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Abstract 

Background Cognitive dysfunction is the most common non-motor symptom in Parkinson’s disease (PD), and timely 
detection of a slight cognitive decline is crucial for early treatment and prevention of dementia. This study aimed to 
build a machine learning model based on intra- and/or intervoxel metrics extracted from diffusion tensor imaging 
(DTI) to automatically classify PD patients without dementia into mild cognitive impairment (PD-MCI) and normal 
cognition (PD-NC) groups.

Methods We enrolled PD patients without dementia (52 PD-NC and 68 PD-MCI subtypes) who were assigned to the 
training and test datasets in an 8:2 ratio. Four intravoxel metrics, including fractional anisotropy (FA), mean diffusivity 
(MD), axial diffusivity (AD), and radial diffusivity (RD), and two novel intervoxel metrics, local diffusion homogene-
ity (LDH) using Spearman’s rank correlation coefficient (LDHs) and Kendall’s coefficient concordance (LDHk), were 
extracted from the DTI data. Decision tree, random forest, and eXtreme gradient boosting (XGBoost) models based 
on individual and combined indices were built for classification, and model performance was assessed and compared 
via the area under the receiver operating characteristic curve (AUC). Finally, feature importance was evaluated using 
SHapley Additive exPlanation (SHAP) values.

Results The XGBoost model based on a combination of the intra- and intervoxel indices achieved the best classifica-
tion performance, with an accuracy of 91.67%, sensitivity of 92.86%, and AUC of 0.94 in the test dataset. SHAP analysis 
showed that the LDH of the brainstem and MD of the right cingulum (hippocampus) were important features.

Conclusions More comprehensive information on white matter changes can be obtained by combining intra- and 
intervoxel DTI indices, improving classification accuracy. Furthermore, machine learning methods based on DTI indi-
ces can be used as alternatives for the automatic identification of PD-MCI at the individual level.
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Background
Parkinson’s disease (PD) is the second most common 
neurodegenerative disease. Cognitive dysfunction is one 
of the most common nonmotor symptoms of PD [1], 
including PD with mild cognitive impairment (PD-MCI) 
and PD with dementia (PDD). PD-MCI is an intermedi-
ate state between PD with normal cognition (PD-NC) 
and PDD, with a prevalence of approximately 30% [2], 
that can progress over time to either PD-NC or PDD [1, 
3]. However, cognitive decline tends to be slow and insid-
ious, and PD-MCI is often overlooked by patients and cli-
nicians. Once the disease progresses to PDD, it seriously 
affects the quality of life of the patient. Accurate diagno-
sis of PD-MCI is essential for effective intervention and 
prevention of PDD.

The current diagnosis of PD-MCI mainly depends on 
clinical symptoms and neuropsychological tests, but 
some challenges remain in terms of the homogeneity of 
the neuropsychological test results, and the testing pro-
cess is time consuming and labour intensive. Therefore, 
there is a need for an easier and more accurate method to 
establish the diagnosis of PD-MCI.

The classical mechanism underlying PD-MCI is the 
abnormal accumulation of Lewy bodies [4] and β-amyloid 
(Aβ) [5] in neuronal cell bodies and axons accompanied 
by damage to glial cells, demyelination of axons, and 
increased microglial concentrations in the extracellular 
space. Structural MR studies [6–8] have confirmed that 
the progression of cognitive impairment in PD is closely 
related to white matter (WM) damage and that the range 
of WM hyperintensity is a moderate risk factor for cog-
nitive impairment [7]. Moreover, WM microstructural 
changes occur prior to grey matter volume atrophy [9].

Diffusion tensor imaging (DTI) techniques are cur-
rently recognized as the most reliable noninvasive 
methods for quantifying WM fibre integrity, demon-
strating greater sensitivity than conventional MRI in 
revealing WM microstructural damage [10]. Previous 
DTI studies calculated a series of intravoxel DTI indi-
ces, including fractional anisotropy (FA), mean diffu-
sivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD), based on a diffusion tensor model and confirmed 
that the WM microstructure deteriorates across stages 
of cognitive decline in PD patients [8]. Specifically, 
decreased FA and increased MD, mainly in the bilateral 
frontal white matter [9, 11], corpus callosum [12], and 
temporal regions [13], are related to cognitive dysfunc-
tion. Recently, Gong et al. proposed a novel intervoxel 
metric named local diffusion homogeneity (LDH) [14]. 
LDH is independent of the diffusion model and can 
reveal intervoxel diffusion properties by capturing the 
overall coherence of water molecule diffusion within a 

neighbourhood; it reflects the microstructural coher-
ence of the underlying WM fibres and provides addi-
tional insights beyond traditional intravoxel metrics. 
Some recent studies have applied LDH parameters to 
the detection of WM microstructure abnormalities in 
vascular cognitive impairment [15], epilepsy [16], type 
2 diabetes [17], and blepharospasm [18], demonstrat-
ing regions of variation that differed from those of 
intravoxel diffusion metrics. Moreover, LDH can help 
predict the prognosis of stroke patients [19]. However, 
LDH alterations in PD or PD-MCI patients have not 
been fully explored.

In summary, traditional statistical methods for 
comparing groups have demonstrated significant dif-
ferences in WM microstructure between PD-MCI 
patients and PD-NC patients, providing new evidence 
for understanding the pathophysiological mechanisms 
underlying cognitive dysfunction in PD. However, these 
studies have not been translated into suitable biomark-
ers for identifying PD-MCI at the individual level. 
Additionally, it is unknown which metric is the most 
accurate and useful for predicting PD-MCI. In particu-
lar, the role of LDH is unclear. Machine learning clas-
sification provides a powerful method for predicting an 
individual’s disease status based on MRI data and has 
been applied to generate imaging biomarkers for vari-
ous neurodegenerative diseases, such as Alzheimer’s 
disease [20] and Parkinson’s disease [21]. Tree model 
algorithms, such as decision tree (DT), random forest 
(RF), and eXtreme gradient boosting (XGBoost), are 
relatively basic and widely used classes of models in 
machine learning. These tree models are built with a 
small amount of data, have a moderately complex algo-
rithm time, and are more interpretable than neural net-
work algorithms. Studies have confirmed the potential 
of tree model algorithms in studies on automatic PD 
identification [21].

This study aimed to develop a machine learning 
model based on DTI data to automatically classify PD 
patients without dementia as PD-MCI and PD-NC, 
thus providing a more convenient method for the early 
clinical detection of MCI. We hypothesized that tree 
models employing the means of DTI indices extracted 
from atlas-based WM segmentation as input features 
would be helpful for PD-MCI diagnosis, and combining 
intra- and intervoxel DTI metrics could improve pre-
diction precision. Finally, we assessed the correlations 
between the regional DTI parameter values of selected 
features and neuropsychological scores and calculated 
the importance of the features of the best model using 
the SHapley Additive exPlanation (SHAP) method to 
validate and explain the model.
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Materials and methods
Participants and ethics
A total of 133 PD patients were recruited from the 
Department of Neurology of the First Hospital of China 
Medical University from June 2013 to June 2019. All sub-
jects were right-handed and had no contraindications 
for MR. The inclusion criteria were as follows: (1) the 
PD clinical diagnostic criteria of the Movement Disor-
der Society (MDS) were met; (2) age older than 45 years; 
and (3) Hoehn and Yahr stage < 5. The exclusion criteria 
were as follows: (1) Parkinson’s dementia [22]; (2) severe 
heart, liver, kidney, or endocrine system diseases; (3) 
severe mental illness; (4) inability to cooperate with the 
MRI examination and clinical assessment; and (5) unu-
sual structural MR findings. MR scans and clinical symp-
tom assessments were conducted on patients in the “off” 
state (i.e., discontinued antiparkinsonian medications 
for at least 12  h). Additionally, 100 sex-, age-, and edu-
cation year-matched healthy people without neurological 
or mental diseases were included as the healthy control 
group.

This study was approved by the Ethics Committee of 
the First Hospital of China Medical University, and all 
subjects gave informed consent prior to participation.

Clinical evaluation
Each subject underwent a battery of neuropsychologi-
cal tests. Motor symptom severity was measured by the 
MDS revision of the Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) [23] Part III. Disease staging 
was performed using Hoehn and Yahr (H&Y) staging. 
The Mini-Mental State Examination (MMSE) and Mon-
treal Cognitive Assessment (MoCA) were used to assess 
the patients’ global cognitive status, and the Hamilton 
depression scale (HAMD) was used to assess patients’ 
level of depression. The levodopa equivalent daily dose 
(LEDD) was used to summarize the patients’ medication 
received. In addition, the Auditory Verbal Learning Test 
(AVLT), Clock Drawing Test (CDT), and Trail Making 
Test A and B (TMT-A, TMT-B) were used to evaluate 
patients’ verbal memory function, visuospatial function, 
and executive function, respectively.

Diagnosis of PD‑MCI and PD‑NC
PD-MCI was diagnosed according to the MDS Task Force 
level 1 criteria [2, 24], which entailed MoCA scores < 26 
[25] or at least two neuropsychological test scores 2 
standard deviations (SD) below the healthy control group 
mean and reports from the patient or family members of 
subjective cognitive decline, defined by a score of ≥ 1 on 
item 1 (cognitive impairment) of the MDS-UPDRS Part 

I. Participants who did not qualify for the above crite-
ria were defined as PD patients with normal cognition 
(PD-NC).

DTI data acquisition and preprocessing
A Magnetom Verio 3.0 T MRI scanner (Siemens Medi-
cal Solutions, Erlangen, Germany) equipped with a 
32-channel head coil was used to obtain MRI scans of all 
subjects. The scanning parameters were as follows: rep-
etition time (TR)/echo time (TE) = 10,300/95 ms, field of 
view (FOV) = 256 × 256  mm2, matrix = 128 × 128, voxel 
size = 2.0 × 2.0 × 2.0  mm3, slice thickness = 2  mm, num-
ber of directions = 64, b = 1000 s/mm2. DTI data preproc-
essing and atlas-based analysis (ABA) were carried out 
with FSL 5.0.9 (https:// fsl. fmrib. ox. ac. uk/) and PANDA 
(Pipeline for Analysing braiN Diffusion imAges, http:// 
www. nitrc. org/ proje cts/ panda/). The preprocessing steps 
included format conversion, mask generation and crop-
ping, head motion and eddy correction, and spatial regis-
tration. Details for data acquisition and preprocessing are 
presented in Additional file 1.

Feature extraction
In this study, we calculated six different DTI indicators. 
Four commonly evaluated intravoxel diffusivity metrics, 
FA (a normalized SD of the eigenvalues), MD (a direc-
tion-averaged measure), AD (apparent diffusivity parallel 
to the underlying tissue tract), and RD (apparent diffu-
sivity perpendicular to the underlying tissue tract), were 
obtained from the tensor matrix. In addition, we calcu-
lated an intervoxel diffusivity metric called local diffusion 
homogeneity (LDH) using Spearman’s rank correlation 
coefficient (LDH) and Kendall’s coefficient concord-
ance (LDHk); the specific calculations were performed 
according to a previous study [14]. The atlas-based analy-
sis (ABA) method in the PANDA software package was 
selected for feature extraction. According to the John 
Hopkins University ICBM-DTI-81 White Matter Labels 
and John Hopkins University White Matter Tractogra-
phy (http:// cmrm. med. jhmi. edu) atlases [26], the whole-
brain WM was divided into 70 regions of interest, and 
the mean DTI parameters were extracted for each region. 
Ultimately, 280 intravoxel [(FA, MD, AD, RD) *0 regions] 
and 140 intervoxel [(LDHs, LDHk) *70 regions] indices 
were extracted for each subject.

Feature selection
First, we randomly divided the data into training and 
test datasets (80%:20%); the ratio of PD-MCI to PD-NC 
remained unchanged in this division. The training dataset 
was used for feature selection and model construction, 
and the test dataset was used to evaluate the perfor-
mance of the model. A feature selection procedure was 

https://fsl.fmrib.ox.ac.uk/
http://www.nitrc.org/projects/panda/
http://www.nitrc.org/projects/panda/
http://cmrm.med.jhmi.edu
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performed to remove redundant features to prevent 
model overfitting. First, all features were normalized by 
L2 normalization. Next, the random forest (RF) feature 
selection algorithm was applied to rank the importance 
of each feature, 10-fold cross-validation was performed, 
and the top 3% most important features were retained. 
Finally, Pearson correlation coefficient was used to ana-
lyse the correlations among the remaining connectome 
features. When the absolute value of the correlation coef-
ficient was ≥ 0.7 and the p value was < 0.05, the feature 
with the lower importance was excluded. For separate 
intravoxel/intervoxel metrics and combined metrics, fea-
ture selection was performed as described above to con-
struct the optimal subset of features.

Model construction, evaluation and interpretation
We selected decision tree (DT), random forest (RF), and 
extreme gradient boosting (XGBoost) as the machine 
learning algorithms to build classifiers to distinguish 
PD-MCI from PD-NC. The hyperparameters were tuned 
with the gradient descent method and are shown in 
Additional file 4: Table S1.

The predictive performance of each model and the 
receiver operating characteristic (ROC) curve were plot-
ted, and the area under the curve (AUC), accuracy, sen-
sitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV) were calculated. To 

compare the performance among different models, the 
DeLong test was used to compare the differences among 
different AUCs, and p < 0.05 (two-tailed) was considered 
statistically significant. Afterwards, the values of each 
selected feature between the two groups were also calcu-
lated and compared.

Finally, an additional feature attribution method, SHAP, 
was used to characterize the optimal model and identify 
the top contributing DTI index for classification. SHAP 
analysis, a model-independent method, provides insights 
into the model by calculating the global influence (posi-
tive or negative, feature importance ranking) of each fea-
ture on the model prediction. The workflow of this study 
is presented in Fig. 1.

Statistical analysis
All statistical analyses were performed using SPSS 22.0 
software, and a two-tailed p < 0.05 was considered signifi-
cant. The Shapiro‒Wilk test (S‒W test) was conducted 
to assess the normality of the distributions of continuous 
variables. Based on the normality of the data, the t test 
or the Mann‒Whitney U test was conducted to confirm 
the differences between groups. Measurement data with 
or without a normal distribution are expressed as the 
mean ± standard deviation (χ ± s) or median and inter-
quartile M (P25-P75), respectively, while enumeration 
data are expressed as (n). Finally, partial correlation was 

Fig. 1 Flowchart of the study. First, a total of 420 features were extracted for each subject, and an intravoxel feature group (280 features), an 
intervoxel feature group (140 features) and their combination, an intra- and intervoxel feature group, were generated. After standardizing the 
features, the random forest algorithm and Spearman’s correlation were carried out to reduce the dimensionality of the dataset. Finally, decision 
tree, random forest, and extreme gradient boosting (XGBoost) were used to discriminate between PD-MCI and PD-NC subjects. SHapley Additive 
exPlanation (SHAP) analysis was performed to interpret the predictive model
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adopted to evaluate the relationship among eigenval-
ues after selection and MoCA scores, MDS-UPDRS-III 
scores, H&Y stage, and disease duration.

Results
Demographic characteristics
Five patients were excluded due to a diagnosis of PDD, 
three patients were excluded due to structural MR abnor-
malities, and five patients were excluded due to the 

inability to cooperate with MR or clinical assessments. 
Finally, 120 PD patients without dementia (including 52 
PD-NC patients and 68 PD-MCI patients) were included 
in this study. There were no significant differences in sex, 
age, education level, disease duration, H&Y stage, MDS-
UPDRS-III, LEDD, or HAMD between the two groups. 
The MMSE, MoCA, CDT, AVLT, TMT-A and TMT-B 
scores of patients in the PD-MCI group were lower than 
those of patients in the PD-NC group. The demographic 
characteristics of all participants are detailed in Table 1.

Feature selection
For the intravoxel metrics model, 8 features were 
retained after RF feature selection, and 2 features were 
excluded after Spearman’s rank correlation analysis. For 
the intervoxel metrics model, 5 features were retained 
after RF feature selection, and no features were excluded 
after Spearman’s rank correlation analysis. For the com-
bined metrics model, the RF feature selection retained 
the top 12 features in terms of feature importance. After 
Spearman’s rank correlation analysis, 5 features were 
excluded. Finally, the 7 most discriminative DTI features 
were retained (including three LDHs, two LDHk and 
two MD values). The WM structural connectivity areas 
with classification significance were mainly located in the 
brainstem—pontine crossing tract (PCT), medial lem-
niscus (ML), right cingulum (hippocampus) and left for-
nix (cres)/stria terminalis. Between-group comparisons 
showed that patients with PD-MCI exhibited greater MD 
in the PCT than patients in the PD-NC group. Table  2 
lists the details of the feature group for the combined 
metrics model, and the corresponding brain region loca-
tions are shown in Fig. 2.

Comparison between the models
The evaluation scores for accuracy, sensitivity, speci-
ficity, and area under the curve (AUC) for each model 

Table 1 Participant demographics and clinical information

Data are represented as the mean ± SD or median (p25-p75) values depending 
on the distribution of the variables. a Two sample t test; b Chi-square test; 
c Mann‒Whitney U test; *P < 0.05. PD-MCI Parkinson’s disease with mild 
cognitive impairment, PD-NC Parkinson’s disease with normal cognition, 
MDS-UPDRS-IIII Movement Disorder Society Unified Parkinson’s Disease Rating 
Scale-Part III, H&Y stage Hoehn and Yahr stage, LEDD levodopa equivalent daily 
dose, MMSE Minimum Mental State Examination, MoCA Montreal Cognitive 
Assessment, CDT Clock Drawing Test, AVLT Auditory Verbal Learning Test, TMT-A, 
TMT-B Trail Making Test A and B, HAMD Hamilton Depression Scale

PD‑MCI (n = 68) PD‑NC (n = 52) P value

Age (years) 64.43 ± 7.86 62.73 ± 7.79 0.242a

Gender (male/female) 36/32 28/24 0.922b

Education (years) 9.0 (7.3–12.0) 9.0 (9.0–12.0) 0.111c

Disease duration (years) 4.5 (2.0–7.0) 3 (2.0–6.0) 0.510c

MDS-UPDRS-IIII 25.55 ± 10.84 23.54 ± 13.47 0.366a

H&Y stage 2.0 (1.5–3.0) 2.0 (1.5–2.5) 0.337c

LEDD (mg) 363.97 ± 73.10 356.02 ± 108.17 0.632a

MMSE 25.17 ± 2.20 28.47 ± 1.33 < 0.001a**

MoCA 21.65 ± 2.78 26.71 ± 1.59 < 0.001a*

CDT 6.5(5.0–9.0) 8.0 (7.0–10.0) < 0.001c**

AVLT 30.31 ± 4.44 40.48 ± 3.23 < 0.001a**

TMT-A 74.49 ± 18.36 67.65 ± 18.30 0.045a**

TMT-B 221.18 ± 59.78 167.14 ± 60.17 < 0.001a**

HAMD 13.08 ± 6.81 11.85 ± 6.41 0.317a

Table 2 Statistical descriptions and p values for all 7 selected features

The ID numbering order is consistent with the SHAP value. “.R and.L” in the text indicate the right and left sides, respectively. All data are represented as the mean ± SD, 
and we applied two-sample t tests for comparisons between groups. *P < 0.05. PD-MCI Parkinson’s disease with mild cognitive impairment, PD-NC Parkinson’s 
disease with normal cognition, LDHk LDH using Kendall’s coefficient concordance, LDH LDH using Spearman’s rank correlation coefficient, MD mean diffusivity, 
RIC retrolenticular part of the internal capsule, PCT pontine crossing tract, ML medial lemniscus, ST fornix (cres)/stria terminalis, SLF Right superior longitudinal 
fasciculus, CH cingulum (hippocampus)

ID Feature type Brain region PD‑MCI (n = 68) PD‑NC (n = 52) P value

1 LDHk PCT 0.807 ± 0.050 0.819 ± 0.048 0.186

2 MD CH. R (0.699 ± 0.066) ×10 − 3 (0.673 ± 0.064) ×10 − 3 0.035*

3 LDHs Fornix 0.783 ± 0.118 0.801 ± 0.122 0.430

4 LDHs ML.L 0.827 ± 0.082 0.842 ± 0.060 0.250

5 LDHs SLF.R 0.814 ± 0.053 0.820 ± 0.058 0.603

6 LDHk ST. L 0.717 ± 0.068 0.739 ± 0.069 0.088

7 MD RIC.R (0.798 ± 0.075) ×10 − 3 (0.778 ± 0.086) ×10 − 3 0.191
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are shown in Table 3; Fig. 3. The XGBoost model based 
on the combined intra- and intervoxel DTI indices had 
the highest classification performance; the test set AUC 
was 0.94, the accuracy was 91.67%, the sensitivity was 
92.86% and the specificity was 90.00%. The AUC dif-
ference between combined_XGBoost and intravoxel_
XGBoost did not reach statistical significance (P = 0.07, 
Delong test), and the AUC of combined_XGBoost was 
significantly higher than that of all other models except 
intravoxel_XGBoost (P < 0.01, Delong test). In addi-
tion, the intravoxel_RF model had the highest specific-
ity (90.00%) and moderate sensitivity (64.29), and the 
intervoxel_XGBoost model had the highest sensitivity 
(100.00%) and very low specificity (10.00%).

Feature importance
The SHAP summary plot of each prediction in the com-
bined XGBoost model is presented in Additional file  2:   
Fig. S1. According to the SHAP value, the LDHk of PCT 
served as the most important feature. The MD of the 
right cingulum (hippocampus) and the LDHs of the right 
ML were also important for model prediction (Additional 
file 3: Fig. S2).

Correlation analysis
The correlations of each DTI metric value with MoCA 
score, MDS-UPDRS-III score, H & Y stage, and dis-
ease duration are summarized in Additional file  5:   
Table  S2. After controlling for disease duration and 

Fig. 2 Seven features were selected for discriminating patients with PD-MCI and PD-NC. In this case, the results are displayed on a canonical 
FMRIB58_FA template. “.R and .L” in the text indicate the right and left sides, respectively. Neurologic conventions and MNI coordinates are used. 
MD mean diffusivity, LDHs local diffusion homogeneity (LDH) using Spearman’s rank correlation coefficient, LDHk LDH using Kendall’s coefficient 
concordance, RIC retrolenticular part of the internal capsule, PCT pontine crossing tract, ML medial lemniscus, ST fornix (cres)/stria terminalis, 
SLF superior longitudinal fasciculus, CH = cingulum (hippocampus)
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MDS-UPDRS-III score, the LDHk values in the PCT 
were positively correlated with the MoCA scores 
(r = 0.246, P = 0.007), the MD values in the right cingu-
lum (hippocampus) were negatively correlated with the 
MoCA scores (r = −0.206, P < 0.001), and the LDHk val-
ues in the left fornix (cres)/stria terminalis were positively 
correlated with the MoCA scores (r = 0.223, P = 0.015).

Discussion
This study succeeded in developing a machine learning 
model based on DTI metrics to accurately discriminate 
PD-MCI patients from PD patients without dementia. 
The main contributions were as follows: First, to our 
knowledge, this was the first time that LDHs and LDHk 
(novel intervoxel DTI indices) were used as classification 
metrics. We confirmed that these metrics can be used as 
a complement to intravoxel metrics to improve the clas-
sification accuracy for PD-NC and PD-MCI patients. 
Second, the XGBoost model based on the combined 
intra- and intervoxel metrics achieved a classification 
accuracy of 91.67% and an AUC of 0.94 in the test dataset 
and was the best performing model. Finally, by applying 
the SHAP method to interpret the best model, the LDHk 
values of the pontine crossing tract (PCT) were found to 
be important features, as were the MD values of the right 
cingulum (hippocampus).

Although neuropsychological testing remains the pri-
mary method for assessing the presence or absence of 
cognitive decline in PD patients, neuroimaging studies 
have observed brain structural and functional changes in 
patients with PD-MCI by measuring grey matter volume, 
white matter damage, and resting-state functional activ-
ity [27]. For years, machine learning studies used neuro-
imaging or electrophysiology data to build classifiers for 
PD-MCI. One study found that electroencephalogram 
(EEG) signals achieved 84% classification accuracy in 
identifying PD-MCI patients [28]. Zhang et al.‘s study [29] 
combined EEG and grey matter structural MRI as input 
features to identify patients with PD-MCI, achieving the 
highest accuracy of 77%. Moreover, Lenfeldt et al. found 
that white matter DTI values are more sensitive neuro-
imaging indicators than grey matter atrophy [11]. To the 
best of our knowledge, previous DTI studies have mainly 
focused on the differences in intravoxel diffusion param-
eters, finding that cognitive impairment is associated 
with decreased FA and increased MD, AD, and RD val-
ues in multiple WM regions, particularly in the predomi-
nantly anterior WM tracts [12, 30]. Haller et al. attempted 
to use machine learning algorithms based on intravoxel 
DTI indicators to diagnose Parkinson’s disease [31], with 
accuracies of up to 97%. However, we have not found any 
research utilizing machine learning models with DTI 

Fig. 3 ROC curves of each model index in the test datasets. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) were calculated and are shown in Table 3
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features to automatically identify PD-MCI patients. Our 
study confirms that intervoxel metrics that reflect the 
microstructural consistency of white matter fibre tracts 
can complement traditional intravoxel metrics to reveal 
a comprehensive picture of WM alterations. The reason 
this phenomenon has not been described appears to be 
that previous works did not consider intervoxel DTI met-
rics. To our knowledge, this is the first study to automati-
cally identify PD-MCI using machine learning methods 
based on both intra- and intervoxel DTI features. Regard-
ing the machine learning-based algorithms, we found that 
XGBoost-based algorithms achieved better performance, 
which is consistent with previous research. Lee et al. con-
firmed that an XGBoost model based on electroencepha-
lography signals had a good effect in the diagnosis of PD 
[21], with the highest accuracy rate of 71.4%. Shibata 
et  al. applied the XGBoost model based on quantitative 
susceptibility mapping (a type of MR method reflecting 
iron deposition) features to classify PD-MCI and PD-NC 
patients, achieving an accuracy of 79.1% [32].

This study used SHAP analysis to interpret the best 
model, which revealed that the MD values of the right 
cingulum and the LDHk values of the PCT were the 
most important features, as well as the LDH values of the 
ML, another region of the brainstem. Statistical analysis 
revealed that the LDHk value of the PCT in the PD-MCI 
group was lower than that in the PD-NC group and that 
in general, the LDHk value of the PCT was positively cor-
related with the MoCA score. One of the pathological 
hallmarks of PD is dopaminergic neuron loss, and post-
mortem studies have confirmed that human brainstem 
regions, such as the substantia nigra, red nucleus, medial 
lemniscus, and pontine nucleus, highly express D2 dopa-
mine receptor mRNAs [33]. Furthermore, the PCT and 
ML are the main structural connections of the cerebello-
thalamo-cortical (CTC) circuits. Various lines of evi-
dence suggest that the CTC circuits play a critical role in 
the cognitive symptoms of PD. Pathological studies have 
confirmed the presence of landmark Lewy body pathol-
ogy aggregates in the cerebellar nuclei and adjacent white 
matter displayed in PD patients [34, 35]. Neuroimaging 
studies have confirmed that the CTC loop mediates the 
involvement of the cerebellum in higher-order cognitive 
processes, such as planning, verbal fluency, mental flex-
ibility, abstract reasoning, and working memory; its dys-
function contributes to cognitive dysfunction in PD [36, 
37]. Therefore, our results further support the notion that 
the CTC circuitry is affected by disease-specific impair-
ments in PD and contributes to cognitive dysfunction in 
PD. Moreover, the PCT and ML contain topologically 
arranged projection fibres, and adjacent voxels may pro-
ject to very different neocortices. Thus, it is possible that 
when one of the voxels suggests damage, its neighbours 

remain normal. LDH estimates the overall consistency 
of diffusion of water molecules between a voxel and its 
neighbours, and so abnormalities in the PCT and ML 
may be more sensitive to LDH.

In addition, the MD value of the right cingulum (hip-
pocampus) was the second most important feature 
and was significantly negatively correlated with MoCA 
scores. Several studies have shown susceptibility altera-
tions in the hippocampus in patients with PD-MCI. The 
hippocampus plays an important role in the interac-
tion between dopamine transmission and hippocampal 
synaptic remodelling, and an imbalance in this interac-
tion leads to dementia [38]. Neuropathological studies 
have observed Lewy body pathology (accumulations of 
the protein alpha-synuclein) in the hippocampus of PD 
patients, and the degree of cognitive impairment is corre-
lated with the degree of Lewy body deposition in the hip-
pocampus [39]. Increased MD indicates extensive cellular 
damage, including oedema and necrosis [10]. Multimodal 
MRI studies have confirmed that injury to the structural 
integrity and connectivity of the fornix-hippocampal 
projections is associated with decreased memory test 
scores in PD patients [40]. DTI studies have confirmed 
that PD-NC patients showed increased fornix MD val-
ues compared with those of HCs [40], and PDD patients 
showed lower hippocampal FA values than PD patients 
without dementia [13]. In this study, the LDHk value of 
the left fornix (cres)/stria terminalis was also decreased 
in the PD-MCI group. This finding indicates that micro-
structural damage to the fornix-hippocampal projection 
plays an important role in the cognitive impairment in 
PD. The pathological changes in the hippocampus may 
be relatively dispersed, and the transition from the nor-
mal area to the abnormal area is not as sudden as that in 
the PCT and ML. Therefore, the MD index of the hip-
pocampus has classification importance.

Several limitations of our study should be noted. First, 
this work is a retrospective study, and prospective studies 
are needed in the future to validate whether the proposed 
method can predict the conversion of PD-NC to PD-MCI. 
Additionally, although this study adopted the simpler level 
I diagnostic criteria for PD-MCI, one study confirmed 
that level II criteria did not add value to the level I criteria 
[24]. Second, this study did not further subdivide patients 
according to cognitive impairment, specifically includ-
ing (1) frontal-dominant impairment and (2) posterior-
cortical-dominant impairment, which is a future research 
direction we plan to pursue. Finally, the present study only 
explored the predictive ability of DTI parameters in white 
matter brain regions for PD-MCI patients, which may be 
a rather one-sided analysis, and multimodal data (includ-
ing spatial and temporal features) are needed in the future 
to fully explore the mechanisms of PD-MCI and increase 
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accuracy of machine learning models, as studied by Bian-
chetti et al [41].

Conclusion
In conclusion, a machine learning model trained with 
DTI metrics extracted from atlas-based WM segmenta-
tion shows potential in differentiating individuals with 
PD-MCI from PD patients without dementia. Specifi-
cally, the combined application of intra- and intervoxel 
diffusion measures can provide more comprehensive 
information about white matter alterations and improve 
classification accuracy. XGBoost models based on com-
bined DTI indices are particularly promising classifiers 
with high classification accuracy. After further validation, 
the model may become a valuable tool in supporting PD-
MCI clinical diagnostic systems.
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