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Abstract 

Background Although immunotherapy is effective in improving the clinical outcomes of patients with bladder 
cancer (BC), it is only effective in a small percentage of patients. Intercellular crosstalk in the tumor microenvironment 
strongly influences patient response to immunotherapy, while the crosstalk patterns of plasma cells (PCs) as endog‑
enous antibody‑producing cells remain unknown. Here, we aimed to explore the heterogeneity of PCs and their 
potential crosstalk patterns with BC tumor cells.

Methods Crosstalk patterns between PCs and tumor cells were revealed by performing integrated bulk and single‑
cell RNA sequencing (RNA‑seq) and spatial transcriptome data analysis. A risk model was constructed based on 
ligand/receptor to quantify crosstalk patterns by stepwise regression Cox analysis.

Results Based on cell infiltration scores inferred from bulk RNA‑seq data (n = 728), we found that high infiltration of 
PCs was associated with better overall survival (OS) and response to immunotherapy in BC. Further single‑cell tran‑
scriptome analysis (n = 8; 41,894 filtered cells) identified two dominant types of PCs, IgG1 and IgA1 PCs. Signal trans‑
duction from tumor cells of specific states (stress‑like and hypoxia‑like tumor cells) to PCs, for example, via the LAMB3/
CD44 and ANGPTL4/SDC1 ligand/receptor pairs, was validated by spatial transcriptome analysis and associated with 
poorer OS as well as nonresponse to immunotherapy. More importantly, a ligand/receptor pair‑based risk model was 
constructed and showed excellent performance in predicting patient survival and immunotherapy response.

Conclusions PCs are an important component of the tumor microenvironment, and their crosstalk with tumor cells 
influences clinical outcomes and response to immunotherapies in BC patients.

Keywords Cell crosstalk, Plasma cell, Bladder cancer, Immunotherapy, Single‑cell analysis

†Fei Long, Wei Wang, Shuo Li and Bicheng Wang have contributed equally to 
this work.

*Correspondence:
Xiang‑yu Meng
mengxy_whu@163.com
Chunhui Yuan
chunhuii.yuen@whu.edu.cn
Fubing Wang
wfb20042002@sina.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-04151-1&domain=pdf
http://orcid.org/0000-0002-5971-2622


Page 2 of 19Long et al. Journal of Translational Medicine          (2023) 21:298 

Graphical Abstract

Background
Bladder cancers (BCs) (> 90%) mainly originate from 
the deterioration of epithelial cells; there are more than 
570,000 new cases of BC in 2020, with BC ranking sixth 
among all cancers in males. Because BC exhibits inher-
ently aggressive features and is prone to recurrence, 
patients usually require multimodal and invasive treat-
ments, such as repeated endoscopic resection or tran-
surethral resection of bladder tumor (TURBT), as well as 
first-line platinum-based chemotherapy, but the 5-year 
relapse-free survival is still less than 43% [1].

In the past decade, the treatment landscape of BC 
has changed dramatically because immune checkpoint 
inhibitors (ICIs) have a better safety profile and induce 
more durable responses than platinum-based chemo-
therapy [2, 3]. The National Comprehensive Can-
cer Network guidelines recommend ICIs, such as the 
PD-1 blocker pembrolizumab and the PD-L1 blocker 
atezolizumab, as first-/second-line treatment options 
for patients with metastatic BC who are ineligible for 
platinum-based chemotherapy [4, 5]. Unfortunately, 
the therapeutic effect of ICIs in BC is limited, with an 
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objective response rate of less than 30% [6]. Therefore, 
an in-depth analysis of the potential factors affecting 
the efficacy of ICIs is important to further improve the 
clinical management and prognosis of patients.

Responses to ICI therapies can be influenced by mul-
tiple factors, such as mutational, transcriptomic, and 
epigenetic alterations, as well as a suppressive tumor 
immune microenvironment (TIME) [7, 8]. Nevertheless, 
ICIs boost the activation of the immune system to attack 
cancer cells, and thus, exploration of cellular communi-
cation between tumor and immune cells in the TIME is 
pivotal to maximizing the clinical benefit of ICIs [9, 10]. 
Indeed, a specific cluster of cancer cells in BC can influ-
ence patient response to chemotherapy or immunother-
apy by communicating with cancer-associated fibroblasts 
(CAFs) and  CD8+ T cells [11]. Tumor-associated tertiary 
lymphoid structures (TLSs) have been recently discov-
ered and are associated with better patient survival and 
immune response in BC [12, 13]. In contrast to previous 
knowledge, TLSs contain not only a high abundance of T 
cells but also substantial infiltration of ICI-responsive B 
cells [14], which further highlights the complexity of cel-
lular communication in the TIME.

Plasma cells (PCs) are a pivotal group of B cells in 
TLSs and can produce large amounts of cytokines 
and IgG or IgA antibodies targeting tumor-associated 
antigens in  situ. Known roles include driving anti-
body-dependent cell-mediated cytotoxicity (ADCC), 

promoting phagocytosis, and enhancing antigen pres-
entation by dendritic cells [15, 16]. Importantly, high 
frequencies of IgG-producing PCs are associated with 
therapeutic responses to ICIs in various cancers, such 
as renal cell carcinoma (RCC) [17], non-small cell lung 
cancer (NSCLC) [18] and BC [19]. To date, tumor-asso-
ciated macrophages, fibroblasts and neutrophils have 
been reported to interact with B cells and mediate their 
differentiation into PCs [20, 21]. However, it is still not 
clear whether PCs directly interact with tumor cells and 
what role tumor cell-PC communication plays in BC.

In this study, a thorough investigation was conducted 
to unveil how PCs communicate with tumor cells and 
the subsequent effects on patients’ response to ICIs 
and clinical outcomes in BCs. We first performed an 
scRNA-seq survey of 41,894 cells from eight patients 
and explored the communication patterns between 
tumor cells and PCs (Fig.  1). Then, we further identi-
fied key ligand/receptor pairs by spatial transcriptome 
expression analysis to elucidate the crosstalk between 
tumor cells of specific states and PCs. Finally, we quan-
tified the overall crosstalk between tumor cells and PCs 
to assess its impact on patient survival and response to 
ICB therapies. This multidimensional integrated analy-
sis provides unprecedented insights into the cellular 
heterogeneity and crosstalk patterns of PCs in patients 
with BC.

Fig. 1 The workflow of this study
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Methods
Data retrieval and preprocessing
The processed  log2(count + 1) bulk RNA-seq data 
(n = 430), MuTect2-processed somatic mutation data and 
corresponding clinical information of bladder urothelial 
carcinoma (BLCA) patients from The Cancer Genome 
Atlas (TCGA) were obtained using the UCSC Xena 
browser (https:// xenab rowser. net/ datap ages/). RNA-
seq data of the anti-PD-L1 therapy cohort (IMvigor210, 
n = 298) and sample annotation information, includ-
ing binary best overall response (BOR), tumor mutation 
burden (TMB), tumor neoantigen burden (TNB), and 
survival information, were obtained using the IMvig-
or210CoreBiologies R package [22]. IMvigor210 was 
a single arm phase II study in patients with metastatic 
urothelial carcinoma (NCT02108652, NCT02951767) 
treated with atezolizumab (1200 mg 3 weekly). The pri-
mary endpoint was a partial response rate (PR) of more 
than 10% (RECIST v1.1). Raw scRNA-seq FASTQ data 
from two low-grade and six high-grade BC samples pro-
vided by the Union Hospital of Tongji Medical College, 
Wuhan, China (PRJNA662018) [23], were obtained from 
the Sequence Read Archive (SRA). The FASTQ data 
were filtered and read aligned using CellRanger (v.3.0.1, 
10 × Genomics) [24], and feature barcode unique molecu-
lar identifier (UMI) matrices were generated based on the 
human reference genome GRCh38. Visium spatial tran-
scriptomics data (GSE171351) [11] including h5ad files 
and raw were images downloaded from the Gene Expres-
sion Omnibus (GEO) and processed and analyzed using 
the Python package Scanpy (v.1.9.1) [25]. Briefly, spatial 
coordinates with total counts greater than 20,000, num-
ber of expressed genes greater than 6,000, and mitochon-
drial genes accounting for greater than 10% were filtered. 
The "normalize_total" function was used to normalize the 
counts and spatial information data, and the "highly_var-
iable_genes" function was used to extract the top 2000 
highly variable genes, followed by dimension reduction 
and clustering through principal component analysis 
(PCA), uniform manifold approximation and projection 
(UMAP) and Leiden algorithm analysis.

Inference of immune cell infiltration based on bulk 
RNA‑seq data
To assess the infiltration of immune cells in patients 
with BC, cell infiltration analysis was performed on 
bulk RNA-seq data using the R package IOBR [26] with 
the xCell method [27]. xCell is a method for scoring 
the abundances of 64 cell types based on single-sample 
gene set enrichment analysis (ssGSEA). Adaptive and 
innate immune cells were selected for further analysis. 
The list of marker genes in cells used in the calculations 

was downloaded from the study of Aran et al. [27]. Next, 
univariate Cox regression analysis was performed based 
on cell scores and patient survival data via the R package 
survival to predict the effect of cell infiltration scores on 
overall survival (OS), and Cox P < 0.05 was considered 
significantly associated with patient survival.

ScRNA‑seq data analysis
Cells were first filtered using the R package Seurat [28] 
using the following criteria: the number of expressed 
genes was lower than 300 or larger than 6000, and cells 
with more than 10% of UMIs mapped to mitochondrial 
genes were excluded. Only genes that were expressed 
in at least five cells were retained. After that, the data 
were normalized, and the top 2000 highly variable genes 
were detected by the "FindVariableFeatures" function. 
Next, the dimension of the scRNA-seq data was reduced 
by PCA based on 2000 genes, and 40 principal compo-
nents were selected for subsequent analysis. Moreover, to 
remove the batch effects between samples, soft k-means 
clustering was performed using the R package harmony 
[29]. Finally, the "FindClusters" function was adopted for 
cell clustering, and the resolution was set to 0.5. To deter-
mine the cell types, we annotated the cells based on the 
CellMarker database [30] and corresponding literature.

Analysis of subclusters of PCs
Based on the cell annotation, PCs were extracted by the 
"subset" function, and dimension reduction and cluster-
ing were performed according to the same procedure 
as above, with resolution set to 0.4. To further identify 
IgG1- and IgA1-dominant cell subclusters, we classified 
cells according to the median expression of IGHG1 and 
IGHA1. Trajectory analysis was performed using Mono-
cle 2 [31] to understand the transformation relationships 
between different types of PCs. Finally, to reveal the 
effects of IgG1 and IgA1 PCs on patient survival, an algo-
rithm based on cosine similarity was first adopted using 
the R package COSG [32] to obtain the top 100 marker 
genes (Additional file 2: Table S1) of IgG1 or IgA1 PCs. 
The TCGA-BLCA samples were then grouped by the BC 
subtypes reported by Kamoun et  al. [33], and ssGSEA 
was performed to estimate the cell abundance score for 
each patient using the R package GSVA based on the top 
10 marker genes from the top 100 genes. Samples were 
grouped using the best cutoff or median based on cell 
abundance score, and survival analysis was performed 
using the R package survminer.

Epithelial (tumor) cell state analysis
To identify malignant cells with clonal large-scale chro-
mosomal copy number variations (CNVs), the CNVs of 
each cell were inferred using the R package infercnv [34]. 

https://xenabrowser.net/datapages/
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We calculated the CNV score for each cell using the 
method of Peng et al. [35]. To determine the cell state, a 
nonnegative matrix factorization (NMF) algorithm was 
first employed for dimension reduction of all tumor cells, 
and subsequently, cells were scored for state using the 
R package AUCell [36] based on the gene sets of 12 cell 
states reported by Barkley et al. [8]. Finally, the R pack-
age COSG was used to screen all marker genes of cell 
state clusters (top 100) (Additional file 3: Table S2), and 
Gene Ontology (GO) [37], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [38], WikiPathways (WP) [39] and 
Reactome (REAC) [40] enrichment analyses were per-
formed using g:Profiler [41]. The P value was adjusted by 
the g:SCS method.

Cell communication analysis
To explore the crosstalk pattern between cells, we 
employed the R package CellChat [42]. Briefly, we fol-
lowed the official workflow and created the CellChat 
object based on a normalized count matrix. Subse-
quently, the "identifyOverExpressedGenes" and "identify-
OverExpressedInteractions" functions were used for data 
processing with a standard parameter set. The potential 
ligand/receptor (L/R) interactions among all cells, espe-
cially the interactions between PCs and tumor cells, were 
calculated and analyzed based on the functions "com-
puteCommunProb", "computeCommunProbPathway", 
and "aggregateNet" using standard parameters.

Risk model construction based on L/R pairs
To quantify the impact of communication between PCs 
and tumor cells on patient survival, we performed step-
wise Cox regression of all L/R pairs (Additional file  4: 
Table S3) between PCs and tumor cells identified by Cell-
Chat using the R package My.stepwise, and the best mul-
tivariate Cox regression model based on TCGA-BLCA 
data was selected based on the Akaike information cri-
terion. Next, we extracted the model coefficient (coef ) of 
each L/R pair and calculated the risk score using the fol-
lowing formula:

The median risk score or optimal cutoff values were 
used to divide the patients into low- and high-risk 
groups. OS, disease-specific survival (DSS), disease-free 
survival (DFS), and progression-free survival (PFS) were 
analyzed using the Kaplan‒Meier method. The R pack-
age timeROC was used to assess the predictive power 
of the LRscore and clinical indicators of patient survival 
over time. The R package pROC was used to perform 
ROC analysis for the LRscore and selected anti-PD-L1 
treatment-related indicators to compare their ability to 

LRscore =

∑

i

Expression(LorR)i ∗ coef i

discriminate between responding (R) and nonresponding 
(NR) patients. Multi-indicator ROC assessment was per-
formed using binary logistic regression with linear fitting 
of multiple indicators based on SPSS (v.25.0).

Correlation analysis of the LRscore
To assess the association between the LRscore and can-
cer progression, we first calculated the cancer hallmark 
score for each sample based on the hallmark gene sets 
from MSigDB (http:// www. gsea- msigdb. org/) using gene 
set variation analysis (GSVA) and subsequently calcu-
lated the correlation coefficient between the LRscore 
and cancer hallmark score using Spearman correlation 
analysis. The immune cell infiltration, immune, stromal, 
and ESTIMATE scores [43], tumor immune dysfunction 
and exclusion (TIDE) score [44], immunophenoscore 
(IPS) [45] and associated indicators were calculated using 
the R package IOBR [26], and their correlations with the 
LRscore were also evaluated by Spearman correlation 
analysis.

Risk group comparison and mutation analysis
The classic subtype of BC reported by Robertson et  al. 
[46] and the newest subtype reported by Kamoun et  al. 
[33] were compared with our LRscore risk groups using 
the R package ggalluvial. The mutation profiles of the 
two risk group samples were analyzed using the R pack-
age maftools [47], and the significant differences between 
the two groups were evaluated using the chi-square test. 
To assess the response to targeted drugs in different risk 
groups, model training was performed using the R pack-
age oncoPredict [48] based on targeted drug-treated cell 
expression data from the GDSC database [49] to infer 
IC50 values for patients in the low- and high-risk groups. 
A low IC50 value generally indicates that a patient is 
more sensitive to a drug.

Statistical analysis
Statistical analysis and visualization were performed 
using R (v.4.1.1), Python (v.3.10), and Sangerbox [50]. The 
Wilcoxon test was used to compare two groups because 
the data were not normally distributed. The Kruskal–
Wallis test was used to compare three or more groups. 
The P value was adjusted using the Benjamini and Hoch-
berg method, if necessary. The detailed tools, methods, 
and thresholds for each analysis are described in the 
Materials and Methods section or the figure legends.

Results
PCs were associated with patient survival and response 
to immunotherapy
Inferential analysis of cellular infiltration (see Materials 
and Methods 2.2) based on TCGA-BLCA bulk RNA-seq 

http://www.gsea-msigdb.org/
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data revealed that 11 immune cell types had a signifi-
cant association with OS in the univariate Cox regres-
sion model (Additional file  1: Figure S1A), with high 
infiltration of  CD8+  Tem cells,  CD8+ T cells, NK cells, 
Th1 cells, and  CD8+  Tcm cells associated with better 
OS (Cox P < 0.05), whereas high infiltration of four cell 
types (mast cells, neutrophils, M2 macrophages, and 
endothelial cells) was associated with worse OS (Cox 
P < 0.05). Among all B-cell types, only class-switched 
memory B cells (Cox P = 0.0059; log-rank P = 0.00054; 
HR = 0.77) and PCs (Cox P = 0.017; log-rank P = 0.019; 
HR = 0.82) were significantly associated with better OS 
(Fig.  2A and B). In the anti-PD-L1-treated IMvigor210 
cohort, high infiltration of γδT (Tgd) cells, Th2 cells, and 
basophils was associated with better OS (Cox P < 0.05) 
(Additional file  1: Figure S1B). Among all B cells, only 
PCs were associated with better OS (Cox P = 0.0023; 
log-rank P = 0.0003; HR = 0.72) (Fig.  2C and D). Addi-
tionally, immunotherapy-responsive patients had a rela-
tively higher PC abundance (Wilcoxon test, P < 0.05) 
(Fig. 2E). Overall, these bulk sequencing data-based cel-
lular inference results suggest that high overall PC infil-
tration in BC patients predicts better OS and response to 
immunotherapy.

IgG1 and IgA1 were the two major subtypes of PCs in BC
To further explore the heterogeneity of PCs at the sin-
gle-cell level, we included an scRNA-seq dataset con-
taining two low-grade and six high-grade BC samples. 
After quality control and cell filtering, 41,894 cells were 
obtained, including 30,180 epithelial cells (KRT18, 
EPCAM), 7,277 stromal cells (VWF, COL1A1), and 4,437 
immune cells (PTPRC, CD19, MS4A2) (Fig.  3A and B). 
Among them, Cluster 11 was identified as PCs because 
of the high expression of CD79A, MZB1 and other PC 
markers (SDC1, CD79B, CD52, IGHG1/3/4, DERL3, 
FKBP11, JCHAIN, and CD38) (Fig.  3C and E). By com-
paring the proportion of cells between groups, we found 
a decrease in PCs in high-grade patients compared with 
low-grade patients (Fig.  3D, upper panel). Next, PCs 
were further subdivided into seven clusters (Fig.  3D, 
lower panel) without expression of naive B-cell markers, 
indicating that these cells were all mature PCs (Fig. 3E). 
Cluster 4 was identified as plasmablasts due to high 
expression of the proliferation-related gene MKI67, while 
the other cells mainly expressed IGHG1 and IGHA1 

(Fig.  3F). Concurrently, other antibody genes (IGHG2, 
IGHA2, IGHM and IGHD) had low or almost no expres-
sion (Additional file 1: Figure S2A). After antibody gene-
based dimension reduction through PCA, we observed 
that cells highly expressing IGHG1 and IGHA1 consti-
tuted almost all PCs, and there was overlap of cells with 
multiple IgG subtypes [51] (Additional file 1: Figure S2B). 
The scatter plot also showed a significant distinction 
between the two cell types (Fig. 3G), suggesting that IgG1 
and IgA1 PCs were the dominant PC types in BC.

To further explore their functional characteristics, 
cells with high IGHG1 and low IGHA1 expression were 
defined as IgG1 PCs, and those with low IGHG1 and high 
IGHA1 expression were defined as IgA1 PCs (Additional 
file  1: Figure S3). Among them, IgA1 PCs were mainly 
involved in cell cycle-related pathway regulation (e.g., cell 
cycle and G1/S transition), while IgG1 PCs were signifi-
cantly associated with immune responses (e.g., immune 
system and IL-17 signaling pathway) (Fig.  3G), suggest-
ing that IgG1 PCs may be more likely to be involved in 
antitumor immune regulation. We further determined 
the order of differentiation of PCs by pseudotime trajec-
tory analysis; IgA1 PCs were located at the beginning 
of the trajectory, and IgG1 PCs were located mainly at 
the end (Fig.  3H). Concurrently, we also observed that 
IGHA1 expression decreased at the end of the trajectory, 
while IGHG1 increased (Fig.  3I), suggesting a possible 
class-switched relationship between IgA1 and IgG1 PCs. 
Interestingly, the differentiation trajectory showed a clear 
branch at root 3 (Additional file 1: Figure S4), with cells 
of cell fate 2 presenting high expression of HSP family 
members and MHC-II-like molecules, which were absent 
in cell fate 1, implying a difference in the function of PCs 
with the two different fates.

To explore the effect of IgA1 and IgG1 PCs on cancer 
progression and patient survival, cell ratio analysis was 
performed; the results showed an increase in IgA1 PCs 
and a decrease in IgG1 PCs in patients with high-grade 
disease (Fig.  3J). However, heterogeneity was observed 
in the impact of IgA1 and IgG1 PCs on patient survival 
in different BC subtypes (Additional file 1: Figure S5A). 
For example, high signature scores of IgG1 predicted 
better OS in the basal/squamous (Ba/Sq) subtype (log-
rank P = 0.0011) and luminal unstable (LumU) subtype 
but worse OS in the luminal papillary (LumP) subtype 
(log-rank P = 0.0075). In contrast, high signature scores 

(See figure on next page.)
Fig. 2 Plasma cell infiltration levels inferred from bulk RNA‑seq data correlate with survival and immunotherapy response. A Association between 
inferred B‑cell subtype infiltration levels and patient overall survival in the TCGA‑BLCA cohort (Cox regression analysis). B Kaplan–Meier curves for 
TCGA‑BLCA patients. The P value was calculated with the log‑rank test. C Association between inferred B‑cell subtype infiltration levels and patient 
overall survival in the anti‑PD‑L1 IMvigor210 cohort (Cox regression analysis). D Kaplan–Meier curves for IMvigor210 patients. The P value was 
calculated with the log‑rank test. E Box and violin composite plots showing a higher plasma cell infiltration level in the response (R) group than in 
the nonresponse (NR) group. Wilcoxon test; *P < 0.05
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Fig. 2 (See legend on previous page.)
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of IgA1 PCs predicted better OS in the Ba/Sq subtype 
(log-rank P = 0.006) but tended to predict worse OS in 
the LumP and LumU subtypes. Although different types 
of PCs may have different functional roles in different 
subtypes, IgG1 PCs were dominant in all subtypes (Addi-
tional file 1: Figure S5B).

Identification of six tumor cell states
Based on copy number inference analysis in all single 
cells, tumor cells came from epithelial cells with signifi-
cant copy number variation (CNV) (Fig. 4A), and almost 
all had amplifications in chromosomes 1, 8, 12, 17 and 19 

and deletions in chromosome 14. Consistent with pre-
vious reports [23], cells from high-grade patients had 
higher CNV scores (Fig. 4B). Six tumor cell states (cycle, 
basal, hypoxia, partial epithelial-mesenchymal transition 
[pEMT], interferon, and stress) in BC were identified 
and used to assess the intrinsic functional characteristics 
of tumor cells (Fig. 4C and D). The tumor cells in differ-
ent states were found to be involved in different regula-
tory functions (Fig.  4D). For example, cycle-like tumor 
cells were mainly associated with cell cycle checkpoints, 
and they may be involved in the T-cell receptor signal-
ing pathway and regulate the PD-L1/PD-1 checkpoint 
pathway in cancer. Stress-like tumor cells were found to 

Fig. 3 Identification of dominant plasma cell subpopulations by single‑cell analysis. A UMAP visualization of 41,894 cells across the two low‑grade 
and six high‑grade bladder cancer patients. B Dot plot showing the expression of specific cell type markers. C The expression of plasma cell marker 
genes. D The subclusters of PCs (upper panel) and proportions of cells across the low‑ and high‑grade samples (lower panel). E Violin plot showing 
the expression of naive B‑ and plasma B‑cell marker genes in subclusters of PCs. F The expression of selected genes in PCs. G Scatter plot showing 
the independent cell distribution based on the expression of IGHG1 and IGHA1 (left panel). The heatmap shows the significantly enriched pathways 
of IgA1 PCs and IgG1 PCs (right panel). H Pseudotime trajectory of subclusters and IGHG1/IGHA1‑associated PCs. I Density plot showing the cell 
distribution, and curve chart showing the expression change of IGHG1 and IGHA1 along the pseudotime. J Stacked chart showing the distribution 
of IGHG1/IGHA1‑associated PCs
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Fig. 4 Identification of six cell states by nonnegative matrix factorization (NMF). A Epithelial cells had more significant copy number variations 
(CNVs) of chromosomes than nonepithelial cells. B The CNV score was higher in high‑grade samples. C Six epithelial (tumor) cell state scores 
calculated by the AUCell R package based on NMF dimension reduction. D UMAP visualization of the six tumor cell states (left panel) and 
significantly enriched pathways (right panel). E The CNV scores were different among cells of the six tumor cell states
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regulate the response to stress and the p53/IL-17 signal-
ing pathway Additionally, it is worth noting that inter-
feron-like tumor cells were found to be involved in the 
regulation of key immune response processes, such as 
antigen binding, MHC class II protein complex binding, 
immunoglobulin receptor binding, and PD-1 signaling. 
Although interferon-like tumor cells had the lowest cell 
proportion, they had the highest CNV scores (Fig. 4E).

We then evaluated the impact of different tumor cell 
states on patient survival (Additional file 1: Figure S6). In 
the nonimmunotherapy TCGA-BLCA cohort, high basal 
(Cox P = 0.015; HR = 1.20, 95% CI 1.00–1.40) and pEMT 
scores (Cox P = 0.044; HR = 1.20, 95% CI 1.00–1.40) were 
associated with worse OS. In the anti-PD-L1-treated 
IMvigor210 cohort, high cycle (Cox P = 0.012; HR = 0.84, 
95% CI 0.73–0.96) and stress scores (Cox P = 0.004; 
HR = 1.30, 95% CI 1.10–1.50) were correlated with better 
and worse OS, respectively.

The landscape of crosstalk between tumor cells and PCs
We next investigated the communication between all the 
cells. Clusters 10, 12, and 17 were further defined as mye-
loid-derived cells (MDCs) (LYZ, C1QB), T cells (CD3D, 
CD3E), and mast cells (TPSAB1 and TPSB2) (Additional 
file 1: Figure S7A). Among cells, stromal cells and MDCs 
were generally the strongest signaling senders and receiv-
ers, respectively (Additional file 1: Figure S7B). PCs were 
more likely to receive signals from stromal cells and send 
signals to T cells and MDCs (Additional file  1: Figure 
S7C), suggesting that PCs may be important immune 
mediators regulating tumor microenvironment (TME) 
intercellular communication in BC.

In the analysis of pathways based on L/R pairs 
between tumor cells and PCs, midkine (MK) and mac-
rophage migration inhibitory factor (MIF) signaling 
were the most significantly enriched pathways (Addi-
tional file 1: Figure S8A and B). We further found that 
MK signaling was mainly enriched in tumor cells but 
not in PCs. In the MIF signaling pathway, tumor cells 
were the main output cells, especially interferon-like 
tumor cells (which were also the main signaling cells 
in all pathways), whereas PCs were the main receiver 
cells (Additional file  1: Figure S8C–E). Furthermore, 

it is worth noting that PCs were more likely to receive 
signals from interferon-like tumor cells and send sig-
nals to cycle-like tumor cells in low-grade BC samples 
(Additional file  1: Figure S9), while this communica-
tion pattern was disrupted in high-grade samples, in 
which PCs received additional signals from pEMT- and 
hypoxia-like tumor cells and sent more signals to inter-
feron-like tumor cells. Together, these data suggest that 
the communication pattern between tumor cells and 
PCs dynamically changes with BC progression.

In the analysis of L/R pairs, the L/R pairs of MIF/
(CD74 + CD44 or + CXCR4) and APP/CD74 were the 
most prominent interactions involving signal transduc-
tion from tumor cells to PCs (Fig.  5A). The protumor 
effects of MIF and APP have been reported in several 
studies, and their potential association with PCs may 
explain the additional mechanisms of tumor progres-
sion [52–54]. Moreover, in the analysis of the correlation 
between L/R pairs and patient OS based on the anti-PD-
L1 treatment cohort, some L/R pairs mediated signal 
transduction from hypoxia-like and stress-like tumor 
cells to IgG1 PCs (such as ANGPTL4/SDC1 and LAMB3/
CD44, respectively), demonstrating a significant associa-
tion with worse patient OS (log-rank P < 0.05), suggesting 
that these L/R pairs may play specific roles in patients 
receiving ICB therapy (Additional file 1: Figure S10A and 
S10B). On the other hand, some chemokine signaling-
related molecules (such as CXCL10 and CXCL11) were 
associated with better patient OS (Fig.  5A), and these 
chemokines secreted by pEMT-like tumor cells may pro-
mote the recruitment of IgG1 PCs via ACKR1 [55]. In 
addition, the expression levels of 58 L/R pairs involved in 
significant communication between tumor cells and PCs 
were further investigated. In the TCGA-BLCA cohort, 
33 molecules were differentially expressed between 
tumor and normal samples (FDR < 0.05), 64% of which 
were upregulated in tumor samples (Fig.  5B and C). In 
the anti-PD-L1 treatment IMvigor210 cohort, 16 mol-
ecules were differentially expressed between treatment-
responsive and nonresponsive patients, but only 40% 
were upregulated in responsive patients (Fig. 5B and C). 
Thus, we speculated that global crosstalk between tumor 

Fig. 5 Potential ligand and receptor interactions between PCs and tumor cells. A Crosstalk pattern diagram showing signaling from tumor cells 
to plasma cells and from plasma cells to tumor cells. The internal heatmap shows the communication probability of the selected L/R pair crosstalk 
between tumor cells of six different states and IgG1 and IgA1 PCs. The differentially expressed L/R pairs between tumor and normal samples from 
the TCGA‑BLCA cohort are marked in red, and those between samples from responding versus nonresponding patients from IMvigor210 are 
marked in brown; those in both cohorts are marked in purple. The differential expression analysis was performed by the limma R package, and the P 
value was adjusted by the BH method. B Bubble plots showing the change in the expression of L/R pairs between tumor and normal samples from 
the TCGA‑BLCA cohort (upper panel) and between patients who responded and did not respond to anti‑PD‑L1 therapy from the IMvigor210 cohort 
(lower panel). C Pie chart showing the ratio of upregulated to downregulated molecules in the two groups. D The expression of selected genes in 
tissue sections. E ANGPTL4 was mainly expressed in epithelial cells, followed by stromal cells. F UMAP plot showing the expression bias of ANGPTL4 
in samples B5 and B7. G Box plot showing the high hypoxia score in samples B5 and B7

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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cells and PCs may promote cancer development and be 
related to a worse response to ICB therapies.

Validation of L/R pair expression through spatial 
transcriptome analysis
To further select reliable L/R pairs between tumor 
cells and PCs, we assessed their expression levels in 
tissue sections using spatial transcriptome analysis. 
Sample GSM5224027 was used for expression assess-
ment. We observed that Cluster 6 was located in a ter-
tiary lymphoid-like structure in BC tissue, and the PC 
markers IGHG1 and IGHA1 also tended to be enriched 
(Additional file  1: Figure S11). Concurrently, the epi-
thelial cell marker KRT18 was also found to be signifi-
cantly expressed, whereas the expression of EPCAM 
was slightly lower. Based on the expression and biologi-
cal localization analyses of L/R pairs, we identified two 
L/R pairs (LAMB3/CD44 and ANGPTL4/SDC1) with 
high reliability between tumor cells and PCs (Fig. 5D and 
Additional file  1: Figure S11). However, we found low 
ANGPTL4 expression in the tissue, which was also vali-
dated in the additional sample GSM5224029 (Fig. 5D and 
Additional file 1: Figure S12), suggesting that ANGPTL4 
may be secreted only by some specific tumor cells. We 
examined the expression of ANGPTL4 in different cell 
types and found that it was significantly expressed in epi-
thelial (tumor) cells and to a lesser extent in some stromal 
cells (Fig. 5E). In the analysis of the sample sources, a sig-
nificant sample bias of ANGPTL4 was observed in sam-
ples B5 and B7, which could be related to their significant 
hypoxic levels (Fig. 5F and G). Hypoxic conditions induce 
ANGPTL4 expression [56]. We speculate that hypoxic 
tumor cells may secrete ANGPTL4 to communicate with 
 SDC1+ PCs, affecting their differentiation, survival, and/
or antibody secretion.

Construction of a risk model based on L/R pairs
We further quantified the crosstalk patterns between 
tumor cells and PCs and assessed their association 
with patient survival and immunotherapy. Based on the 
TCGA-BLCA cohort, we selected 13 molecules from 58 
L/R pairs involved in significant communication between 
tumor cells and PCs to construct a risk model (Fig. 6A), 
and the risk score was calculated according to the follow-
ing equation:

We found that patients in the high LR score group had 
significantly worse OS (log-rank P < 0.0001) in the uni-
variate Cox analysis (Fig. 6B). Stage, T stage, and N stage 
were also significantly associated with OS in the univari-
ate Cox analysis (Cox P < 0.05, HR > 2) (Fig. 6C), while the 
LRscore was the only independent predictor for patients 
with BC (Cox P = 7.30E-08, HR = 2.6) after removing 
the confounding factors in the multivariate Cox analysis 
(Fig. 6C). The area under the tdROC curve (AUC) for 1-, 
3-, 5-, 7-, and 10-year survival showed that the LRscore 
was a more stable and effective indicator than stage, T 
stage, and N stage (Fig.  6D). Moreover, a high LRscore 
was also associated with worse DSS (log-rank P < 0.0001), 
DFS (log-rank P = 0.024), and PFS (log-rank P < 0.0001) in 
BC patients (Fig. 6E), suggesting that the LRscore also has 
the potential to predict patient relapse and progression.

We further evaluated the effect of the LRscore on 
patient survival in the anti-PD-L1 treatment cohort, 
in which a high LRscore also predicted worse OS (log-
rank P < 0.0001) (Fig.  6F). Concurrently, fewer patients 
responded to treatment in the high-risk group (high-risk 
vs. low-risk = 13% vs. 32%) (Fig. 6G), suggesting that the 
LRscore may be associated with poorer patient response 
to ICB therapies. This finding was further validated 
by the significant negative correlations of the LRscore 
with TNB (P < 0.0001, Pearson’s r = −0.29) and TMB 
(P < 0.0001, Pearson’s r = −0.28) (Fig.  6H). Moreover, we 
found that the expression of the model molecules ITGA6, 
HSPG2, LAMB1, and SDC2 was lower in responding 
patients (Wilcoxon test, P < 0.05), and low expression of 
these molecules was associated with poorer OS (log-rank 
P < 0.05) (Fig.  6I and J). These model molecules may be 
the main contributors to the success of the model in pre-
dicting the immune response in the anti-PD-L1 therapy 
cohort. Finally, we evaluated the predictive effect of the 
LRscore versus other immunotherapy-related predictors 
(TNB, TMB, PD-L1, PD1, and PCs) (Fig. 6K). The com-
bination of the LRscore with TNB and TMB obtained the 
highest AUC (0.78) with a diagnostic specificity of 85.7%, 
and thus could be used to avoid excessive immunother-
apy in patients.

LRscore =− 0.35 ∗ Exp.ITGB7 + 0.28 ∗ Exp.FN1

+ 0.32 ∗ Exp.EGFR − 0.21 ∗ Exp.ITGB6

− 0.28 ∗ Exp.ITGA6 + 0.19 ∗ Exp.ACKR3

+ 0.15 ∗ Exp.ACKR1 + 0.21 ∗ Exp.CD44

− 0.27 ∗ Exp.CD74 − 0.20 ∗ Exp.INSR

+ 0.34 ∗ Exp.HSPG2 − 0.18 ∗ Exp.LAMB1

− 0.19 ∗ Exp.SDC2
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Assessment of the risk model
To better analyze the features of the LR risk model, we 
first evaluated the correlation between the LRscore and 
cancer hallmarks based on the TCGA-BLCA cohort 

(Fig.  7A). The LRscore was positively correlated with 
most cancer hallmarks (P < 0.05, Spearman’s r > 0.1), 
such as epithelial-mesenchymal transition, angiogen-
esis, hedgehog signaling, and hypoxia. Immune cell 

Fig. 6 The ligand (L)‑ and receptor (R)‑based risk model LRscore is a good prognostic and immune predictor. A Forest plot showing the hazard ratio 
(HR) of selected L/R pairs based on stepwise Cox regression analysis. B Kaplan–Meier curve showing that a high LRscore was associated with poor 
OS in TCGA‑BLCA patients. C Radar chart showing that the LRscore was significantly correlated with risk according to univariate and multivariate 
Cox regression analyses. D The LRscore had the highest AUC and stability for predicting 1‑, 3‑, 5‑, 7‑, and 10‑year survival. E Kaplan–Meier curves 
showing that a high LRscore was associated with poor DSS, DFS and PFS in TCGA‑BLCA patients. F Kaplan–Meier curve showing that a high LRscore 
was associated with poor OS in IMvigor210 patients. G Stacked histogram showing that the high‑risk group had a lower percentage of responding 
patients than the low‑risk group. H The LRscore was negatively correlated with TMB and TNB in the anti‑PD‑L1 treatment cohort. I Three model 
genes demonstrated differential expression between the response (R) and nonresponse (NR) groups in the anti‑PD‑L1 treatment cohort. Wilcoxon 
test; *P < 0.05; **P < 0.01; ***P < 0.001. J Kaplan–Meier curves showing that ITGA6, HSPG2, LAMB1 and SDC2 are associated with the OS of IMvigor210 
patients. K Receiver operator characteristic (ROC) curve showing the area under the curve (AUC) for different indicators used to identify patients 
with R or NR
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Fig. 7 Characterization of the relationship of the LRscore with cancer progression, the microenvironment, cancer subtype and somatic mutation. A 
Volcano plot showing that the LRscore was positively correlated with the majority of cancer hallmarks. In the Spearman analysis, a cancer hallmark 
with P < 0.05 is marked in red (positive correlate) or blue (negative correlate). B Heatmap showing the association between the LRscore and 
immune cell infiltration level inferred based on xCell analysis. Spearman analysis; *P < 0.05; **P < 0.01; ***P < 0.001. C‑E The LRscore was correlated 
with some indicators of the microenvironment, immune dysfunction/exclusion, and immune phenotype (Spearman analysis). F Sankey chart 
showing the distribution of different LRscore risk patients across different molecular subtypes of bladder cancer. G Oncoplot showing differences in 
TMB, TNB and mutated genes between the high‑ and low‑risk groups. H The standard error bars indicate the IC50 values for the two FGFR3‑targeted 
drugs in the low‑ and high‑risk groups, with a lower IC50 typically predicting higher drug sensitivity. Wilcoxon test; ****P < 0.0001
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infiltration analysis showed that the LRscore was nega-
tively correlated (P < 0.05, Spearman’s r < −0.1) with the 
majority of tumor- suppressive T-cell types (Fig. 7B) and 
the IPS (P = 7.2E-14, Spearman’s r = −0.36) (Fig. 7E). The 
IPS is an immunogenicity evaluation index, and a higher 
IPS indicates better immunotherapy performance. How-
ever, the LRscore was positively correlated with endothe-
lial cells and the stromal score but not with effector cells 
(ECs), immune checkpoints (CPs), or the global immune 
score (Fig.  7C and E). More importantly, a significant 
positive association between the LRscore and TIDE score 
(P = 9.4E-15, Spearman’s r = 0.38) was also observed, 
and this association was mainly derived from exclusion 
(P = 6.8E-34, Spearman’s r = 0.56) and CAFs (P = 2.6E-26, 
Spearman’s r = 0.50) rather than dysfunction (P = 0.37, 
Spearman’s r = −0.04) (Fig.  7D). These data suggest that 
an immunosuppressed state reflected by the LRscore 
may mainly result from resistance of the tumor stroma to 
immune infiltration.

In addition, patients in the low-risk group were mostly 
categorized into the classic Robertson-LumP and con-
sensus Kamoun-LumP molecular subtypes of BC, 
whereas the high-risk group was associated with malig-
nant subtypes such as the Ba/Sq, Robertson-Neuronal, 
and Kamoun-NE-like subtypes (Fig.  7F). Remarkably, 
the LumP subtype showed a high FGFR3 mutation fre-
quency in the low-risk group (Chi-square test, P < 0.001) 
(Fig.  7G). Moreover, we performed a drug sensitivity 
analysis based on the GDSC drug database for different 
risk groups, and patients in the low-risk group showed 
higher sensitivity to FGFR3-targeted drugs (such as 
PD173074 and AZD4547) (Fig.  7H). FGFR3 could be 
a drug target for patients in the low-risk group. Over-
all, these data suggest that a high LRscore predicts high 
immune exclusion and low immunogenicity in patients, 
suggesting poorer immunotherapy response and OS, but 
patients with a low LRscore may have better immune and 
targeted therapy outcomes.

Discussion
Over the past few years, improvements have been made 
in the treatment of BC patients due to the increased 
understanding of tumor molecular profiles and the devel-
opment of ICB therapies. However, for the majority of 
patients (who do not respond to therapy), current efforts 
are still inadequate. Previous studies have reported a dual 
role of PCs in protumor and antitumor regulation [57]. 
However, the function of PCs and the communication 
between PCs and tumor cells are not fully understood 
in BC patients. Here, we explored the crosstalk between 
the major functional subtypes of PCs (IgG1 and IgA1) 
and tumor cells of six different states in BC patients 

and confirmed the impact of these crosstalk patterns on 
patient prognosis and immunotherapy efficacy.

The effects of antitumor antibodies on oncological 
outcomes partly depend on the antibody isotype. Gen-
erally, IgG1 exerts antitumor effects by enhancing T-cell 
responses, while IgA exerts protumor effects by induc-
ing IL-10 release from myeloid cells [58]. In this study, 
IgG1 PCs were predominant in the TIME and showed a 
significant association with inflammatory response path-
ways but had a lower infiltration level in high-grade BC. 
Instead, IgA1 PCs had higher infiltration in high-grade 
BC, and pseudotime analysis showed the existence of 
conversion between IgG1 and IgA1 PCs. These results 
further suggest an important role for PC isotype switch-
ing in BC. However, we also found that the cancer-sup-
pressing and cancer-promoting functions of IgG1 and 
IgA1 PCs may be heterogeneous across BC subtypes, as 
reflected in their different associations with patient sur-
vival. This may be due to the inconsistent expression of 
complement factors, such as C3a and C5a, and differ-
ences in polymer Ig receptor (pIgR) abundance between 
different subtypes of BC. In settings with high levels of 
complement components, IgG1 can also play a protumor 
role [59], while IgA can activate  CD8+ T cells by binding 
to pIgR in tumor cells [60]. Thus, the detailed functions 
of different PC types in the context of BC require further 
confirmation in the future.

Dynamic interactions and crosstalk between B cells 
and other cells, including T cells and MDCs, profoundly 
influence the immune response to tumors [61, 62]. In 
this study, we observed that PCs, as effector B cells, were 
more likely to send signals to T cells and MDCs. How-
ever, significant crosstalk between PCs and tumor cells 
also existed according to the L/R pair analysis, and most 
of the interactions were derived from secretion of sign-
aling molecules rather than direct cell‒cell contact. Spe-
cifically, tumor cells were generally the source cells that 
secreted the signaling factors. On the one hand, tumor 
cells may act on PCs by secreting oncogenic molecules 
(ANGPTL4 or LAMB3 [63, 64]) to inhibit their antitumor 
function or promote isotype switching of protumor sub-
types. On the other hand, chemokine-related pathways 
(such as chemokine receptor binding to chemokines, 
chemokine receptor binding, and chemokine activity) 
were enriched in IgG1 PCs (Fig.  3G) and pEMT-like 
tumor cells (Fig. 4D). pEMT-like tumor cells were prone 
to recruit PCs by secreting cytokines such as CXCL10 or 
CXCL11 (Fig. 5A). CXCL10 can bind CXCR3 and signal 
via extracellular signal-regulated kinase to cause B cells 
to transition into protumor IgG-producing PCs [65].

Unlike B-cell-T-cell interactions, which enhance anti-
tumor immune responses [62], signal transduction from 
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tumor cells to PCs was mostly unfavorable and was 
associated with nonresponse to immunotherapy; this is 
not surprising since most L/R pairs were usually highly 
expressed in BC patients who did not respond to immu-
notherapy (Fig. 5C). In terms of specific L/R pairs, based 
on the spatial transcriptome expression assessment, 
stress-like tumor cells were likely to interact with  CD44+ 
IgG1 PCs by secreting LAMB3. Stress-like cancer cells 
have higher tumor-seeding capabilities [66], and LAMB3, 
as a key gene in stress-like tumor cells, has been reported 
to encode one of the heterotrimeric glycoproteins of 
laminin-5 (LN5), which promotes tumor invasion and 
metastasis [67, 68]. Furthermore, tumor cells can secrete 
multiple ligands of CD44, including osteopontin and hya-
luronic acid, to regulate the homing, activation, matu-
ration, and proliferation of immune cells [69, 70]. Thus, 
stress-like tumor cells may suppress the antitumor func-
tion of  CD44+ IgG1 PCs and promote tumor progression 
by secreting LAMB3.

SDC1, also known as CD138, is a marker for plasma 
cells that is closely associated with immunotherapy 
responses and survival in cancer patients [71]. The accu-
mulation and differentiation of SDC1/CD138+ IgG-
producing PCs can be modulated by tumor-associated 
neutrophils and myeloid-derived suppressor cells in a 
BAFF- or STAT3-dependent manner [20]. In this study, 
we identified that hypoxia-like tumor cells may also act 
on SDC1/CD138+ IgG1 PCs by secreting ANGPTL4. 
ANGPTL4 is a known angiogenic factor that can be 
directly induced by HIF-1α in tumor cells under hypoxic 
conditions [72, 73], and its expression is significantly 
increased in BC patients [74]. In conclusion, a thorough 
understanding of crosstalk between distinct subtypes of 
tumor cells and PCs is critical for improving ICI efficacy 
in BC.

This study has some limitations. First, the final number 
of PCs obtained for the single-cell analysis was limited, 
and thus the cell types and transition trajectory may be 
biased owing to the lack of suitable and sufficient single-
cell samples. Second, the evaluation of cell interactions 
was mainly based on mRNA profiles, and analyses to 
assess relevant proteomic information, such as immuno-
histochemistry, immunofluorescence staining, and cel-
lular localization assessment, will be helpful for further 
evaluation of their communication capacity. Finally, and 
importantly, our study only revealed the communication 
potential of PCs and tumor cells, but the specific mecha-
nisms and functions of this crosstalk are still unknown, 
and further related research needs to be carried out.

Conclusions
In summary, by integrating scRNA-seq, bulk RNA-seq, 
and spatial transcriptome data, we systematically char-
acterized the crosstalk patterns between tumor cells and 
PCs in BC and quantified the potential impact of this 
crosstalk on patient survival and response to immuno-
therapy. The LRscore risk model based on L/R pairs can 
be used to predict clinical risk and immune response.
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