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Abstract 

Spatial transcriptomics technologies developed in recent years can provide various information including tissue 
heterogeneity, which is fundamental in biological and medical research, and have been making significant break‑
throughs. Single‑cell RNA sequencing (scRNA‑seq) cannot provide spatial information, while spatial transcriptomics 
technologies allow gene expression information to be obtained from intact tissue sections in the original physiologi‑
cal context at a spatial resolution. Various biological insights can be generated into tissue architecture and further the 
elucidation of the interaction between cells and the microenvironment. Thus, we can gain a general understanding of 
histogenesis processes and disease pathogenesis, etc. Furthermore, in silico methods involving the widely distributed 
R and Python packages for data analysis play essential roles in deriving indispensable bioinformation and eliminating 
technological limitations. In this review, we summarize available technologies of spatial transcriptomics, probe into 
several applications, discuss the computational strategies and raise future perspectives, highlighting the developmen‑
tal potential.
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Introduction
Human organs and systems are comprised of distinct cell 
subpopulations whose physiological processes and func-
tions are deeply correlated with their spatial distributions 
and cellular interactions. To gain a deeper understand-
ing of tissue architecture as well as heterogeneity and to 
subsequently obtain biological insights into intercellular 
communication and microenvironment, it is crucial to 
decipher the disparities among tissue regions and cells 
in their original spatial context. Previously developed 
single-cell RNA sequencing (scRNA-seq) [1] has pro-
vided comprehensive information about transcriptomes, 
altering our ability to identify cell subpopulations. How-
ever, the segregation of cells while dissociating the tissue 
destroys cellular spatial information in the original tissue 
context, which sometimes could be extremely crucial to 
understanding intricate cellular interaction networks. 
Moreover, since scRNA-seq was developed in 2009, 
many limitations have been emerging. For instance, the 
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relatively low efficiency and coverage of RNA transcript 
capturing may lead to the loss of gene expression infor-
mation for downstream analysis [2]. Furthermore, certain 
types of cells may exhibit significant cell variations due to 
factors such as cell size and cell cycle stage, causing less 
reliable results. Another challenge of scRNA-seq is the 
batch effect which also needs to be considered and cor-
rected before subsequent analyses [3]. Additionally, the 
dissociation protocol of tissue sections may have reper-
cussions on transcriptome and induce transcriptome-
wide changes including ectopic expression of genes, 
causing a contaminating signal and subsequently leading 
to the misidentification of cell subpopulations [4]. These 
obstacles are gradually improved with advances in spatial 
transcriptomics where each cell is assigned a specific and 
unique spatial label containing spatial coordinates infor-
mation, allowing for relatively precisely positioning each 
identified cell subpopulation to the original tissue sec-
tions [5]. Employing spatial transcriptomics techniques 
enables transcriptomic data to be acquired from intact 
tissue sections and in turn obtains spatial distribution 
information and elucidates cellular interaction patterns 
[2].

Although current cutting-edge spatial transcriptomics 
techniques are confronted with some drawbacks such as 
relatively low resolution and comparatively insufficient 
sequencing depth [2], they are extensively utilized in a 
wide range of biomedical research because of the accel-
erating capacity to investigate the spatial architecture 
of normal tissue and tumor. These approaches and plat-
forms have been applied to the adult mouse brain [6], 
mouse liver [7], human dorsal root ganglia [8] and dorso-
lateral prefrontal cortex [9], human heart [10], embryonic 
liver [11], intestine [12] and mammalian testis [13] to 
reveal tissue architecture and delineate embryonic devel-
opmental blueprint and also been employed to lucubrate 
disease pathogenesis and microenvironment [14–17]. An 
important part of the disease research is into tumor biol-
ogy which encompasses pancreatic ductal adenocarci-
noma [18], human squamous cell carcinoma [19], breast 
cancer [20] and cutaneous malignant melanoma [21], 
etc. These applications provide adequate novel biological 
insights and clinical relevance to resolving the intrinsic 
mechanism of tissue dynamics and disease and to rem-
edying or optimizing present medical treatment pro-
tocols. Bioinformatics analysis strategies aim at mutual 
and disparate purposes concerning clustering analy-
sis, data integration, deconvolution, spatially-variable 
genes identification, etc. For example, early-developed 
and now commonly-used Seurat [22] can be applied to 
clustering and gene imputation, and the recently pub-
lished Tangram [23] tackles deconvolution and also gene 
imputation.

Spatial transcriptomics technologies have been con-
tinuously making significant progress. Multiple technolo-
gies have emerged in recent years, and their applications 
and advantages and disadvantages are comprehensively 
reviewed. In this article, we summarize the landscapes 
of available spatial transcriptomics technologies, present 
the employment of spatial techniques in extensive fields 
of biomedical research and focus on the status quo of 
computational strategies of data analysis.

Development of spatial transcriptomics 
technologies
Since the initial spatial transcriptomics workflow was 
established in 2016 [5], this field has been proceeding 
apace with the unceasing evolution in resolution as well 
as throughput. Notably, spatially resolved transcriptom-
ics was heralded as “Method of the Year 2020” by Nature 
Methods in 2021 [24]. Feasible methods for obtaining a 
fine-grained assessment of spatial transcriptome can be 
generally classified into four primary categories including 
microdissection, in  situ hybridization, in  situ sequenc-
ing, and spatial barcoding, each bearing its superiority 
and constraints. Overviews of these categories are sum-
marized and a concise timeline depicting the remarkable 
course of spatial transcriptomics techniques is presented 
(Fig. 1) and detailed comparisons among existing meth-
ods are shown (Table  1). Some of the most commonly 
used spatial transcriptomics platforms are also listed in 
Table 2.

Technologies based on microdissection
Laser capture microdissection (LCM) [25] is a microdis-
section technique that employs a focused infrared laser 
pulse to isolate a specific tissue region of interest (rang-
ing from 60 to 700 μm in diameter) from the original tis-
sue section, enabling precise procurement of a specimen 
from the specified anatomical region while diminishing 
potential contamination. Moreover, these technologies 
are appropriate for partly-degraded tissue section analy-
sis [26] and can interrogate the transcriptomes at a cellu-
lar resolution. One application of LCM technology is the 
genetic analysis of small premalignant lesions that have 
been isolated from histologically normal tissue or tumor 
edges, and this approach underlies several other technol-
ogies including tomo-seq [27], Geo-seq [28], etc.

Junker and colleagues [27] devised RNA tomography 
(tomo-seq), a technique that involves cryosectioning, 
reverse transcription, and amplification. Notably, this 
approach eliminates the need for carrier RNA and pro-
vides high sensitivity and spatial resolution. The robust-
ness of the tomo-seq protocol was validated by the 
authors by applying it to zebrafish embryos, followed by a 
three-dimensional reconstruction of a genome-wide atlas 
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at three developmental stages of the zebrafish embryo. 
The 3D profiling of tomo-seq was accomplished by cryo-
sectioning three main body axes of the zebrafish and the 
data sets measured along these axes were reconstructed 
computationally by mapping gene expression informa-
tion onto the image. Analysis of the 3D transcriptomic 
pattern of whole embryos and organs can be accom-
plished by tomo-seq but a main drawback of this method 
is that multiple samples are needed to generate sections 
of three axes so the application on human organs can 
be limited. Chen and colleagues [28] proposed another 
technology based on microdissection termed geographi-
cal position sequencing (Geo-seq) which integrates 
LCM and scRNA-seq technologies, enabling simultane-
ous investigation of cell heterogeneity and spatial vari-
ation. Geo-seq implements gene profiling at a ten-cell 
resolution, significantly facilitating the analysis of the 
spatiotemporally-regulated gene expression compared 
to individually utilizing the LCM method. In addition, 

Geo-seq can also promote the understanding of rare 
cells and the interaction between cells and surrounding 
niches. However, some impediments still remain, includ-
ing the amplification merely of mRNA with a poly-A tail 
while preparing the library, which can be a hindrance for 
the subsequent Smart2-seq [28].

In summary, microdissection-based methods provide a 
competent approach to obtaining regions of interest from 
tissue samples with high sensitivity. These techniques 
enable focused research into the microanatomical struc-
tures and gene expression information of specific regions. 
However, Geo-seq, which integrates LCM and scRNA-
seq (Smart2-seq), offers only a ten-cell resolution due 
to the limitations of microdissection-based techniques. 
During the laser-capturing and tissue segregation pro-
cedures of LCM, the quality of RNA molecules and the 
intactness of obtained cells may not be fully maintained. 
Additionally, microdissection is time-consuming and 
labor-intensive, limiting the throughput and the capacity 

Fig. 1 Development of spatial transcriptomics. The timeline indicates technologies (in bold blue), the years (in bold black) when the 
corresponding technologies were published and the journals (in dark red) where the corresponding technologies were published or employed 
(as in 10 × Genomics Visium). It should be noticed that scRNA‑seq is presented in the figure only for reference, albeit a non‑spatial technology. 
LCM Laser Capture Microdissection, smFISH Single‑molecule RNA Fluorescence In Situ Hybridization, ISS In Situ Sequencing, TIVA Transcriptome 
In Vivo Analysis, FISSEQ Fluorescent In Situ RNA Sequencing, seqFISH Sequential Fluorescence In Situ Hybridization, tomo-seq RNA Tomography, 
MERFISH Multiplexed Error‑robust Fluorescence In Situ Hybridization, smHCR Single‑molecule Hybridization Chain Reaction, Geo-seq Geographical 
Position Sequencing, BaristaSeq Barcode In Situ Targeted Sequencing, STARmap Spatially‑resolved Transcript Amplicon Readout Mapping, osmFISH 
Ouroboros Single‑molecule RNA Fluorescence In Situ Hybridization, DSP Digital Spatial Profiling, HDST High‑Definition Spatial Transcriptomics, 
DBiT Deterministic Barcoding in Tissue, ExSeq Expansion Sequencing, Stereo-seq Spatial Enhanced Resolution Omics‑sequencing, Ex-ST Expansion 
Spatial Transcriptomics, PNAS Proceedings of the National Academy of Sciences of the United States of America, Nat. MethodsNature Methods, Nat. 
Protoc. Nature Protocols, Nucleic Acids Res. Nucleic Acids Research, Clin. Cancer Res. Clinical Cancer Research, Nat. Neurosci. Nature Neuroscience, Nat. 
Biotechnol. Nature Biotechnology, Sci. Adv. Science Advances
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to handle large tissue samples. Despite these shortcom-
ings, microdissection-based technologies can still pro-
vide robust methods for gene expression profiling.

Technologies based on in situ hybridization
In situ hybridization is a strategy that enables the visuali-
zation of RNA molecules within their original context via 
probes complementary to the objective transcripts rather 
than extracting them from tissue sections. An early itera-
tion of in  situ hybridization technique termed single-
molecule fluorescent in situ hybridization (smFISH) [29] 
is competent in detecting several RNA transcripts simul-
taneously and has been advancing in gene measuring 
throughput and efficiency through multiplexed smFISH 
[30, 31]. This method exhibits high sensitivity and offers a 
subcellular resolution and is commonly utilized as a pow-
erful tool for biological validation, such as corroborating 
the findings of bioinformatic analyses for newly identified 
genes. This technology requires fluorescent labeled RNA 
probes to hybridize with target molecules so the main 
drawback of smFISH is the limitation on the number of 
color channels due to the fluorescent overlapping of dif-
ferent channels, which means that smFISH can detect 
only a small number of genes concurrently. Another 
in  situ hybridization technology called ouroboros 
smFISH (osmFISH) [32] is a non-barcoded and unampli-
fied method based on cyclic smFISH, which can identify 
weakly-expressed genes [33] due to the circumvention of 
optical crowding. OsmFISH can be applied to large tissue 
samples, particularly for the examination of low-expres-
sion RNA transcripts. However, low throughput remains 
a technical limitation of this technique. Sequential FISH 
(seqFISH) is a barcoding protocol that leverages the high 
efficiency of FISH and the fact that distinguishing RNA 
transcripts does not require base-pair resolution [34]. In 
this approach, mRNAs are assigned temporal barcodes 
through multiple rounds of hybridization. During each 
round of hybridization, each transcript is targeted with 
several probes labeled with one color, and subsequently 
the probes are removed before the next round of hybridi-
zation where the same probes are labeled with fluoro-
phores of a different color. Thus, seqFISH can generate 
a large number of transcripts while reducing spectral 
overlap that occurs in smFISH. However, seqFISH can be 

time-consuming and errors may accumulate over multi-
ple rounds of hybridization, potentially leading to inaccu-
rate information. Despite these limitations, seqFISH can 
be used to generate transcriptomic images of complex 
tissues, including brain samples [26].

To overcome the drawbacks of accumulating errors, 
Chen and colleagues [35] devised multiplexed error-
robust FISH (MERFISH), a highly multiplexed smFISH 
protocol incorporating combinatorial labeling, succes-
sive rounds of sequential hybridization imaging, and 
error-robust encoding. MERFISH workflow is capa-
ble of measuring genes and combating accumulating 
detection errors by the error-robust encoding strat-
egy designating each RNA transcript with a binary 
word. A 140-gene measurement was simultaneously 
performed with the encoding strategy that can detect 
and correct errors, whereas a 1001-gene measurement 
was performed with an alternative encoding strategy 
which can detect errors, albeit with no correction [35]. 
Notably, efforts have been made to evolve the MER-
FISH approach, enabling the simultaneous detection 
of RNA molecules to achieve up to 10,000 [36]. Moreo-
ver, MERFISH can be implemented to accomplish a 
high-throughput analysis of intercellular gene expres-
sion variation and elucidate the spatial distributions of 
multiple RNA transcripts concurrently. In contrast to 
seqFISH, the MERFISH protocol removes fluorophores 
but not the probes, making it more time-efficient than 
seqFISH [37]. The MERFISH approach has been com-
mercialized as Vizgen MERSCOPE (Table 2) and can be 
applied to multiple tissue samples including fresh fro-
zen and formalin-fixed paraffin-embedded (FFPE) tis-
sue sections.

Overall, in-situ-hybridization-based techniques allow 
for the visualization of RNA molecules within their 
original tissue context by hybridizing probes with com-
plementary targets. This enables the detection of target 
genes for biological validation of bioinformatic analysis 
results and the study of gene expression patterns. How-
ever, the nature of FISH methods imposes an intrinsic 
limitation on throughput. Additionally, specific probes 
must be synthesized before the hybridization process, 
necessitating the use of ready-made kits to overcome this 
challenge  [33].

Table 2 Commonly used commercialized spatial transcriptomics technologies

FFPE Formalin-fixed Paraffin-embedded, DSP Digital Spatial Profiling, ST Spatial Transcriptomics, MERFISH Multiplexed Error-robust Fluorescence In Situ Hybridization

Platform Technique Tissue Compatibility Website

10 × Genomics Visium ST Fresh frozen, FFPE https:// www. 10xge nomics. com/ cn/ produ cts/ spati al‑ gene‑ expre ssion

Nanostring GeoMx DSP DSP Fresh frozen, FFPE https:// nanos tring. com/ produ cts/ geomx‑ digit al‑ spati al‑ profi ler/ 
geomx‑ dsp‑ overv iew/

Vizgen MERSCOPE MERFISH Fresh frozen, FFPE https:// vizgen. com/ produ cts/

https://www.10xgenomics.com/cn/products/spatial-gene-expression
https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/
https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/
https://vizgen.com/products/
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Technologies based on in situ sequencing
In situ sequencing (ISS) method developed by Ke and 
colleagues [38] enables targeted analysis of RNA mol-
ecules in cells within a histomorphologically-retained 
context. This protocol entails single-strand DNA padlock 
probes with complementary sequences that bind to the 
cDNA generated by reverse transcription of mRNA mol-
ecules. Two targeted approaches, gap-targeted sequenc-
ing and barcode-targeted sequencing, were developed 
in the ISS procedure. In gap-targeted sequencing, the 
padlock probe has a gap between the probe ends which 
precisely binds to the targeted base pairs in the cDNA, 
and DNA polymerization and ligation subsequently fill 
the gap to form a circular DNA molecule. In barcode-
targeted sequencing, the padlock probe contains a 
barcode sequence and only one breakpoint, so the forma-
tion of circular DNA undergoes only the ligation of the 
breakpoint. Rolling-circle amplification of the circular-
ized DNA generates a rolling-circle product which then 
undergoes sequencing by ligation. The accuracy of the 
ISS protocol has been validated through its implementa-
tion in human breast cancer to manifest point mutations 
and decompose multiplexed gene expression profiling, 
using gap-targeted sequencing and barcode-targeted 
sequencing, respectively [38]. However, the ISS method 
requires prior knowledge of examined tissue to design 
padlock probes.

To examine transcripts without prior knowledge of tis-
sue, Lee and colleagues [39] devised fluorescent in  situ 
RNA sequencing (FISSEQ), a non-targeted approach 
measuring 8102 RNA species unbiasedly (transcriptome-
wide). FISSEQ predominantly detects genes depict-
ing cell type and function but low sequencing depth 
and incapability of ascertaining targeted RNA remain 
to be the drawbacks. Based on FISSEQ, another in  situ 
sequencing strategy named expansion sequencing 
(ExSeq) was launched, enabling highly-multiplexed RNA 
visualization in cells and tissues of multiple-organ species 
with high spatial precision [40]. ExSeq encompasses tar-
geted and untargeted versions, both of which can resolve 
biological problems ranging from nano-scale to system-
scale. The targeted version addresses the issue of cellular 
crowding by attaching RNA molecules to an expandable 
hydrogel and expanding the hydrogel before ligating and 
sequencing, and the untargeted version optimizes the 
efficiency [41]. Untargeted ExSeq allows the detection 
of RNA molecules in the whole transcriptome includ-
ing rare transcripts, whereas targeted ExSeq enables a 
smaller defined gene set to be detected and can be uti-
lized to project cells onto tissue context and also visual-
ize gene regulation. Wang and colleagues [42] developed 
spatially-resolved transcript amplicon readout mapping 
(STARmap) incorporating hydrogel-tissue chemistry and 

in  situ sequencing, which can be employed to sequence 
RNA in 3D intact tissue with high efficiency and accu-
racy. Additionally notably, a modified STARmap scheme 
can be adopted for 3D analysis of thick tissue blocks, and 
sequencing with error-reduction by dynamic anneal-
ing ligation (SEDAL) was specifically devised for STAR-
map to eradicate misdecoding resulting from sequencing 
errors.

In contrast to traditional sequencing methods that 
separate cells from their spatial context, in-situ-sequenc-
ing-based methods enable spatial-level gene expres-
sion analysis and avoid the bias introduced by transcript 
extraction. However, these techniques still face chal-
lenges. For example, prior knowledge of the tissue may 
be required to design specific padlock probes, and read 
length may be limited. Additionally, in  situ sequenc-
ing may not be feasible for unconventional or rare cell 
types and genes. Potential applications of these methods 
include studying gene expression regulation within tis-
sues or cells and localizing gene variants.

Technologies based on spatial barcoding
Ståhl and colleagues [5] proposed Spatial Transcriptom-
ics (ST), which is practicable for quantitatively visualiz-
ing and determining the transcriptome whilst retaining 
spatial information. Tissue sections of adult mouse olfac-
tory bulbs are placed on the glass slides immobilized 
with reverse transcription primers with poly-T to bind 
to the poly-A tail of mRNA derived from the tissue sec-
tions. The primers also embody spatial barcodes and 
unique molecular identifiers (UMIs) representing the 
coordinates of each array. During the tissue permeabi-
lization process, mRNA molecules in tissue cells diffuse 
into 100-μm microwells on slides and hybridize with 
primers. Reverse transcription reagents are then added 
to the tissue to synthesize cDNA, using Cy3-labeled 
nucleotides for visualization of the generated cDNA. 
The tissue is subsequently removed by enzymes, leaving 
cDNA hybridized with nucleotides on the glass slides 
[5]. Although this technology provides spatial informa-
tion, the resolution is limited to 100  μm, containing 
multiple cells. In 2019, 10 × Genomics further developed 
this method and commercialized it as “10 × Genomics 
Visium”, upgrading the resolution to 55  μm and refin-
ing the protocol to be compatible with both fresh frozen 
tissue sections and formalin-fixed paraffin-embedded 
(FFPE) tissue sections. This method has been widely 
used to study various tissue and disease. Maynard and 
colleagues [9] initially exploited the Visium platform to 
interpret gene expression information spatially in the 
human DLPFC on a transcriptomic scale.

Improvement of the resolution of spatial barcod-
ing strategies has been continuously pursued. In 2019, 
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Rodriques and colleagues [43] developed Slide-seq which 
provided an approach for spatially analyzing gene expres-
sion information at high resolutions (10 μm) analogous to 
the size of a single cell using beads deposited on the slide, 
with scalability to the large volume of tissue. Since these 
beads are randomly placed on the slide surface, their 
position information must be decoded through sequenc-
ing to match transcripts with their location, which may 
limit the capture efficiency. In 2021, Stickels and col-
leagues [44] described the improved version of Slide-
seq, termed Slide-seqV2, which advanced approximately 
an order of magnitude in RNA capturing efficiency and 
sensitivity than the original Slide-seq. Not long after the 
publication of Slide-seq, a high-resolution spatial tech-
nology named high-definition spatial transcriptomics 
(HDST) utilizing barcoded bead arrays to capture RNA 
molecules from tissue sections in a histological context 
achieved a 2-μm resolution which is much higher than 
Spatial Transcriptomics [45]. It is also prominent that 
Seq-Scope technology yields a submicrometer resolution 
of 0.5 ~ 0.8 μm [46].

Slide-seq, HDST and Seq-Scope introduced above can 
provide much higher and even subcellular resolutions, 
generating more refined spatial distribution information. 
The approaches to improving the resolutions of Slide-seq 
and HDST are similar, involving bead arrays with 10-μm- 
and 2-μm-diameter beads, respectively [43, 45]. It should 
be noticed that Slide-seq and HDST involve beads similar 
to or smaller than the size of a single cell but they may 
cover multiple cells so the single-cell resolution may not 
be always achieved. Seq-Scope achieves subcellular reso-
lution through the dense distribution of clustered bar-
codes. To be specific, many oligonucleotides containing 
high-definition map coordinate identifiers (HDMI) act 
as seed molecules, and an HDMI-array is generated by 
amplifying these seed molecules to form many clusters, 
each of which is derived from one seed molecule. This 
process can almost eliminate the areas with no detected 
RNA molecules [46]. However, pursuing such high reso-
lution may introduce challenges such as data sparsity and 
difficulty inferring cell borders [47]. Noise is also a chal-
lenge due to limited coverage in each sequencing unit 
and the complex procedures required to maintain spatial 
positions during sequencing. The higher the resolution is, 
the more severe the noise is likely to be [48]. To improve 
the resolution while preserving comprehensive and nec-
essary information, future breakthroughs may involve 
smaller but more sensitive detection units and the inte-
gration of spatial transcriptomics with high-throughput 
scRNA-seq data.

Overall, spatial-barcoding-based techniques allow 
for the simultaneous acquisition of gene expression and 
spatial location information. However, selecting the 

appropriate resolution requires careful consideration. 
Low resolution may obscure the intrinsic tissue structure 
and require further decomposition analysis to gain com-
prehensive insights, while high resolution may introduce 
those aforementioned challenges. Additionally, capture 
efficiency may be relatively low. Despite these limitations, 
spatial-barcoding-based techniques are widely used to 
study tissue architecture, tumor heterogeneity, the tumor 
microenvironment, etc.

Gaining biological insights from spatial 
transcriptomics
Spatial transcriptomics technologies are potent tools for 
studying the intricate structure, the dynamics of tissue 
and organ systems and inherent mechanisms within their 
original context. These technologies can provide valuable 
biological insights by revealing tissue architecture, devel-
opmental patterns and diseases, among which tumor 
biology may be one of the most extensive applications of 
spatial transcriptomics. Primary application scenarios of 
implementing spatial transcriptomics techniques are pre-
sented (Fig. 2) and several representative studies utilizing 
spatial transcriptomics are enumerated (Table 3).

Illustrating tissue architecture and developmental atlas
Decoding intercellular interaction and identifying cell 
subpopulations are of fundamental significance in delin-
eating tissue architecture and defining structural compo-
nents through the establishment of a transcriptome atlas 
of a specific tissue or organ, thus facilitating the percep-
tion of tissue dynamics. Hildebrandt and colleagues [7] 
managed to delineate the transcriptional landscape of 
sectioned mouse liver by employing spatial transcriptom-
ics, corroborating the concept that liver lobular zona-
tion characterized tissue heterogeneity by profiling of 
pericentral and periportal expression of representative 
marker genes. Ortiz and colleagues [6] accomplished a 
molecular atlas by applying spatial transcriptomics to a 
whole mouse brain to spatially manifest the brain tissue 
organization and composition. They also used a scRNA-
seq dataset containing both neuronal and nonneuronal 
cells to map their spatial positions using a trained neural 
network model. This study demonstrates the potential of 
spatial transcriptomics to analyze complex samples such 
as brains, in addition to other tissues or organs. In addi-
tion, a study on the human dorsolateral prefrontal cortex 
(DLPFC) also resorts to spatial transcriptomics, which 
is notably the first research adopting the 10 × Genom-
ics Visium platform, the commercialized version of 
spatial transcriptomics [9]. This study demonstrates 
the transcriptome-wide gene expression topography 
of human DLPFC across cortical laminae and subse-
quently a series of bioinformatics analyses are conducted 
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Fig. 2 Application scenarios of spatial transcriptomics. “Tissue Architecture” refers to studies that elucidate the spatial distribution of cell 
subpopulations in a specific tissue and decode intercellular interaction. “Tissue Development” represents research into resolving morphogenesis 
patterns and spatiotemporal gene expression of the transcriptome during the development course of a certain tissue or organ. “Disease Research” 
demonstrates disease microenvironment and pathogenesis, and among the disease research, tumor biology is an important part including tumor 
microenvironment and heterogeneity
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to refine previous lamina-enriched genes and identify 
novel lamina-enriched genes. Moreover, the study delves 
into schizophrenia and autism spectrum disorder by 
incorporating previously-procured publicly-available 
neuropsychiatric disorder gene datasets to distinguish 
the particular lamina where genes associated with the 

diseases enrich, underlining the clinical significance of 
the study. Another study utilizing 10 × Genomics Visium 
probes into human nociceptors to present molecular fea-
tures by applying the technology to human dorsal root 
ganglia [8]. Given that nociceptors are principal targets 
for acute and chronic pain treatment, the study might 

Table 3 Representative applications utilizing spatial transcriptomics

ST Spatial Transcriptomics, DRG Dorsal Root Ganglia, DLPFC Dorsolateral Prefrontal Cortex, ALS Amyotrophic Lateral Sclerosis, IAV Influenza A Virus, BPH Benign 
Prostatic Hyperplasia, DSP Digital Spatial Profiling, PDAC Pancreatic Ductal Adenocarcinoma, cSCC Cutaneous Squamous Cell Carcinoma, OSCC Oral Squamous 
Cell Carcinoma, CRC  Colorectal Cancer, Sci Adv Science Advances, Nat Neurosci Nature Neuroscience, Nat Commun Nature Communications, Sci Transl Med Science 
Translational Medicine, Cell Rep Cell Reports, Front Cell Dev Biol Frontiers in Cell and Developmental Biology, J Pathol Journal of Pathology, Cancer Res Cancer Research, 
Nat Biotechnol Nature Biotechnology, J Hepatol Journal of Hepatology, J Immunother Cancer Journal for Immunotherapy of Cancer

Application Tissue sample Sequencing 
platform

Sample number Journal Author Year References

Tissue Architecture Adult mouse brain Illumina NextSeq 1 Sci Adv Ortiz, C. et al. 2020 [6]

Human postmortem 
DLPFC

10 × Genomics 
Visium

3 Nat Neurosci Maynard, K.R. et al. 2021 [9]

Wild type adult, 
female mouse livers

Illumina NextSeq500 8 Nat Commun Hildebrandt, F. et al. 2021 [7]

Human postmortem 
DRG

10 × Genomics 
Visium

8 Sci Transl Med Tavares‑Ferreira, D. 
et al.

2022 [8]

Tissue Development Human embryonic 
heart

Illumina NextSeq 3 Cell Asp, M. et al. 2019 [10]

Adult mouse and 
adult human testis

Illumina NovaSeq S2 Mouse: N/A
Human: 2

Cell Rep Chen, H. et al. 2021 [13]

Human embryonic 
intestine

Illumina NextSeq 5 Cell Fawkner‑Corbett, 
D. et al.

2021 [12]

Human develop‑
mental liver

Illumina Hiseq3000 2 Front Cell Dev Biol Hou, X. et al. 2021 [11]

Disease Research Mouse spinal cord 
and postmortem 
spinal cord from ALS 
patient

N/A Mouse: 67
Human: 7

Science Maniatis, S. et al. 2019 [15]

Mouse  CD45− lung 
cells after IAV infec‑
tion and human 
lungs

Illumina NextSeq Mouse: 4
Human: 3

Nature Boyd, D.F. et al. 2020 [16]

Human BPH speci‑
men

10 × Genomics 
Visium & Nanostring 
GeoMx DSP

N/A J Pathol Joseph, D.B. et al. 2022 [14]

Human heart 10 × Genomics 
Visium

31 Nature Kuppe, C. et al. 2022 [17]

Human lymph node 
metastases of stage 
III cutaneous malig‑
nant melanoma

Illumina NextSeq 4 Cancer Res Thrane, K. et al. 2018 [21]

Primary PDAC tumor Illumina NextSeq 2 Nat Biotechnol Moncada, R. et al. 2020 [18]

Human cSCC Illumina NextSeq 6 Cell Ji, A.L. et al. 2020 [19]

HER2‑positive breast 
tumor

Illumina NextSeq500 8 Nat Commun Andersson, A. et al. 2021 [20]

Fresh hepatocellular 
carcinomas

10 × Genomics 
Visium

8 J Hepatol Liu, Y. et al 2023 [49]

OSCC and CRC 10 × Genomics 
Visium & Nanostring 
GeoMx DSP

OSCC: 1
CRC: 1

Nature Galeano Niño, J.L. 
et al.

2022 [50]

Early‑stage lung 
cancer

Nanostring GeoMx 
DSP

12 J Immunother 
Cancer

Wong‑Rolle, A. et al. 2022 [51]
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also provide insights into advancing medical treatment 
protocols and identifying novel drug targets.

Furthermore, spatial transcriptomics technologies are 
generally utilized in developmental biology to reveal spa-
tiotemporal gene expression patterns and uncover tis-
sue morphogenesis throughout the entire development 
course or multiple pivotal stages. Asp and colleagues 
[10] profiled a cell atlas of human cardiogenesis course 
where three developmental stages of the human embry-
onic heart were comprehensively delineated. They com-
bined spatial transcriptomics with scRNA-seq to perform 
single-cell analysis and identify multiple cell types, and 
exploited in situ sequencing to position cells within their 
original clusters. The integration of spatial transcriptom-
ics, scRNA-seq and in situ sequencing provides compre-
hensive insights into spatiotemporal patterns, marker 
genes, cellular interaction networks and developmental 
trajectories. Chen and colleagues [13] generated a spatial 
atlas for the transcriptome of mammalian spermatogen-
esis by adopting Slide-seq to mouse and human testis 
specimens and further characterized the microenviron-
ment surrounding and mediating spermatogonial course 
by combining in situ sequencing.

Disease research
Beyond the above insights about tissue architecture and 
development, spatial transcriptomics techniques have a 
robust capacity for clarifying disease microenvironments 
and pathogenesis. Boyd and colleagues [16] combined 
scRNA-seq with spatial transcriptomics to interrogate 
tissue inflammatory impairment in acute respiratory dis-
tress syndrome induced by severe respiratory influenza 
A virus infections. Their findings provided compelling 
evidence of the essential role played by lung fibroblasts 
in regulating immune reactions at the site of infec-
tions. This study demonstrates the utility of spatial tran-
scriptomics in studying inflammatory diseases and the 
immune microenvironment and has stimulated research 
into immunopathy of other infectious diseases, includ-
ing COVID-19, which continues to be a global health 
concern. Maniatis and colleagues [15] employed spatial 
transcriptomics on spinal cords from mice and amyo-
trophic lateral sclerosis patients to gain gene expression 
information to elucidate spatiotemporal dynamics medi-
ating the degeneration of motor neurons. This research 
identifies the locations and distributions of specific genes 
associated with the disease and elucidates the underlying 
mechanisms regulating this neurodegenerative disorder.

A substantial part of disease research is the study of 
tumor biology which could be the most extensive appli-
cation of spatial transcriptomics. Significant challenges 
in devising tumor treatment procedures are induced 

by tumor heterogeneity. Moncada and colleagues [18] 
utilized both scRNA-seq and spatial transcriptomics 
to investigate pancreatic ductal adenocarcinomas and 
distinguished cell populations and subsequently gen-
erated an unbiased map of the transcriptomes across 
the tumor, revealing its intrinsic architecture and het-
erogeneity. Another study that combined scRNA-seq 
and spatial transcriptomics to delineate the constitu-
tion and spatial architecture of cells within cutaneous 
squamous cell carcinoma revealed the cancer cell sub-
populations and their communication [19]. The tumor 
microenvironment has become another hotspot of 
tumor-related research due to its complexity and diver-
sity. Deciphering the tumor microenvironment is cru-
cial for perceiving the intricate interactions between 
the tumor and microenvironment and may also aid in 
tumor immunotherapy. One study integrating spatial 
transcriptomics and scRNA-seq revealed the tumor 
microenvironment related to the immunotherapeutic 
efficacy of hepatocellular carcinoma, demonstrating 
a potential treatment target [49]. Another study ana-
lyzed the interactive relationship between the host and 
the microbiota in oral squamous cell carcinoma and 
colorectal cancer at a spatial level utilizing spatial tran-
scriptomics and GeoMx digital spatial profiling [50]. It 
indicated that the tumor-associated microbiota, as an 
essential part of the tumor microenvironment, could 
impact tumor heterogeneity and induce the migration 
of cancer cells. Wong-Rolle and colleagues [51] con-
ducted research related to intratumoral bacteria, where 
they discovered the enrichment of intratumoral bac-
teria in lung cancer and their association with several 
oncogenic pathways. The employment of spatial tran-
scriptomics in tumor biology can reveal tumor hetero-
geneity and microenvironment to a large extent, thus 
providing ample instructions on addressing current 
obstructions confronting the treatment protocols.

Data analysis of spatial transcriptomics
To comprehensively interrogate the tissue sections, bio-
informatic analyses have to be performed to unravel 
the intertwined and multiplexed bioinformation and 
minimize the impact of current technological limita-
tions and subsequently derive biological significance 
more accurately from raw spatial transcriptomics data. 
These bioinformatics analyses range from spatially-
variable genes identification and clustering analysis to 
gene imputation, etc., which can be handily effectuated 
through a substantial number of computational strat-
egies devised in recent years. Herein, circumstantial 
comparisons of algorithms and usages among the exist-
ing R or Python packages are presented (Table 4).



Page 13 of 21Du et al. Journal of Translational Medicine          (2023) 21:330  

Ta
bl

e 
4 

Co
m

pa
ris

on
s 

of
 c

om
pu

ta
tio

na
l s

tr
at

eg
ie

s 
fo

r s
pa

tia
l t

ra
ns

cr
ip

to
m

ic
s 

da
ta

 a
na

ly
si

s

Pa
ck

ag
e 

na
m

e
Ye

ar
Jo

ur
na

l
D

ev
el

op
er

A
lg

or
ith

m
Pr

og
ra

m
m

in
g 

la
ng

ua
ge

U
sa

ge
Li

m
ita

tio
n

Re
fe

re
nc

es

Se
ur

at
20

15
N

at
 B

io
te

ch
no

l
Sa

tij
a,

 R
. e

t a
l.

L1
‑c

on
st

ra
in

ed
 li

ne
ar

 m
od

el
R

C
lu

st
er

s 
id

en
tifi

ca
tio

n,
 d

at
a 

in
te

gr
at

io
n,

 g
en

e 
im

pu
ta

tio
n

Su
ita

bl
e 

fo
r o

nl
y 

ce
rt

ai
n 

pl
at

fo
rm

s 
of

 S
T

[2
2]

Sp
at

ia
lD

E
20

18
N

at
 M

et
ho

ds
Sv

en
ss

on
, V

. e
t a

l.
G

au
ss

ia
n 

pr
oc

es
s 

re
gr

es
si

on
Py

th
on

Sp
at

ia
lly

‑v
ar

ia
bl

e 
ge

ne
s 

id
en

tifi
ca

tio
n

H
ea

vy
 c

om
pu

ta
tio

na
l b

ur
de

n
[5

5]

tr
en

ds
ce

ek
20

18
N

at
 M

et
ho

ds
Ed

sg
är

d,
 D

. e
t a

l.
M

ar
ke

d 
po

in
t p

ro
ce

ss
R

Sp
at

ia
lly

‑v
ar

ia
bl

e 
ge

ne
s 

id
en

tifi
ca

tio
n

H
ea

vy
 c

om
pu

ta
tio

na
l b

ur
de

n
[5

6]

G
C

N
G

20
20

G
en

om
e 

Bi
ol

Yu
an

, Y
. a

nd
 B

ar
‑J

os
ep

h,
 Z

G
ra

ph
 c

on
vo

lu
tio

na
l n

et
w

or
k

Py
th

on
Ce

llu
la

r i
nt

er
ac

tio
n

N
ee

ds
 to

 b
e 

op
tim

iz
ed

 w
he

n 
pe

rf
or

m
ed

 o
n 

in
di

vi
du

al
 

da
ta

se
ts

[6
3]

Sp
aG

E
20

20
N

uc
le

ic
 A

ci
ds

 R
es

A
bd

el
aa

l, T
. e

t a
l.

D
om

ai
n 

ad
ap

ta
tio

n 
m

od
el

Py
th

on
D

at
a 

in
te

gr
at

io
n,

 g
en

e 
im

pu
ta

tio
n

Li
m

ite
d 

ra
ng

e 
of

 g
en

es
 

in
cl

ud
ed

 in
 th

e 
m

od
el

[6
2]

Sp
aO

Ts
c

20
20

N
at

 C
om

m
un

Ca
ng

, Z
. a

nd
 N

ie
, Q

St
ru

ct
ur

ed
 o

pt
im

al
 tr

an
sp

or
t 

m
od

el
Py

th
on

Ce
llu

la
r i

nt
er

ac
tio

n
Ig

no
re

s 
tim

e 
de

la
y 

in
 c

el
lu

la
r 

co
m

m
un

ic
at

io
n

[6
4]

SP
A

RK
20

20
N

at
 M

et
ho

ds
Su

n,
 S

. e
t a

l.
G

en
er

al
iz

ed
 li

ne
ar

 s
pa

tia
l 

m
od

el
 w

ith
 p

en
al

iz
ed

 q
ua

si
‑

lik
el

ih
oo

d

R
Sp

at
ia

lly
‑v

ar
ia

bl
e 

ge
ne

s 
id

en
tifi

ca
tio

n
Pe

rf
or

m
s 

be
tt

er
 fo

r c
er

ta
in

 
da

ta
se

ts
 b

ut
 n

ot
 a

ll
[5

7]

Sp
at

ia
lC

Pi
e

20
20

BM
C

 B
io

in
fo

rm
at

ic
s

Be
rg

en
st

rå
hl

e,
 J.

 e
t a

l.
N

/A
R

C
lu

st
er

s 
id

en
tifi

ca
tio

n
Li

m
ite

d 
us

ag
e

[8
7]

st
Le

ar
n

20
20

bi
oR

xi
v

Ph
am

, D
. e

t a
l.

Tr
an

sf
er

 le
ar

ni
ng

 w
ith

 a
 

co
nv

ol
ut

io
na

l n
eu

ra
l n

et
w

or
k,

 
ps

eu
do

‑s
pa

ce
–t

im
e 

al
go

rit
hm

Py
th

on
C

lu
st

er
s 

id
en

tifi
ca

tio
n,

 c
el

lu
la

r 
in

te
ra

ct
io

n,
 re

gi
on

 a
nn

ot
at

io
n,

 
sp

at
ia

l t
ra

je
ct

or
ie

s

Su
ita

bl
e 

fo
r o

nl
y 

ce
rt

ai
n 

pl
at

fo
rm

s 
of

 S
T

[6
9]

st
er

eo
sc

op
e

20
20

Co
m

m
un

 B
io

l
A

nd
er

ss
on

, A
. e

t a
l.

N
eg

at
iv

e 
bi

no
m

ia
l d

is
tr

ib
ut

io
n 

w
ith

 m
ax

im
um

 a
 p

os
te

rio
ri 

es
tim

at
io

n

Py
th

on
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
N

ee
ds

 m
or

e 
de

ep
ly

 
se

qu
en

ce
d 

da
ta

[8
8]

ST
U

til
ity

20
20

BM
C

 G
en

om
ic

s
Be

rg
en

st
rå

hl
e,

 J.
 e

t a
l.

N
on

‑n
eg

at
iv

e 
m

at
rix

 fa
ct

or
iz

a‑
tio

n
R

C
lu

st
er

s 
id

en
tifi

ca
tio

n,
 

sp
at

ia
lly

‑v
ar

ia
bl

e 
ge

ne
s 

id
en

‑
tifi

ca
tio

n

Su
ita

bl
e 

fo
r o

nl
y 

ce
rt

ai
n 

pl
at

fo
rm

s 
of

 S
T

[5
2]

SP
AT

A
 

20
20

bi
oR

xi
v

Ku
ec

ke
lh

au
s, 

J. 
et

 a
l.

Sh
ar

ed
‑n

ea
re

st
 n

ei
gh

bo
r 

cl
us

te
rin

g,
 p

at
te

rn
 re

co
gn

i‑
tio

n,
 B

ay
es

ia
n 

m
od

el

R
Sp

at
ia

l t
ra

je
ct

or
ie

s, 
sp

at
ia

l 
C

N
V 

id
en

tifi
ca

tio
n

Su
ita

bl
e 

fo
r o

nl
y 

ce
rt

ai
n 

pl
at

fo
rm

s 
of

 S
T

[6
7]

Ba
ye

sS
pa

ce
20

21
N

at
 B

io
te

ch
no

l
Zh

ao
, E

. e
t a

l.
Ba

ye
si

an
 m

od
el

 w
ith

 a
 M

ar
ko

v 
ra

nd
om

 fi
el

d
R

C
lu

st
er

s 
id

en
tifi

ca
tio

n
Su

ita
bl

e 
fo

r o
nl

y 
ce

rt
ai

n 
pl

at
fo

rm
s 

of
 S

T
[5

3]

D
ST

G
20

21
Br

ie
f B

io
in

fo
rm

So
ng

, Q
. a

nd
 S

u,
 J

Se
m

i‑s
up

er
vi

se
d 

gr
ap

h‑
ba

se
d 

co
nv

ol
ut

io
na

l n
et

w
or

k
Py

th
on

D
at

a 
in

te
gr

at
io

n,
 s

pa
tia

l 
de

co
m

po
si

tio
n

Bl
ac

k‑
bo

x 
pr

ob
le

m
 o

f t
he

 
A

rt
ifi

ci
al

 In
te

lli
ge

nc
e 

m
od

el
[8

9]

G
io

tt
o

20
21

G
en

om
e 

Bi
ol

D
rie

s, 
R.

 e
t a

l.
A

 w
id

e 
ra

ng
e 

of
 a

lg
or

ith
m

s 
co

nt
ai

ni
ng

 lo
es

s 
re

gr
es

si
on

, 
H

M
RF

, e
tc

R
C

lu
st

er
s 

id
en

tifi
ca

tio
n,

 c
el

lu
la

r 
in

te
ra

ct
io

n
Su

ita
bl

e 
fo

r o
nl

y 
ce

rt
ai

n 
pl

at
fo

rm
s 

of
 S

T
[9

0]

SO
M

D
E

20
21

Bi
oi

nf
or

m
at

ic
s

H
ao

, M
. e

t a
l.

G
au

ss
ia

n 
pr

oc
es

s
Py

th
on

Sp
at

ia
lly

‑v
ar

ia
bl

e 
ge

ne
s 

id
en

tifi
ca

tio
n

Lo
ss

 o
f s

om
e 

sp
at

ia
l d

et
ai

ls
[9

1]

M
U

LT
IL

AY
ER

20
21

Ce
ll 

Sy
st

M
oe

hl
in

, J
. e

t a
l.

Pa
tt

er
n 

re
co

gn
iti

on
, c

om
m

u‑
ni

ty
 d

et
ec

tio
n,

 a
gg

lo
m

er
at

iv
e 

cl
us

te
rin

g

Py
th

on
C

lu
st

er
s 

id
en

tifi
ca

tio
n,

 re
gi

on
 

an
no

ta
tio

n
M

ay
 p

er
fo

rm
 n

ot
 a

s 
w

el
l o

n 
lo

w
‑r

es
ol

ut
io

n 
da

ta
[6

8]



Page 14 of 21Du et al. Journal of Translational Medicine          (2023) 21:330 

Ta
bl

e 
4 

(c
on

tin
ue

d)

Pa
ck

ag
e 

na
m

e
Ye

ar
Jo

ur
na

l
D

ev
el

op
er

A
lg

or
ith

m
Pr

og
ra

m
m

in
g 

la
ng

ua
ge

U
sa

ge
Li

m
ita

tio
n

Re
fe

re
nc

es

Sp
aG

C
N

20
21

N
at

 M
et

ho
ds

H
u,

 J.
 e

t a
l.

G
ra

ph
 c

on
vo

lu
tio

na
l n

et
w

or
k

Py
th

on
C

lu
st

er
s 

id
en

tifi
ca

tio
n,

 
sp

at
ia

lly
‑v

ar
ia

bl
e 

ge
ne

s 
id

en
ti‑

fic
at

io
n,

 re
gi

on
 a

nn
ot

at
io

n

Po
te

nt
ia

l d
is

ag
re

em
en

t 
be

tw
ee

n 
ac

tu
al

 ti
ss

ue
 

st
ru

ct
ur

e 
an

d 
de

te
ct

ed
 s

pa
tia

l 
do

m
ai

ns

[5
4]

Sp
at

ia
lD

W
LS

20
21

G
en

om
e 

Bi
ol

D
on

g,
 R

. a
nd

 Y
ua

n,
 G

.C
W

ei
gh

te
d 

le
as

t s
qu

ar
es

R
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
Ca

us
es

 b
ia

s 
w

he
n 

re
m

ov
in

g 
so

m
e 

ce
ll 

ty
pe

s
[6

1]

SP
O

Tl
ig

ht
20

21
N

uc
le

ic
 A

ci
ds

 R
es

El
os

ua
‑B

ay
es

, M
. e

t a
l.

Se
ed

ed
 n

on
‑n

eg
at

iv
e 

m
at

rix
 

fa
ct

or
iz

at
io

n 
re

gr
es

si
on

R
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
D

oe
s 

no
t c

on
si

de
r t

he
 in

fo
r‑

m
at

io
n 

of
 c

ap
tu

rin
g 

po
si

tio
n

[5
9]

Ta
ng

ra
m

20
21

N
at

 M
et

ho
ds

Bi
an

ca
la

ni
, T

. e
t a

l.
N

on
co

nv
ex

 o
pt

im
iz

at
io

n 
by

 a
 

de
ep

 le
ar

ni
ng

 fr
am

ew
or

k
Py

th
on

D
at

a 
in

te
gr

at
io

n,
 s

pa
tia

l 
de

co
m

po
si

tio
n,

 g
en

e 
im

pu
ta

‑
tio

n

Pe
rf

or
m

s 
no

t a
s 

w
el

l o
n 

hi
gh

er
‑d

en
si

ty
 ti

ss
ue

s
[2

3]

C
A

RD
20

22
N

at
 B

io
te

ch
no

l
M

a,
 Y

. a
nd

 Z
ho

u,
 X

Co
nd

iti
on

al
 a

ut
or

eg
re

ss
iv

e 
m

od
el

 w
ith

 a
 n

on
‑n

eg
at

iv
e 

m
at

rix
 fa

ct
or

iz
at

io
n 

m
od

el

R
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
D

oe
s 

no
t i

nc
or

po
ra

te
 h

is
to

l‑
og

y 
im

ag
e

[5
8]

ce
ll2

lo
ca

tio
n

20
22

N
at

 B
io

te
ch

no
l

Kl
es

hc
he

vn
ik

ov
, V

. e
t a

l.
Ba

ye
si

an
 m

od
el

Py
th

on
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
N

ee
ds

 re
fin

em
en

t f
or

 h
ig

he
r‑

re
so

lu
tio

n 
ST

 a
ss

ay
s

[9
2]

Ce
llT

re
k

20
22

N
at

 B
io

te
ch

no
l

W
ei

, R
. e

t a
l.

Co
em

be
dd

in
g 

an
d 

m
et

ric
 

le
ar

ni
ng

R
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
Sp

ar
se

 m
ap

s 
of

 c
el

ls
 in

 c
er

ta
in

 
re

gi
on

s 
of

 ti
ss

ue
[7

0]

RC
TD

20
22

N
at

 B
io

te
ch

no
l

Ca
bl

e,
 D

.M
. e

t a
l.

Po
is

so
n 

di
st

rib
ut

io
n 

w
ith

 
m

ax
im

um
‑li

ke
lih

oo
d 

es
tim

a‑
tio

n

R
D

at
a 

in
te

gr
at

io
n,

 s
pa

tia
l 

de
co

m
po

si
tio

n
D

is
ag

re
em

en
t o

f c
el

l t
yp

es
 

be
tw

ee
n 

re
fe

re
nc

e 
an

d 
sp

at
ia

l d
at

a

[6
0]

ST
A

G
AT

E
20

22
N

at
 C

om
m

un
D

on
g,

 K
. a

nd
 Z

ha
ng

, S
G

ra
ph

 a
tt

en
tio

n 
au

to
‑e

nc
od

er
Py

th
on

C
lu

st
er

s 
id

en
tifi

ca
tio

n,
 

sp
at

ia
lly

‑v
ar

ia
bl

e 
ge

ne
s 

id
en

ti‑
fic

at
io

n,
 g

en
e 

im
pu

ta
tio

n

D
oe

s 
no

t i
nt

eg
ra

te
 h

is
to

lo
gy

 
im

ag
es

 w
el

l
[9

3]

Sp
at

ia
lIn

fe
rC

N
V

20
22

N
at

ur
e

Er
ic

ks
on

, A
. e

t a
l.

H
id

de
n 

m
ar

ko
v 

m
od

el
R

Sp
at

ia
l C

N
V 

id
en

tifi
ca

tio
n

D
oe

s 
no

t c
ap

tu
re

 S
N

V 
m

ut
a‑

tio
ns

 o
r o

th
er

 c
op

y‑
nu

m
be

r‑
ne

ut
ra

l e
ve

nt
s

[6
6]

CA
RD

 C
on

di
tio

na
l A

ut
or

eg
re

ss
iv

e-
ba

se
d 

D
ec

on
vo

lu
tio

n,
 D

ST
G

 D
ec

on
vo

lu
tin

g 
Sp

at
ia

l T
ra

ns
cr

ip
to

m
ic

s 
D

at
a 

Th
ro

ug
h 

G
ra

ph
-b

as
ed

 C
on

vo
lu

tio
na

l N
et

w
or

ks
, G

CN
G

 G
ra

ph
 C

on
vo

lu
tio

na
l N

eu
ra

l N
et

w
or

ks
 fo

r G
en

es
, R

CT
D

 
Ro

bu
st

 C
el

l T
yp

e 
D

ec
om

po
si

tio
n,

 S
O

M
 S

el
f-

or
ga

ni
zi

ng
 M

ap
, D

E 
D

iff
er

en
tia

l E
xp

re
ss

io
n,

 S
PA

TA
  S

PA
tia

l T
ra

ns
cr

ip
to

m
ic

 A
na

ly
si

s, 
Sp

aG
CN

 S
pa

tia
l G

ra
ph

 C
on

vo
lu

tio
na

l N
et

w
or

k 
Sp

aG
E 

Sp
at

ia
l G

en
e 

En
ha

nc
em

en
t, 

Sp
aO

Ts
c 

Sp
at

ia
lly

 O
pt

im
al

 T
ra

ns
po

rt
in

g 
th

e 
Si

ng
le

 C
el

ls
, S

PA
RK

 S
pa

tia
l P

at
te

rn
 R

ec
og

ni
tio

n 
vi

a 
Ke

rn
el

s, 
D

W
LS

 D
am

pe
ne

d 
W

ei
gh

te
d 

Le
as

t S
qu

ar
es

, S
TA

G
AT

E 
Sp

at
ia

lly
 R

es
ol

ve
d 

Tr
an

sc
rip

to
m

ic
s 

w
ith

 a
n 

Ad
ap

tiv
e 

G
ra

ph
 A

tt
en

tio
n 

Au
to

-e
nc

od
er

, C
N

V 
Co

py
 N

um
be

r V
ar

ia
tio

n,
 S

N
V 

Si
ng

le
-n

uc
le

ot
id

e 
Va

ria
nt

, S
T 

Sp
at

ia
l T

ra
ns

cr
ip

to
m

ic
s, 

H
M

RF
 H

id
de

n 
M

ar
ko

v 
Ra

nd
om

 F
ie

ld
, N

at
 B

io
te

ch
no

l N
at

ur
e 

Bi
ot

ec
hn

ol
og

y,
 N

at
 M

et
ho

ds
 N

at
ur

e 
M

et
ho

ds
, C

el
l S

ys
t C

el
l 

Sy
st

em
s, 

G
en

om
e 

Bi
ol

 G
en

om
e 

Bi
ol

og
y,

 N
uc

le
ic

 A
ci

ds
 R

es
 N

uc
le

ic
 A

ci
ds

 R
es

ea
rc

h,
 N

at
 C

om
m

un
 N

at
ur

e 
Co

m
m

un
ic

at
io

ns
, C

om
m

un
 B

io
l C

om
m

un
ic

at
io

ns
 B

io
lo

gy
, B

rie
f B

io
in

fo
rm

 B
rie

fin
gs

 in
 B

io
in

fo
rm

at
ic

s



Page 15 of 21Du et al. Journal of Translational Medicine          (2023) 21:330  

Clusters identification
Distinguishing cell types and subpopulations is a fun-
damental task in the bioinformatic analysis of spatial 
transcriptomics data. This can be resolved with the help 
of clustering analysis where spatially-variable genes 
can be discovered and data dimensions can be reduced 
through approaches such as principal component analy-
sis (PCA), t-distributed stochastic neighbour embed-
ding (t-SNE) and uniform manifold approximation and 
projection (UMAP). These methods calculate similarity 
among barcode spots and define clusters within a tissue. 
A robust clustering procedure is provided by a widely-
distributed R package Seurat [22], on which another R 
package capable of clustering analysis STUtility builds 
its framework [52]. Seurat is prevalent in scRNA-seq and 
spatial transcriptomics data analysis and is also compe-
tent in other bioinformatics analyses such as gene impu-
tation. Zhao and colleagues [53] proposed BayesSpace 
based on a Bayesian model with a Markov random field, 
which outperformed previous clustering algorithms and 
improved spatial transcriptomics resolution to subspot 
levels. BayesSpace was validated by analyzing tissue sam-
ples, including brain and melanoma, overcoming chal-
lenges of low resolution and technical noise. SpaGCN is 
a python package based on a graph convolutional net-
work that incorporates gene expression, spatial coordi-
nates, and tissue histology visualization [54]. Clustering 
analysis is accomplished by aggregating gene expression 
from neighboring spots using a graph convolutional layer. 
SpaGCN has been tested on various species and utilized 
to analyze data generated from Spatial Transcriptomics 
and MERFISH. However, this strategy has the limitation 
of potential disagreement between actual tissue struc-
ture and detected spatial regions because the detection 
of spatial regions is primarily driven by gene expression 
information.

Spatially‑variable genes identification
Within a certain tissue, some genes exhibit conspicuous 
spatially-variable expression whereas some other genes 
such as housekeeping genes are expressed equally among 
the cells. The specific pattern in which the expressions 
of genes spatially vary can convey indispensable bio-
informatic insights into identifying cell types and sub-
populations and corresponding spatial information and 
underlying spatial functions. Some program packages 
perform outstandingly in identifying spatially-variable 
genes. Svensson and colleagues [55] described a strategy 
named SpatialDE, based on Gaussian process regres-
sion, which utilized two random effect models including 
a spatial variance model and a noise model to decom-
pose variable expression of each gene into spatial and 
non-spatial components, respectively. Another package 

that identifies genes with statistical significance in spa-
tial expression is termed trendsceek, building on marked 
point processes [56]. The trendsceek strategy can be per-
formed on spatially resolved transcriptomics data sets 
and also scRNA-seq data projected onto a low dimen-
sion. Spatial pattern recognition via kernels (SPARK) 
technology, based on a generalized linear spatial model 
with a penalized quasi-likelihood algorithm, can over-
come the high type I errors and low statistical power of 
previous strategies such as SpatialDE and trendsceek and 
is furthermore capable of analyzing large-scale spatial 
transcriptomics datasets [57]. However, SPARK may per-
form better for certain datasets and genes, causing intrin-
sic bias.

Spatial decomposition and gene imputation
A common issue in spatial transcriptomics technology is 
that a single barcode-capturing spot may be overlaid by 
multiple cells. Thus, the detected expression is an aggre-
gation of a heterogeneous set of cells within the spot, 
which may impact the efficiency and accuracy of iden-
tifying cell subpopulations and delineating tissue atlas. 
For example, 10 × Genomics Visium offers a resolution 
of 55  μm meaning the diameter of each capturing spot 
is 55 μm which is several-fold larger than a typical tissue 
cell. The spatial decomposition process through various 
deconvolution algorithms can address this discrepancy, 
which is to disentangle the mixture of mRNAs and sub-
sequently predict the proportions of each cell type in one 
capturing spot. A spatial decomposition method devised 
by Ma and colleagues [58] is termed conditional autore-
gressive-based deconvolution (CARD) building on a non-
negative matrix factorization model, which outperforms 
SPOTlight [59], RCTD [60], SpatialDWLS [61], etc. in 
deconvolution accuracy, corroborated by correlation 
analysis with scRNA-seq data. One potential improve-
ment to this strategy is to incorporate tissue images, 
allowing for easier comparison between histological fea-
tures and analysis results.

Gene imputation refers to the task of inferring lost gene 
expression information or “dropouts” caused by factors 
such as low protocol sensitivity, mitigating errors during 
gene measurement and facilitating deconvolution. Bian-
calani and colleagues [23] introduced a deep learning 
framework Tangram performing gene imputation. Gene 
imputation generated by Tangram yields an estimation of 
“dropouts” and prediction of spatial expression patterns 
more accurately conforming to MERFISH technology 
which is also competent in combating detection errors 
[35], thus promoting deconvolution of cells hampered 
by “dropouts”. The integrative and widespread R pack-
age Seurat can also impute gene expression utilizing co-
expression patterns [22]. Abdelaal and colleagues [62] 
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proposed Spatial Gene Enhancement (SpaGE) incorpo-
rating scRNA-seq and spatial data to predict gene expres-
sion which spatial transcriptomics techniques fail to 
detect, depending on a domain adaptation model. SpaGE 
is flexible and scalable when applied to large datasets and 
outperforms previous tools.

The aforementioned strategies, including spatial 
decomposition and gene imputation, have demonstrated 
considerable efficacy in enhancing the resolution of spa-
tial transcriptomics data and compensating for lost gene 
expression information. Nevertheless, certain limitations 
persist. These approaches are based on computational 
models for predicting cell locations and gene information 
and therefore, their predictions may be subject to error, 
potentially resulting in imprecise and spurious results. 
Further investigation and refinement are necessary to 
more effectively leverage these technologies and derive 
more reliable biological insights.

Cellular interaction
Cellular interaction operated within the microenviron-
ment where cells are adjacent to each other can convey 
significant perceptions into tissue dynamics and the way 
the communication networks change when experiencing 
conditions such as disease. A Graph Convolutional Neu-
ral networks for Genes (GCNG) method was introduced 
to infer extracellular interactions from gene expression by 
depicting a cellular relationship graph transformed from 
spatial transcriptomics data and subsequently encod-
ing gene expressions, and the graph is then convolved 
with expression information [63]. Cang and colleagues 
[64] launched spatially optimal transporting the single 
cells (SpaOTsc) to obtain intercellular communication, 
based on a structured optimal transport model. How-
ever, SpaOTsc does not account for time delays during 
intercellular communication. Owing to the three-dimen-
sionality of tissue blocks, utilizing exclusively either 
scRNA-seq or spatial transcriptomics cannot output 
sufficient information to decipher cellular communica-
tion networks, therefore the integration of both datasets 
becomes a fundamental consideration when conducting 
bioinformatic analysis.

Spatial copy number variations identification
Copy number variation (CNV) refers to the increase or 
decrease in the copy number due to gene segment rear-
rangements. Typically, CNVs involve segments longer 
than 1000 base pairs and are mainly manifested as submi-
croscopic deletions or duplications. CNVs are a common 
form of genetic variation in the human genome, with 
5% ~ 10% of the genome affected by CNVs, which is much 
higher than other forms of genetic variation. Ascertain-
ing the transition from benign to malignant tissue forms 

the foundation for improving early cancer diagnosis, as 
genomic instability in histologically benign tissue can sig-
nal an early event in cancer evolution. Furthermore, the 
spatial distribution and activity of CNVs can impact phe-
notype, making mapping their spatial distribution valua-
ble for comprehending, diagnosing, and treating diseases. 
Previously, gene expression was utilized to infer CNVs in 
individual cells, successfully identifying regions of chro-
mosomal gain and loss [65]. Erickson and colleagues 
[66] expanded this approach to a spatial modality with 
the development of SpatialInferCNV, an R package that 
identifies CNVs in each spatially barcoded region. Addi-
tionally, another package named SPATA also integrated a 
module for CNV detection [67].

Region annotation and spatial trajectories
Gene expression within a tissue is influenced by the 
spatial position of cells in the tissue microenvironment. 
Spatial transcriptomic data can provide valuable insights 
into tissue regions, as they contain information on spa-
tial position matrices, HE region staining of sections, 
and relative distances between individual cells, which 
can be used to delineate spatial regions. MULTILAYER 
is an algorithm that utilizes agglomerative clustering and 
community detection methods for graphical partitioning, 
enabling digital imaging of spatial transcriptomic analysis 
[68]. This allows for contextual gexel (namely, the locally 
defined transcriptomes) classification strategies, which 
can be used to develop self-supervised molecular diagno-
sis solutions.

Spatial trajectory analysis is an analytical method fre-
quently employed in spatial transcriptomics to uncover 
dynamic cellular evolution and differentiation processes. 
This approach infers evolutionary trajectories and differ-
entiation relationships between cells by analyzing their 
spatial positions and gene expression levels within tis-
sue sections. The stLearn package can visualize spatial 
trajectories in tissue slices and infer biological processes 
from transcriptional state gradients across tissues [69]. 
Similarly, SPATA concentrates on temporal alterations 
in gene expression to deduce transcriptional patterns 
dynamically governed by the spatial organization [67].

Data integration
Both spatial transcriptomics and scRNA-seq are effec-
tive methods for obtaining biological insights into tissues 
and diseases. However, each method has its limitations. 
By integrating spatial transcriptomics and scRNA-seq 
data, these methods can complement each other to pro-
vide comprehensive biological information. For instance, 
RCTD generates spatial decomposition by assigning cell 
types to spatial transcriptomics spots [60], whereas Tan-
gram performs gene imputation by aligning scRNA-seq 
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data with spatial transcriptomics data to learn spatial 
transcriptome-scale paradigm [23]. Additionally, Cell-
Trek is a computational strategy that integrates scRNA-
seq and spatial transcriptomics data sets to perform 
spatial decomposition by reconstructing a cellular map 
on tissue sections [70]. This strategy is distinct from 
other spatial decomposition methods in that CellTrek 
directly maps single cells to corresponding spatial posi-
tions in the spatial context. Other than these R or Python 
packages, many studies have incorporated spatial tran-
scriptomics and scRNA-seq. Liu and colleagues [49] dis-
covered a tumor immune barrier structure and a series 
of cancer-associated fibroblasts related to the efficacy 
of immune treatments through an integrative analysis 
of spatial transcriptomics and scRNA-seq. The scope of 
‘data integration’ encompasses not only the alignment 
of these two methods but also the incorporation of spa-
tial transcriptomics with other omics data. However, 
few individual computational tools are designed spe-
cifically for combining spatial transcriptomics and other 
omics. Therefore, linking multiple packages for analysis 
is necessary. For instance, a remarkable study integrated 
spatial transcriptomics, scRNA-seq, proteomics and 
whole-exome sequencing to resolve pancreatic cancer 
microenvironment, utilizing various packages including 
Seurat, RCTD, CellPhoneDB (for detecting ligand-recep-
tor interactions), Monocle3 (for inferring cell transitions), 
inferCNV (for detecting CNVs in scRNA-seq data), ger-
mlinewrapper and somaticwrapper (for calling germline 
variants and somatic variants, respectively), among oth-
ers [71]. Thus, we can see the significant potential in the 
integrative analysis of spatial transcriptomics, scRNA-
seq and other omics.

A brief pipeline of spatial transcriptomics data analysis
Methods for analyzing spatial transcriptomics data are 
generally similar and can be divided into data preproc-
essing and downstream analysis. Data preprocessing 
typically involves quality control and normalization to 
improve data quality for downstream analysis and obtain 
more reliable biological information. For spatial-bar-
coding-based methods, quality control aims to remove 
low-quality spots and genes from spatial transcriptomics 
data. Quality control parameters can be adjusted based 
on tissue type, research requirements, and other factors. 
These parameters may include removing spots with fewer 
than a certain number of transcripts, removing genes 
expressed in fewer than a certain number of spots, and 
removing spots with a high proportion of mitochon-
drial genes. Normalization accounts for the difference 
in sequencing depth among different spots. Since differ-
ences among spots in spatial transcriptomics data can be 
relatively large, effective normalization is essential.

After preprocessing, downstream analysis can be per-
formed. The data should first undergo dimensionality 
reduction and clustering analysis to distinguish spots 
with different features. Biological information can then 
be interpreted through these clusters in subsequent 
analysis. Algorithms such as PCA, t-SNE, and UMAP 
can be used for this purpose and are available in many 
data analysis packages. Next, gene expression patterns in 
the data can be analyzed, including differential expres-
sion analysis and spatially variable gene analysis, which 
can be performed using packages such as Seurat and 
SpatialDE, respectively. Additionally, cell information 
from tissue slices can be annotated onto spatial tran-
scriptomics data. Since the sequencing unit (e.g., spots 
in 10 × Genomics Visium and beads in Slide-seq) of some 
spatial transcriptomics technologies may contain more 
than one cell, spatial decomposition can infer the propor-
tion of various cells in each sequencing unit based on the 
data to obtain cell locations in the spatial context. This 
step can be achieved using packages with deconvolution 
algorithms such as RCTD and cell2location. Gene impu-
tation can also predict the positions of low-expressed 
or missing genes in space due to possible dropout using 
packages like Tangram. Furthermore, personalized anal-
ysis can be conducted based on research objectives. For 
instance, packages such as Giotto can be used to ana-
lyze the communication between cells or spatial regions, 
including receptor-ligand interactions. SpatialInferCNV 
can perform copy number variation analysis at the spatial 
level, while stLearn and SPATA can be used for spatial 
trajectory analysis and MULTILAYER for spatial region 
identification. These analytical methods and packages 
provide excellent visualization during data analysis, facil-
itating step-by-step comprehension of current analyti-
cal outcomes to guide subsequent analysis. Moreover, it 
is essential to integrate spatial transcriptomics data with 
scRNA-seq data and other omics data to obtain a more 
comprehensive understanding of biological information.

Conclusion and future perspectives
Explosive advances in spatial transcriptomics tech-
nologies have been made in recent years to expand our 
understanding of miscellaneous tissues and organs. 
However, current spatial transcriptomics methods are 
confronted with some challenges of low resolution, sensi-
tivity, throughput, etc., hindering our precise perception 
of normal and abnormal tissues, which calls for further 
innovations in technologies to overcome these deficien-
cies. Given that each technology bears its biological 
strengths, we envision the integration across these tech-
nologies which complement each other in the drawbacks 
before a novel and robust technology is launched. With 
future technology revolutions, intercellular signaling 
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could be resolved at higher and even single-cell reso-
lution. In addition, larger-scale tissue specimens may 
be investigated to allow for depicting organ-level tis-
sue topography, enabling a more holistic and consecu-
tive interpretation of tissue structures, which latently 
poses challenges for accelerating bioinformatic analysis 
with higher efficiency and accuracy and more powerful 
information processing capacity. Beyond the prospec-
tive advancement in refining and optimizing current 
protocols of spatial transcriptomics, we also envisage the 
integration with multi-omics including epigenomics, pro-
teomics, and metabolomics to shed light on the intrinsic 
convoluted mechanisms of cellular interactions and dis-
ease and better probe into tumor progression and growth 
course. In addition to advances in spatial transcriptomics 
technologies, innovations in data analysis strategies are 
also anticipated. As deep learning technology continues 
to progress, its application in spatial transcriptomics data 
analysis is expected to become more widespread. In the 
future, more deep-learning-based methods may be devel-
oped to process and analyze spatial transcriptomics data 
to improve data resolution and interpretation reliability. 
Furthermore, as data scale and complexity increase, visu-
alization and interactive analysis will become important 
tools for spatial transcriptomics data analysis. Future spa-
tial transcriptomics data analysis methods will need to 
integrate visualization and interactive analysis technolo-
gies to better understand and interpret data.

Since some spatial transcriptomics techniques, espe-
cially some widespread spatial-barcoding-based tech-
niques, are not capable of offering single-cell resolution 
at the spatial level and scRNA-seq cannot reflect the spa-
tial distribution of each cell, we envision a more organic 
and efficient alignment of single-cell datasets and cor-
responding spatial information. The alignment can be 
achieved by mapping single cells to spatial data, where 
each cell is matched with a spatial location in an ideal 
condition. Nevertheless, current methods for integra-
tion cannot generate precise matching due to techno-
logical limitations, which calls for further breakthroughs 
in the effectiveness and efficiency of data integration 
algorithms. By integrating both datasets, we can deci-
pher potential intercellular communication pathways, 
including ligand-receptor interactions and juxtacrine and 
paracrine signaling. This may provide insights into pre-
viously unclear physiological and disease mechanisms 
and help discern more refined classifications of certain 
diseases, facilitating precise and individualized medi-
cal treatment. Additionally, publicly-available datasets 
can be interrogated retrospectively with the integration 
of spatial transcriptomics and scRNA-seq data to obtain 
novel biological cues which may be concealed in the raw 
data before.

Moreover, we anticipate the translational medicine 
research into the clinical significance of spatial tran-
scriptomics, particularly with the compatibility of the 
10 × Genomics Visium platform with FFPE tissue blocks 
allowing retrospective analysis into previously opaque 
tissue specimens to glean more sufficient information on 
clinical diagnostics and prognostics as well as therapeutic 
methods and targets. For example, research into human 
DLPFC distinguished the layer-enriched genes that may 
be associated with schizophrenia and autism spectrum 
disorder, implicating the potential of neuropsychiat-
ric disorders progression in those bearing the risk gene 
expression [9]. In tumor biology, spatial transcriptom-
ics incorporated with other omics can identify cancer 
gene signatures and subsequently reveal novel targets for 
cancer treatment and assist us to abate or suppress the 
degree of tumor cell proliferation, infiltration, and inva-
sion. Nevertheless, it is noteworthy that before translat-
ing omics data into clinical relevance, the robustness of 
the technologies and the quality of specimens and speci-
mens processing must be considered.
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