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Abstract 

Background  Central precocious puberty (CPP) is a common disease in prepubertal children and results mainly from 
disorders in the endocrine system. Emerging evidence has highlighted the involvement of gut microbes in hormone 
secretion, but their roles and downstream metabolic pathways in CPP remain unknown.

Methods  To explore the gut microbes and metabolism alterations in CPP, we performed the 16S rRNA sequencing 
and untargeted metabolomics profiling for 91 CPP patients and 59 healthy controls. Bioinformatics and statistical 
analyses, including the comparisons of alpha and beta diversity, abundances of microbes, were undertaken on the 
16S rRNA gene sequences and metabolism profiling. Classifiers were constructed based on the microorganisms and 
metabolites. Functional and pathway enrichment analyses were performed for identification of the altered microor-
ganisms and metabolites in CPP.

Results  We integrated a multi-omics approach to investigate the alterations and functional characteristics of gut 
microbes and metabolites in CPP patients. The fecal microbiome profiles and fecal and blood metabolite profiles for 
91 CPP patients and 59 healthy controls were generated and compared. We identified the altered microorganisms 
and metabolites during the development of CPP and constructed a machine learning-based classifier for distinguish-
ing CPP. The Area Under Curves (AUCs) of the classifies were ranged from 0.832 to 1.00. In addition, functional analysis 
of the gut microbiota revealed that the nitric oxide synthesis was closely associated with the progression of CPP. 
Finally, we investigated the metabolic potential of gut microbes and discovered the genus Streptococcus could be a 
candidate molecular marker for CPP treatment.

Conclusions  Overall, we utilized multi-omics data from microorganisms and metabolites to build a classifier for dis-
criminating CPP patients from the common populations and recognized potential therapeutic molecular markers for 
CPP through comprehensive analyses.
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Background
The sign of the initiation of puberty is the reactivation 
of the hypothalamic-pituitary–gonadal axis (HPGA) 
[1]. Central precocious puberty (CPP) is due to the early 
release of gonadotropin-releasing hormone (GnRH), 
which causes HPGA to activate prematurely. Precocious 
puberty could accelerated bone development, result 
in premature discontinuation of linear growth [2], and 
increase the risk of type 2 diabetes [3, 4], obesity, cardio-
vascular disease [5], and breast cancer [6, 7]. The preva-
lence of CPP is 5 to 10 times higher prevalence in girls 
than in boys [8]. Globally, at least 0.2% of women experi-
enced earlier puberty each year [9]. However, the patho-
genesis of CPP is not completely known and remains to 
be studied.

The microbiota-gut-brain axis (MBGA) refers to that 
gut microbiota affects the central nervous system by 
regulating intestinal neural, endocrine, and immunologic 
pathways. Moreover, this manner is often bidirectional 
[10]. The role of gut microbiota on the host is not limited 
to modulating the host immunity, nervous and hormones 
[11], but also regulating intestinal epithelial cells the 
blood brain barrier [12], and the production and degra-
dation of neuroactive compounds [13], such as Nitrogen 
Monoxide (NO) [14]. Microbial metabolites involved in 
MBGA include γ-aminobutyric acid (GABA), serotonin, 
butanoate, cortisol, and quinolinic acid [15]. With the 
inclusion of extensive studies, the mechanism of interac-
tion between gut microbiota and brain is becoming more 
and more clear. It’s worth noting that even though the 
relationship between precocious puberty and gut micro-
biota has been investigated [16], the complex association 
between gut microbiota, metabolites, and CPP is largely 
unknown.

In this study, we dissected gut microbiome and metab-
olomics profiles from 150 participants to explore the cor-
relations between gut microbiome features, metabolic 
features, and CPP. Bioinformatics and statistical analy-
ses, including the comparisons of alpha and beta diver-
sity, abundances of microbes, were undertaken on the 
16S rRNA gene sequences and metabolism profiling. We 
revealed the widespread alterations of gut microbes and 
metabolites in CPP, which were involved in nitric oxide 
synthesis pathway. The results provided novel insights 
into recognizing potential therapeutic molecular markers 
for CPP.

Methods
Participants
In total, 150 fecal and blood samples (91 CPP patients, 
59 healthy controls) were recruited from the Hainan 
women and Children’s medical center, Hainan Medical 

University. Patients who satisfied the following criteria 
were enrolled in the CPP group: (1) Girls younger than 
10  years old. (2) Complying with the diagnostic crite-
ria in the diagnosis and treatment guidelines of CPP: 
a) Secondary sexual characteristics appeared before 
8  years in girls and progressed according to the normal 
developmental routine. (b) With evidence of gonadal 
development. (c) The height growth spurt during the 
development. (d) The gonadotropin elevated to puber-
tal level and luteinizing hormone-releasing hormone 
(LHRH) provocation test was positive. (e) The bone age 
was advanced 1 year more than the chronological age.

Participants were excluded when they met any of the 
following criteria. (a) Patients with other systemic dis-
eases, including underlying diseases with clinical impacts 
(such as serious diseases of the heart, liver, kidney, lungs, 
and brain), tumors, abnormal glucose metabolism, 
immunodeficiency, and suffering tuberculosis, hepati-
tis B and C and other diseases within half a year. (b) Any 
history of other drugs, such as various antibiotics, used 
other than immune-pharmaceuticals (for instance, pred-
nisone, tacrolimus cyclosporin, and cyclophosphamide) 
within 3  months. (c) Patients undergoing major gastro-
intestinal, inflammatory bowel diseases, long-term con-
stipation, or diarrhea. (d) Coexisting other connective 
tissue diseases (such as Sjogren’s syndrome and overlap 
syndrome).

Sample collection and preparation
The subjects’ feces (greater than 400 mg) were collected 
into a sterile preservation tube with a sterile spoon, the 
Bristol Stool Scale scores were recorded. Then the feces 
were immediately placed into a – 80 °C freezer for cryo-
preservation for testing gut microbial and metabolite. 
About 3 ml of whole blood samples of the same subjects 
were collected using heparin anti-coagulant tubes. After 
staying still for 30 min at room temperature, all samples 
were centrifuged at 1300–2000 g for 10 min at 4 °C. After 
removing the upper plasma (not less than 0.3  ml), the 
samples were flash-frozen in liquid nitrogen followed by 
and preserved at − 80 °C to detect blood metabolites.

DNA library construction and sequencing
After extracting genomic DNA from the fecal samples 
using CTAB or SDS methods, the V4 variable region of 
16S rDNA was amplified by PCR utilizing primers spe-
cific for Barcode and high-fidelity DNA polymerase. The 
library was quantified by Qubit and Q-PCR after con-
struction by using TruSeq® DNA PCR-Free Sample Prep-
aration Kit. Sequencing of the V4 variable region was 
performed through Illumina Miseq after the library was 
qualified.
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16S rRNA gene sequencing data analysis
All the raw 16  s rRNA sequencing data were processed 
using QIIME software [17]. The sequences with 97% 
resemblance for each sample were clustered into opera-
tional taxonomic units (OTUs) through Usearch algo-
rithm [18]. Then based on the reference sequence of the 
Silva database [19], the OTUs  representative sequence 
was used for species annotation using the UCLUST algo-
rithm [18]. The Chao index measured in OTU was used 
to evaluate alpha diversity. Beta diversity was calculated 
through the Bray–Curtis and was used to build princi-
pal coordinate analysis (PCoA). ANOSIM test was car-
ried out to visualize and compare the differences in beta 
diversity between CPP and healthy control groups.

Untargeted metabolomics profiling
To identify the metabolomic features of subjects’ fecal 
and blood samples, untargeted metabolomic analysis 
methods were performed using an ultra-performance 
liquid chromatography system with quadrupole-time-of-
flight mass spectrometry (UPLC-QTOFMS), which was 
used to measure polar metabolites, such as organic acids.

LC–MS/MS analysis
All samples were separated by Ultra-high-performance 
liquid chromatography (UHPLC) reversed separation 
on the Agilent 1290 Infinity UHPLC. The conditions for 
detection were as follows: the temperature was 25  °C, 
the flow rate was 0.5  mL/min, and the sample injection 
volume was 2 μL. A mobile phase consisting of a binary 
solution was used: Mobile phase A contained water, 
25  mM ammonium acetate and 25  mM ammonia, and 
Mobile phase B consisted of acetonitrile. The gradient 
elution process was as below: 95% B for 0–0.5  min, the 
concentration of B from 95 to 65% linearly in 0.5–7 min, 
B from 65 to 40% linearly for 7–8 min, B was kept at 40% 
for 8–9 min; B was changed from 40 to 95% linearly for 
9–9.1  min, lastly, B remained at 95% for 9.1–12  min. 
The samples were placed within an autosampler at 4  °C 
throughout the analysis. To avoid the influences due to 
the signal fluctuations arising from the detection of the 
instrument, the samples were analyzed continuously in 
random order. QC samples were inserted into the sample 
cohort to monitor and assess the solidity of the system 
and the credibility of experimental data.

Quadrupole–time‑of‑flight conditions
Positive and negative ions were separated through hydro-
philic interaction chromatography (HILIC), followed by 
UHPLC separation, then a Triple TOF® 6600 (AB SCIEX) 
was intended for the mass spectrometer. The ESI oper-
ating conditions were as below: nebulization pressure 

(Gas1) was set as 60, adjuvant air pressure (Gas2) was 60, 
curtain gas was 30, ion source temperature was 600 ℃, 
the ion spray voltage was 5500  V  in the positive ion 
mode and −  5500  V  in the negative ion mode, the m/z 
range of TOF MS and daughter ion scanning were 0.20 s/
spectra and 0.05 s/spectra, respectively. Secondary mass 
spectrometry was acquired by information-dependent 
acquisition (IDA) with the high sensitivity mode: the 
declustering potential (DP) was ± 60  V (positive and 
negative mode), the collision energy was 35 ± 15  eV, 
excluding isotopes within 4 Da, and the candidate ions to 
monitor per cycle: 10.

Random forest classification
To identify biomarkers in gut microorganisms, fecal 
metabolites, and blood metabolites that could be used to 
distinguish CPP patients from the population, a random 
forest model based on gut microorganisms, fecal metab-
olites, and blood metabolites was constructed using the 
R package “randomForest” (Version 4.7–1.1) to iden-
tify the important features. The combined dataset of the 
CPP group and healthy control group was randomly split 
into the training set and testing set with a ratio of 7:3. In 
addition, the Boruta algorithm of the R package “Boruta” 
(Version 7.0.0) was used to select gut microorganisms, 
fecal metabolites, and blood metabolites that could make 
significant contributions to the classification, and based 
on the selected features constructed a model. The area 
under curve (AUC) of the receiver operating characteris-
tic (ROC) curve was plotted using the R package “pROC” 
(Version 1.18.0) to evaluate the model performance.

Metagenomic metabolomic pathway prediction 
by PICRUSt2
The pathways of the gut microbiome and the activity of 
gut-brain modules were predicted by PICRUSt2 [20]. Dif-
ferences in pathways abundances between the CPP and 
healthy control groups were calculated by t-test, and 
p-values were corrected applying Benjamini-Hochberg 
(BH) adjustment.

Metabolomic pathway enrichment
According to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) metabolite database [21], we used 
hypergeometric tests to perform the functional anno-
tation of fecal and blood metabolites, and Benjamini-
Hochberg (BH) adjustment was applied to correct 
p-values. The pathways were considered as significantly 
enriched only if the number of their corresponding dif-
ferential metabolites was at least 3 and their corrected 
p-values were less than 0.05.
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16S and metabolome correlation analysis
We used correlation analysis to identify differential 
metabolites associated with differential microorganisms. 
The Spearman correlation coefficient was calculated. 
Only the differential metabolites with the correlation 
coefficients R2 ≥ 0.3 or R2 ≤ −  0.3, and BH corrected 
p-values < 0.05 were selected as metabolites potentially 
affected by microorganisms.

Statistical analysis
All statistical analysis and charting were performed using 
R software (version 4.1.2). Kolmogorov–Smirnov test 
was used to check the normal distribution of the data. 
Wilcoxon’s rank-sum test was used to calculate the dif-
ferences in metabolite and microbial abundances, which 
are non-normally distributed. The Spearman correlation 
coefficient was determined by the R package “corrplot”, 
with a corrected significance threshold of p < 0.05. Addi-
tionally, partial least square discriminant analysis (PLS-
DA) was used to analyze the between-group difference. 
BH-adjusted p-values < 0.05 was considered statistically 
significant.

Results
Gut microbiota helps to effectively distinguish CPP 
patients from controls
To investigate whether the alterations in gut microbi-
ome are correlated with CPP, we performed 16s rRNA 
gene sequencing for a Chinese cohort containing 91 
patients and 59 healthy controls. More than 10,000,000 
sequences were annotated into the SILVA rRNA library 
database and subsequent analysis was carried out in the 
operational taxonomic unit (OTU). In this cohort, a 
total of 2840 OTUs were identified under a 97% similar-
ity threshold condition. The number of OTUs in the CPP 
and healthy control groups was comparable that possibly 
due to a large number of shared microorganisms between 
the two groups (Fig. 1A–B). Despite the presence of con-
siderable shared microorganisms, the OTU correlation 
within-group was higher than across groups (Fig.  1C). 
The Chao index, as one of the indicators of alpha diver-
sity, showed a lower level in the CPP group (Fig.  1D, 
p = 0.0021). At the same time, the analyses of the beta 
diversity using ANOSIM in combination with principle 
coordinated analysis (PCoA) also found significant differ-
ences across groups (Fig. 1E). These results indicated that 
the composition of gut microbiota may have changed 
during CPP development.

Therefore, we compared the abundance of gut micro-
biota between CPP and healthy control groups. We found 
that Bifidobacterium, Blautia, and Streptococcus showed 
higher abundances in the CPP group at the Genus 
level (Fig.  1F–H). Since the differential species of gut 

microbiota identified between groups could not well dis-
tinguish CPP patients from the population, we used the 
random forest model and boruta algorithm to construct 
classifiers for all species. Finally, 24 representative species 
were identified and the performance assessment of the 
training set, test set, and training–testing set presented 
high classification efficiency, the AUC was 1.00, 0.932, 
and 0.98, respectively (Fig. 1I). Overall, we identified dif-
ferent species between CPP and healthy control groups 
and constructed classifiers using random forests for dis-
tinguishing CPP patients.

Functional pathways altered by gut microbiota in CPP 
patients
Next, we employed PICRUSt analysis to predict meta-
bolic pathway activity and gut-brain module (GBMs) 
activity associated with neuroendocrine [20, 22]. Of the 
173 metabolic pathways, we found that there were 25 
pathways existed with significantly higher activities in 
CPP (Fig.  2A), including Tetracycline biosynthesis, Bis-
phenol degradation, Lysosome, and Flavonoid biosynthe-
sis. It was reported that the detection rate of antibiotics 
in the precocious puberty group was significantly higher 
than in adolescent children [23], and antibiotic expo-
sure could result in disorders of gut microbiota [24]. As 
the one of the antibiotics, and the perturbations of tet-
racycline’s synthetic pathway may be related to the dis-
orders of gut microbiota. As an endocrine disruptor, 
bisphenol has been demonstrated in previous studies 
to be associated with idiopathic CPP in 6-year-old girls 
[25]. Metachromatic leukodystrophy (MLD) caused by 
lysosomal abnormalities, which resulted from decreased 
activity of the enzyme arylsulfatase A and accumulation 
of aliphatic glucosinolates in the nervous system. The 
abnormal accumulation may interfere with the complex 
network that regulates the hypothalamic-pituitary axis, 
thereby inducing CPP [26]. The flavonoids, such as iso-
flavones whose biosynthesis could affect the kisspeptin 
signaling pathway, which may become the basis for pre-
cocious puberty in females [27].

Similarly, we also found that some GBM-related path-
ways exhibited higher activity in the CPP group (Fig. 2B), 
for example, isovaleric acid synthesis, propionic acid deg-
radation, and the synthesis of nitric oxide (NO). Notably, 
NO had an important effect on gaseous neurotransmitter 
that stimulates the secretion of gonadotropin-releasing 
hormone [28]. Afterward, we researched the contribution 
of species to GBMs through OUT based on the Genus 
level. The NO module was mainly contributed by 11 spe-
cies, including Bacillus, Paenisporosarcina, and Rhodoc-
occus (Fig.  2C). These results suggested that alterations 
in the gut microbiota could influence the specific func-
tions that have an impact on early puberty.
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Fecal metabolites alterations in CPP patients
To further refine the characteristics of CPP, we carried 
out nontargeted metabolomics profiling of fecal sam-
ples from 150 individuals (including 91 CPP patients 
and 59 healthy controls) and identified 15,411 com-
pounds likely from the microbiome and host (including 
8949 positive ions and 6771 negative ions). The partial 
least-squares discriminant analysis (PLS-DA) revealed 
a significant separation of positive and negative fecal 

metabolites between CPP and healthy control groups 
(Fig.  3A and Additional file  1: Fig. S1A). Comparing 
the abundances of positive ionic metabolites between 
CPP and healthy controls, we discovered 1215 metab-
olites were expressed differently in CPP, of which 795 
were up-regulated and 420 were down-regulated. These 
metabolites covered lipid-like molecules, organic nitro-
gen compounds, phenyl-propanol, and polyketide 
(Fig.  3B–C). In addition, there were 1255 negative ion 

Fig. 1  Gut microbial dysbiosis in CPP patients. A The number of OTUs between CPP group and healthy control group. B The shared OTUs 
between CPP group (shown in red) and healthy controls (shown in blue) (CPP group with 2586 and healthy controls with 2266). C The correlation 
analysis between two groups at the OUTs level. The heatmap on left showed the Spearman correlation coefficients and the box plots showed the 
correlation coefficients within and across group comparisons. D The distribution of the Chao index between two groups, and the healthy controls 
presented a higher Chao index (using the Wilcox’s rank sum test to calculate p-values). E PCoA analysis was performed based on the Bray–Curtis 
distance between two groups and the significant differences between groups were calculated by ANOSIM. This figure presented the first principal 
component and the second principal component. F The distribution of Genus species in two groups. G The differential analysis of species between 
two groups at the genus level. H The differences in species abundance between groups at the genus level. I The performance assessment of the 
random forest model based on the training set, test set, and training–testing set (****p <  = 1.0E−4, ***p <  = 0.001, **p <  = 0.01, *p < 0.05)
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metabolites that differed significantly were identified 
via the same method, which consisted of 695 up-reg-
ulated and 560 down-regulated (Additional file  1: Fig. 
S1B–C).

To further understand the functions of these differ-
ential metabolites and their effects on the host, we next 
performed functional enrichment analysis and differ-
ential abundance (DA) scores [29] to capture the up or 
downregulation trend of pathway metabolites compared 
with healthy controls. Finally, fifteen pathways of at least 
3 metabolites were identified in our analysis, of which 
10 showed upward trends (Fig.  3E, DA >  = 0.5). These 
pathways over-activated in CPP were mainly involved in 
cysteine and methionine metabolism, histidine metab-
olism, and neuroactive ligand-receptor interactions 
(Fig.  3E). Although steroid metabolism did not exhibit 
the same trend (Fig.  3D), three metabolites were highly 
expressed in CPP, they were perturbed in CPP (Fig. 3E) 
and may affect the treatment of precocious puberty [30]. 
These results indicated that metabolite alterations and 
functions are related to CPP.

Therefore, we used positive ion metabolites to con-
struct a classifier and recognized 52 characteristic 
metabolites (Fig. 3F). The performance evaluation of the 
training set, test set, and training–testing set based on 
the positive ion classifier presented better classification 
efficiency, whose AUC was 1, 0.85, and 0.988, respec-
tively (Fig.  3G). In addition, the performances based 
on the negative ion classifier were all high (Additional 
file  1: Fig. S1D). The good performance of the RF clas-
sifiers constructed separately for positive and negative 
ions indicates that either one can be used to classify the 
CPP samples. Overall, we identified differential metabo-
lites between CPP and healthy control groups and con-
structed a random forest classifier based on the fecal 
metabolite.

Blood metabolomics alterations in CPP patients
Similarly, we performed untargeted metabolomic analysis 
on blood samples from 150 individuals and recognized 
18,867compounds (including 12,898 positive ions and 
6193 negative ions) that may be from the microbiome 

Fig. 2  The functional analysis of gut microbes. A The average abundance of KEGG pathways with significant differences. T-statistics and p-values of 
differences in pathway activities between groups were calculated with t-test. B The average abundance of significantly different GBMs between two 
groups and t-statistics and significance (p-values) of t-test were presented. C The contributions of species to pathways at the genus level. P-values 
representing significance and odd ratios (OR value) were calculated using Fisher’s exact test
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and host. PLS-DA revealed positive and negative fecal 
metabolites were clearly separated between CPP and 
healthy controls (Fig.  4A, Additional file  1: Fig. S2A). 
We compared the abundance of positive ion metabolites 
between the two groups and discovered that 1026 metab-
olites were expressed differently in CPP of which 941 
were up-regulated and 85 were down-regulated. These 
metabolites covered the classification of lipid-like mol-
ecules, organic nitrogen compounds, and benzene ring 
compounds (Fig. 4B–C). Furthermore, 167 negative ions, 

including 108 up-regulated and 59 down-regulated, were 
recognized using the same method (Additional file 1: Fig. 
S2B–C). We next used positive or negative ion metabo-
lites to construct the classifiers. We found that the RF 
classifiers constructed separately for positive and nega-
tive ions gave both good performances (Additional file 1: 
Fig. S3).

After analyzing the functional enrichment and assess-
ing the differential abundance of these metabolites, we 
captured four pathways of at least 3 metabolites of which 

Fig. 3  The altered fecal metabolites in the positive ion mode of the CPP group. A PLS-DA of CPP and healthy control groups. B The differential 
analysis between groups identified 1215 metabolites with significant differences and up-regulated and down-regulated metabolites with 
the top 20 largest differential degrees were marked. The outer circle colors of the dots indicated the different classifications of metabolites. C 
The abundance of 1215 metabolites. D The comparison of metabolites in steroid metabolic pathways between CPP and healthy controls. E 
The enrichment analysis of KEGG metabolic pathways based on differential metabolites and the enrichment significances were computed by 
hypergeometric distribution. The size of the point represented the enriched metabolites in pathways and the color of the point represented 
the differential abundance scores (*p < 0.05). F The abundance of the characteristic metabolites under positive ion mode of the classifier. G The 
performance evaluation of the random forest model according to the training set, test set, and training–testing set
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two showed an increasing trend (DA >  = 0.2) and two 
presented a decreasing trend (DA <  = −  0.2). Interest-
ingly, these pathways decreased in CPP were involved 
in cholesterol metabolism and primary bile acid bio-
synthesis (Fig.  4D–E). However, cholesterol and bile 
acid were used to treat precocious puberty [31]. These 
results indicated that the changes and functions of blood 
metabolites were associated with CPP. Fecal and blood 
metabolites possessed different expression abundances in 
the CPP group and healthy controls, and the expression 
of these metabolites appeared to be more tendentious in 
fecal samples (Fig. 4F).

Associations of gut bacterial and fecal metabolites in CPP
To obtain the metabolic potential of gut microbiota in the 
CPP group, we calculated Spearman correlation coeffi-
cient of differentially expressed microorganisms and fecal 

metabolites in CPP group at 6 taxonomic levels (includ-
ing Phylum, Class, Order, Family, Genus and Species), 
respectively. This procedure utilized metabolites with 
annotated names after positive and negative ions modes 
were merged. Among the 262 differential metabolites, we 
observed that 64 metabolites were with strong correla-
tions with 23 gut microbes (Spearman correlation coef-
ficient >  = 0.3 or <  = − 0.3, BH corrected p-values < 0.05). 
These metabolites were involved in lipids and lipid-like 
molecules, organoheterocyclic compounds, Benzenoids, 
organic acids and derivatives, organic nitrogen com-
pounds, organic oxygen compounds, Nucleosides, nucle-
otides, and analogues (Fig.  5A). Specifically, the genus 
species Streptococcus and Bifidobacterium played pro-
moted role in sexual development [32] and upregulated 
in CPP. Bifidobacterium was found to be correlated with 
21 metabolites (Fig. 5B), including M149T215 (Bisphenol 

Fig. 4  The altered blood metabolites in the positive ion mode of the CPP group. A PLS-DA of CPP group and healthy controls. B The analysis of 
differences between groups recognized 1026 metabolites with significant differences and up-regulated and down-regulated metabolites with 
the top 20 largest differential degrees were marked. The outer circle colors of the dots indicated the different classifications of metabolites. C 
The abundance of 1026 metabolites. D The comparison of metabolites in primary bile acid biosynthesis pathways between two groups. E The 
enrichment analysis of KEGG metabolic pathways according to differential metabolites and the enrichment significances were computed by 
hypergeometric distribution. The size of the point represented the enriched metabolites in pathways and the color of the point represented the 
differential abundance scores (* p < 0.05). F The abundance of the shared metabolites in the fecal and blood
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b) and M431T154 (alpha-Tocopherol (Vitamin E)), which 
showed positive correlations. Bisphenol b has been 
shown to disrupt the uterine immune landscape in mice. 
Furthermore, it has been reported that Vitamin E plays 
an important role in hypothalamic control of luteinizing 
hormone-releasing hormone (LHRH) and ascorbic acid 
(AA) release in mice by mediating the release of NO [33].

Associations of gut bacterial and blood metabolites in CPP
Likewise, we calculated Spearman correlation coef-
ficient of differentially expressed microorganisms and 
differentially expressed blood metabolites at 6 levels in 
CPP group, respectively. This analysis also used metabo-
lites with annotated names that were considering both 
positive and negative ions modes. Out of 99 differential 
metabolites, we observed that 64 metabolites had strong 
correlations with 21 gut microorganisms at 6 levels (cor-
relation coefficient >  = 0.3 or <  = −  0.3, BH-corrected 
p-value < 0.05). These metabolites involved lipids and 
lipid-like molecules, organic acids and derivatives, phe-
nylpropanoids and polyketides, and organic oxygen com-
pounds, among others (Fig.  6A). Consistent with the 
previous observations, we also found strong associations 
of the genus Blautia, Streptococcus, and Bifidobacterium, 
which exhibited higher abundances in CPP group, with 
M430T323 (Tubacin). Tubacin has been shown to signifi-
cantly increase the expression of endothelial nitric oxide 
synthase [34], and NO is known to stimulate the secre-
tion of gonadotropin-releasing hormone [28].

Furthermore, Blautia and Bifidobacterium were posi-
tively correlated with M247T196 (Tryptophan betaine, 
Fig.  6B). Tryptophan betaine has been identified as a 
strong predictor of vitamin D [35]. It has been sug-
gested that vitamin D status may be associated with CPP 
risk and may have a threshold effect on CPP [36]. These 
results suggested that the dynamic changes of gut micro-
biota and the increase of Blautia, Streptococcus, and Bifi-
dobacterium in the CPP group may influence NO-related 
fecal or blood metabolites, leading to CPP by stimulating 
the secretion of gonadotropin-releasing hormone. Over-
all, the alterations of metabolites associated with micro-
biota dysbiosis provided new insights for the diagnosis 
and treatment of CPP.

Discussion
In this study, we have discovered the alterations in the 
characteristics of gut microbiota, fecal and blood metab-
olites in patients with CPP, and identified some microbial 
and metabolite candidates that may be useful for CPP 
treatment. Genus Bifidobacterium and Streptococcus 
were highly enriched in CPP, both of which were asso-
ciated with signal transduction of GnRH [32, 37]. Fecal 
metabolites M333T401_1 (Estrone sulfate), M367T29 
(3-dehydroepiandrosterone sulfate), M465T86 (Andros-
terone glucuronide), M329T110 (11beta-hydroxypro-
gesterone) and M345T107 (Corticosterone) showed a 
significant difference between CPP and healthy con-
trols, and these five metabolites with a weak overall 
up-regulated tendency mediated steroid metabolism. 

Fig. 5  The fecal metabolic potential of gut microbial in CPP group. A The intestinal microorganisms-metabolites interactions and the categorization 
of metabolites. The color shades indicated the differential extent of microorganisms or metabolites between groups. B The circus plot displayed the 
correlation coefficients between 23 gut microorganisms and 64 metabolites, and the bar graph showed the number of metabolites significantly 
related to the microbe at 6 levels
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Among of them, Estrone sulfate and Androsterone glu-
curonide were highly enriched in CPP, which correlated 
with GnRH activation [38, 39]. While Corticosterone 
was highly enriched in healthy controls, possibly due 
to its role in downregulating follicle-stimulating hor-
mone and luteinizing hormone [40]. The blood metabo-
lites M450T211 (Glycochenodeoxycholate), M466T255 
(Glycocholate), M443T355 (Trihydroxycoprostane), 
M426T226 (Cholic acid), and M498T160 (Taurocheno-
deoxycholic acid) showed significant differences in CPP 
and healthy controls. These five metabolites with a gen-
erally downregulated trend mediated the primary bile 
acid biosynthesis pathway, among which the organic acid 
Glycocholate could promote the absorption of sex hor-
mones [41]. The up-regulation of Glycocholate in healthy 
control group meant that Glycocholate in CPP patients 
may be degraded because of promoting the release of sex 
hormones.

In addition to a brief description of changes in gut 
microbes, fecal, and blood metabolites in CPP, our 
study also identified CPP-related KEGG metabolic path-
ways and neuroendocrine GBMs. Previous studies have 
reported that Tetracycline biosynthesis, Bisphenol deg-
radation, Lysosome, Flavonoid biosynthesis, and NO 
synthesis pathway were associated with the treatment 
and pathogenesis of CPP [24–28]. During the functional 
annotations of fecal and blood metabolites, we discov-
ered the dysfunctional pathways in disease progres-
sion and quantified the roles of metabolites in pathways 
using differential abundance scores. Such as cholesterol 

metabolism and primary bile acid biosynthesis enriched 
in blood metabolites, which were mediated by upregu-
lated blood metabolites, while cholesterol and bile acids 
were discovered to be contributed to the treatment of 
precocious puberty [31].

Conventional studies on the pathogenesis of CPP have 
focused on host genetics and peripheral factors [42], and 
several studies have analyzed the gut microbiota in CPP 
[16], but only identified dysregulated gut microbiota and 
did not analyze downstream pathways. This study not 
only revealed dysregulated microbiota and metabolites 
in CPP through analysis of microbiome and metabolome, 
but also linked them together, aiming to characterize the 
influence of microbiota on the body using metabolites, 
providing a new perspective for the diagnosis and treat-
ment of CPP. Together, the study of CPP requires the 
integration of multiple omics data to comprehensively 
depict the dynamic changes of response factors in the 
disease process and discover the pathogenesis.

However, we also realized several limitations of this 
study. Although 16  s rRNA sequencing was widely 
used to characterize microbial communities, it existed 
limitations in explaining complete genetic information 
compared to metagenomic sequencing. Nevertheless, 
16 s rRNA gene sequencing was mature technology and 
was enough for massive research. Furthermore, for the 
studies of metabolites, candidate microorganisms need 
to be further cultured to judge the origin of metabolites 
more accurately. Precocious puberty was often related 
to obesity [43], but the population collected in this 

Fig. 6  The blood metabolic potential of gut microbial in CPP group. A The interactions between gut microorganisms and metabolites, and the 
classification of metabolites. The color shades represented the differential extent of microorganisms or metabolites differences between groups. B 
The circus plot showed the correlation coefficients between 21 gut microorganisms and 64 metabolites. The bar graph exhibited the metabolites 
number significantly associated with the microbe at 6 levels
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study did not contain people with obesity which made 
it impossible to explore the co-occurrence effect of 
microorganisms, metabolites, and obesity on CPP, but 
this direction deserves to be studied.

Conclusions
In conclusion, we integrated for the first time micro-
biomics and metabolomics to characterize systematic 
changes in gut microbes, fecal and blood metabolites in 
CPP patients. We revealed the microbial and metabolite 
features associated with CPP, interpreted the correlation 
between the two in the setting of CPP, and developed a 
predictive model to distinguish and diagnose for CPP.
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