with control aortic valve samples. In this regard, our 
study indicated that SLPI might provide a potential diag-
nostic indicator for CKD patients with CAVD.

Besides, MMP9 was identified as the perspective con-
tributor to the diagnosis of CKD patients with CAVD in 
this study. MMP9, which belongs to the zinc-dependent 
endopeptidase family, is involved in immunology acti-
vation, inflammatory cascade regulation, extracellu-
lar matrix (ECM) disassembly and remolding to afford 
ways for immune cell accumulation in the pathogenesis 
of different diseases. A few studies have indicated that 
MMP9 contributes to atherogenesis through facilitating 
the migration of vascular smooth muscle cells and the 
invasion of macrophages. In addition, arterial stiffening 
is credited with the elevated expression of MMP9 since 
it plays a certain role in elastin degradation, leading to 
subsequent matrix remodeling. An earlier study has 

(See figure on next page.)
Fig. 10   Validation of the expression patterns of two hub genes in calcified aortic valve samples and evaluation of the diagnostic performance of 
nomogram models in distinguishing CAVD. A RT‑qPCR showing increased mRNA levels of SLPI and MMP9 in calcified aortic valve samples. B ELISA 
analysis displaying elevated serum SLPI and MMP9 levels in CKD and CAVD patients as well as CKD patients with CAVD. C The nomogram A was 
developed based on the diagnostic biomarkers to predict the risk of CAVD. D The ROC curves for the predictive performance of each candidate 
biomarker (SLPI and MMP9) and nomogram A. E The calibration curve of nomogram A prediction in CAVD patients. F DCA for the nomogram A. 
G The nomogram B was developed based on the diagnostic biomarkers to predict the risk of CKD patients with CAVD. H The ROC curves for the 
predictive performance of each candidate biomarker (SLPI and MMP9) and nomogram B. I The calibration curve of nomogram B prediction in CKD 
patients with CAVD. J DCA for the nomogram B
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identified MMP9 as a pathogenetic factor for calcified 
aortic valve stenosis, and inhibition of MMP9 attenu-
ates reactive oxygen species production and calcium 
deposition by improving the mitochondrial morphol-
ogy and metabolism in calcified aortic valve interstitial 
cells [56]. Furthermore, the increased levels of circu-
lating MMP9 is significantly associated with diabetic 
nephrology progression, and is specially involved in the 
development of albuminuria in patients with CKD [57]. 
Interestingly, our data suggested that the expression of 
MMP9 was significantly upregulated in CKD patients 
with CAVD. As a result, it was speculated that MMP9 
might interrupt the balance between the anabolism and 
catabolism of ECM, and promote macrophage infiltra-
tion to participate in CAVD progression. Conclusively, 
MMP9 is assumed to be an appropriate biomarker for 
distinguishing calcification.

In immune cell infiltration analysis, the accumulation 
of various types of immune cells has been demonstrated 
to exist in all stages of CAVD, which is significantly 
related to the severity of aortic stenosis [58-60]. Pre-
vious studies have demonstrated that calcified aortic 
valve tissues and peripheral blood harbor diverse kinds 
of activated T lymphocytes [61, 62], where T cells CD8 
exhibit a greater invasion ability than other subpopu-
lations [62]. Moreover, activated T cells CD8 contrib-
ute to CAVD via secreting IFN-γ, eventually facilitating 
the progression of aortic stenosis [63]. Furthermore, 
macrophages, the heterogeneous innate immune sys-
tem cells, can be classified as two major phenotypes, 
including pro-inflammatory M1 macrophages and anti-
inflammatory M2 macrophages [64]. They can modu-
late phenotypic switch rapidly in response to the local 
microenvironment. Both M1 and M2 macrophages are 
reported to be accumulated in patients with CKD, with 
a lower proportion of M2 macrophages being detected 
in calcified aortic valves. In this study, significant dif-
ferences in the infiltration of immune cells were iden-
tified between CAVD and control groups, with higher 
abundances of Macrophages M0, T cells CD8 and 
Tregs, whereas lower proportions of B cells naive, Den-
dritic cells activated, Macrophages M2, Mast cells acti-
vated, NK cells activated, Plasma cells and T cells CD4 
naive. Furthermore, the hub genes SLPI and MMP9 
showed close association with immune cell infiltra-
tion in CAVD, implying that the candidate biomarkers 
might not only distinguish CAVD but also contribute to 
CAVD by interaction with inflammatory-immune path-
ways. Thus, it is vital to comprehensively understand 
the inflammatory-immune pathways related to CAVD 
in order to develop novel diagnostic or prognostic bio-
markers and therapeutic targets for CAVD.
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