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Abstract 

Aims Long-COVID occurs after SARS-CoV-2 infection and results in diverse, prolonged symptoms. The present study 
aimed to unveil potential mechanisms, and to inform prognosis and treatment.

Methods Plasma proteome from Long-COVID outpatients was analyzed in comparison to matched acutely ill COVID-
19 (mild and severe) inpatients and healthy control subjects. The expression of 3072 protein biomarkers was deter-
mined with proximity extension assays and then deconvoluted with multiple bioinformatics tools into both cell types 
and signaling mechanisms, as well as organ specificity.

Results Compared to age- and sex-matched acutely ill COVID-19 inpatients and healthy control subjects, Long-
COVID outpatients showed natural killer cell redistribution with a dominant resting phenotype, as opposed to active, 
and neutrophils that formed extracellular traps. This potential resetting of cell phenotypes was reflected in prospec-
tive vascular events mediated by both angiopoietin-1 (ANGPT1) and vascular-endothelial growth factor-A (VEGFA). 
Several markers (ANGPT1, VEGFA, CCR7, CD56, citrullinated histone 3, elastase) were validated by serological methods 
in additional patient cohorts. Signaling of transforming growth factor-β1 with probable connections to elevated EP/
p300 suggested vascular inflammation and tumor necrosis factor-α driven pathways. In addition, a vascular prolifera-
tive state associated with hypoxia inducible factor 1 pathway suggested progression from acute COVID-19 to Long-
COVID. The vasculo-proliferative process predicted in Long-COVID might contribute to changes in the organ-specific 
proteome reflective of neurologic and cardiometabolic dysfunction.

Conclusions Taken together, our findings point to a vasculo-proliferative process in Long-COVID that is likely initi-
ated either prior hypoxia (localized or systemic) and/or stimulatory factors (i.e., cytokines, chemokines, growth factors, 
angiotensin, etc). Analyses of the plasma proteome, used as a surrogate for cellular signaling, unveiled potential 
organ-specific prognostic biomarkers and therapeutic targets.
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Introduction
The “Long-COVID” syndrome is also referred to as 
long-haul COVID, post-COVID-19 condition, chronic 
COVID and post-acute sequelae of SARS-CoV-2 (PASC) 
[1–3]. Symptoms of Long-COVID can be either simi-
lar or dissimilar from those of acute COVID-19. While 
some patients have symptoms that last for weeks, months 
or years after the initial diagnosis [2, 3], some recover 
from COVID-19 and then endure a return of the symp-
toms, or they acquire new symptoms [4–7]. Additionally, 
individuals who were asymptomatic during their acute 
infection  can still develop symptoms at a later date [1, 
2]. Thus, a spectrum of COVID-19 severities drive Long-
COVID symptoms [1–3].

Long-COVID investigations are hampered by the vari-
ety of symptoms reported, as well as other contribut-
ing factors such as (i) biological sex, (ii) older age, (iii) 
severity of initial COVID-19 illness, (iv) amplitude of the 
immune response to initial infection, (v) vaccination sta-
tus, (vi) the SARS-CoV-2 variant that caused the initial 
infection, (vii) the severity of any preexisting health con-
ditions (diabetes, lung problems, autoimmune diseases, 
or obesity), and/or (viii) health care inequities [1, 2, 4–7]. 
A number of mechanisms have been proposed for Long-
COVID, including (i) reactivated SARS-CoV-2 particles 
[8, 9], (ii) epigenetically programmed, overactive immune 
cells that chronically release inflammatory substances [1], 
(iii) autoimmune disease triggered by SARS-CoV-2 infec-
tion (10–13), or (iv) a combination of the above factors 
originating from the initial COVID-19 disease [5, 10–
19]. We recently reported that vascular transformation 
biomarkers were significantly elevated in plasma from 
Long-COVID outpatients (e.g., ANGPT1, MMP1, VEGF-
A, etc.), suggesting that angiogenesis may be a common 
mechanism in these patients with prolonged and diffuse 
symptoms [4, 5].

In this study, we analyzed the plasma proteome of 
Long-COVID outpatients, as a surrogate of cellular/tis-
sue activities, and compared with age- and sex-matched 
acutely ill COVID-19 inpatients and healthy control sub-
jects. The plasma proteome was deconvoluted into cell-
type profiles and signaling pathways, as well as specific 
organ systems based on previously curated biomarkers 
[20–30]. Multiple biomarkers were elevated in Long-
COVID outpatients and these could point to an immune 
triggered vascular proliferation secondary to COVID-19 
associated hypoxia (local or systemic) or other stimula-
tory factors, thereby altering brain and heart function 
[31–34].

Materials and methods
Clinical assessment strategies
This study was approved by Western University, Human 
Research Ethics Board (Long-COVID REB ID# 120084; 
COVID-19 REB ID# 1670; Healthy Control Subjects REB 
ID# 6963). All patients were screened and enrolled from 
our tertiary care hospitals (London Health Sciences Cen-
tre, London, Ontario, Canada). Both Long-COVID out-
patients and acutely ill COVID-19 inpatients had their 
COVID-19 status confirmed by standard hospital testing 
for SARS-CoV-2 viral genes using polymerase chain reac-
tion (PCR). Long-COVID outpatients were referred to a 
specialty clinic based on prolonged, diffuse symptoms. 
Venous blood work was drawn once as part of a larger 
clinical screen, and subsequent analysis was performed 
on excess plasma collected for routine blood work by 
Pathology and Laboratory Medicine (PaLM). COVID-
19 inpatients were enrolled on hospital admission, either 
to the medical ward or to the intensive care unit (ICU). 
Blood from COVID-19 inpatients was obtained from 
indwelling catheters or a venipuncture as required. The 
healthy control subjects were individuals without dis-
ease, acute illness or prescription medications and were 
previously banked in the Translational Research Cen-
tre, London, ON (Directed by Dr. D.D. Fraser; https:// 
trans latio nalre searc hcent re. com/). These latter samples 
were obtained prior to the emergence of SARS-CoV-2 
in our region and therefore, were considered not to have 
been exposed to the virus. Final participant groups were 
matched by age and gender (Long-COVID outpatients 
with acutely ill COVID-19 inpatients and healthy control 
subjects) [4]. Blood was centrifuged and plasma was iso-
lated and aliquoted in 250 µL, and frozen at − 80 °C until 
analysis.

Targeted proteomics
Proximity Extension Assay (PEA) was used to measure 
plasma protein expression and included immune-recog-
nition with dNTP-labeled antibodies, extension medi-
ated by polymerases, amplification, and detection [30, 
35–40]. All clinical samples were analyzed on the same 
88 well plate. A control was used to estimate precision, 
a negative control was used to set background levels and 
to calculate limit of detection, a plate control to correct 
levels between plates, and a reference plasma control 
was used to estimate CV between runs. The relative pro-
tein quantification is presented as a Normalized Protein 
Expression (NPX) on a log2 scale. Data generation of 
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NPX consists of normalization to the extension control, 
log2-transformation, and level adjustment using the plate 
control. PEA was outsourced to OLINK laboratories 
(Boston, MA) [39, 41, 42].

Bioinformatic analyses
Normalized Protein eXpression (NPX) data was processed 
to determine the following: (i) differentially expressed bio-
markers, (ii) Gene Ontology (GO) and pathways enrich-
ment, and (ii) affiliation with different cell types. Selected 
biomarkers were investigated for candidate drugs. The 
NPX of each peptide was normalized within the speci-
fied protein. All normalization computations used the 
medians to multiply and/or normalize the data. Multiple 
Mann Whitney Test analysis was performed to determine 
the differentially expressed proteins. For the functional 
annotation analysis, data was trained in three steps to be 
certain that multiple platforms identify similar patterns: 
(1) analysis with DAVID Bioinformatics Resources (ver-
sion 6.8; https:// david. ncifc rf. gov/) and PANTHER Clas-
sification System (version 14.0; http:// www. panth erdb. 
org/), while the protein–protein interaction network 
analysis was carried out with STRING (Search Tool for 
the Retrieval of Interacting Genes/Proteins) (version 11.0; 
https:// string- db. org/) [43]; next (2) analysis with Metas-
cape software, a gene annotation and analysis resource 
(https:// metas cape. org/ gp/ index. html#/ main/ step1) and 
GSEA, Gene Set Enrichment Analysis platform (https:// 
www. gsea- msigdb. org/ gsea/ index. jsp); (3) selected bio-
markers were analyzed with Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Mapper software (https:// www. 
genome. jp/ kegg/ mapper/). Results that converged to the 
same findings were validated using (i) iPathwayGuide 
(iPG) (https:// www. advai tabio. com) a software  program 
based on KEGG charts (an updated version of KEGG 
Mapper [44–48] and (ii) Qlucore (https:// qluco re. com/ 
genee xpres sions). Using iPG, the analysis included the 
selection of differentially expressed proteins (DEPs) based 
on a fold change greater than 0.6 (in log2 scale) as well as 
a p-value lower than 0.05 after the correction for multiple 
experiments. The pathways were analyzed with the impact 
analysis approach [44], which takes into consideration the 
position of each gene on each pathway, as well as the type 
and direction of all signals throughout the pathway [44]. 
Adjusted P values less than 0.05 were considered signifi-
cant for both GO and pathway analysis.

Immune-cell deconvolution—was completed by CIBER-
SORT analysis after mapping proteins onto genes (https:// 
ciber sort. stanf ord. edu). CIBERSORT is an analytical 
free  tool provided by Stanford University (“Stanford”) 
[49].

Matrix visualization was performed by Morpheus soft-
ware and interacting tools, from Broad Institute (https:// 

softw are. broad insti tute. org/ morph eus). Hierarchical clus-
tering was performed by row, using Pierson one correla-
tion algorithms both for the regular maps and similarity 
matrixes. K-means analysis was applied for columns to 
analyze the delineation patterns of the study groups.

Principal component analysis was performed with 
ClustVis software: https:// biit. cs. ut. ee/ clust vis/.

Other statistical analyses
Bar graphs summarize data analyzed using Mann–Whit-
ney U tests for unpaired data (two-sided). *P < 0.05; 
***P < 0.0001 (GraphPad Prism, version 9). In the analysis 
process, several public R-studio packages from Biocon-
ductor, were used for the initial global data analysis, as 
follows: data load (DBI, odbc); data manipulation (tidyr); 
data visualization (ggplot2, rgl, leaflet); data modeling 
(tidymodels); data report (shiny); spatial data (maps); web 
work (xml, github); R writing (devtools, curl).

Marker validation
ANGPT1 and VEGFA were measured in human plasma 
using a custom multiplexed immunoassay kit accord-
ing to manufacturer’s instructions (Endothelial Injury 
Marker 12-Plex Human  ProcartaPlex™ Panel, EPX120-
15849–901). Other markers were measured by Enzyme-
linked Immunosorbent Assay (ELISA). For NK cell 
marker validation, we used: (a) Human NCAM1 ELISA 
Kit (CD56) (Abcam: ab119587) and Human CCR7 (Sand-
wich ELISA) ELISA Kit—(LSBio: LS-F4886). For Neu-
trophil Extracellular Trap Formation validation, we used 
EpiQuik Histone H3 Citrullination ELISA Kit (Colori-
metric; EpigenTek: P-3095-96) and Human Neutrophil 
Elastase ELISA Kit (Abcam: ab270204). ELISAs was per-
formed as per the manufacture’s protocols, and plasma 
was diluted 1:20. For validation, we used random patients 
from a different cohort than those tested by the targeted 
proteomics (N = 11). Plasma samples were tested in sets 
of three technical replicates.

Results
Study model and dimensionality reduction of the data sets
The patient demographic and clinical data are shown in 
Additional file  1: Table  S1 (Long-COVID outpatients) 
and Additional file  2: Table  S2 (COVID-19 inpatients). 
Figure 1A (left panel) illustrates the experimental model 
consisting of four cohorts of patients, Long-COVID out-
patients, acutely ill COVID-19 inpatients (both mild and 
severe) and healthy control subjects. Figure  1A (right 
panel) shows the data processing strategy. Dimensional-
ity reduction analysis including all data sets, with com-
plete hierarchical clustering, is shown in Additional file 3: 
Fig S1, where all data points that contributed to the PCA 
are shown grouped by disease severity; unit variance 
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scaling was applied to rows, and SVD with imputation 
is used to calculate principal components. In Additional 
file 3: Fig S1, X and Y axes show principal component 1 
and principal component 2 that explain 27.5% and 15.1% 
of the total variance, respectively (N = 88 data points). 
To heighten the differences between groups, in Fig.  1B 

we present the principal components analysis (PCA) 
and hierarchical clustering of averaged data points. The 
X and Y axes show principal component 1 and prin-
cipal component 2, which explain 67.6% and 21.6% of 
the total variance, respectively. Data was processed by 
ClustVis software for both Additional file  3: Fig S1 and 

Fig. 1 Study model and dimensionality reduction of data sets. A Model in the left panel illustrates four study cohorts, including Long-COVID, severe 
COVID-19, mild COVID-19, and healthy control subjects. The plasma proteome obtained by Proximity Extension Assay (PEA), with the expression 
of 3072 plasma proteins measured. Right panel informs on the type of data processing strategy targeting cell and organ typing. B Principal 
component analysis and hierarchical clustering. Unit variance scaling was applied to rows; SVD with imputation is used to calculate principal 
components. X and Y axis show principal component 1 and principal component 2 which explain PC1 (67.6%) and PC2 (21.6%) of the total variance, 
respectively (N = 4 data points, the means of the values given by all patients within a group). Data was processed by Clustvis software
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Fig. 1B. Overall, the data suggested that Long-COVID is 
a distinct disease compared to COVID-19 ICU inpatients 
(severe disease), although the cohorts may  share some 
mechanisms. In contrast, the COVID-19 ward inpa-
tients (mild disease) may share mechanisms closer to the 
healthy control subjects.

Natural killer (NK) cells of Long‑COVID outpatients 
changed phenotype from activated to resting
The plasma proteome was deconvoluted to various 
immune cell-types from tissues based on their com-
plex OMICS profile using CIBERSORT. The proportion 
of each cell-type contribution to Long-COVID plasma 
proteome was compared to healthy control subjects 
(Fig.  2A). Plasma protein patterns suggest that Long-
COVID was associated with a shift in NK cells from 
activated to resting phenotype. The NK phenotype 
shift was validated by ELISA; CD56 and CCR7 markers 
were investigated in cohorts containing 11 patients or 
subjects, which were different from those included in 
the targeted proteomic groups. While CD56 is a com-
mon marker for all NK cells, CCR7 marks the active 
phenotype and CCR7 was depressed in the Long-
COVID outpatients compared to those with acute 
disease (Additional file  5: Fig S4A). The NK cell cyto-
toxic pathways (iPathwaysGuide software) are shown 
in Fig.  2B. Elevated biomarkers are illustrated in red 
and depressed biomarkers shown in blue. The original 
NK-cell signaling KEGG map is presented in Additional 
file  4: Fig S2. Down-regulation of SLP76, an immune 
response adaptor, was observed while individual mark-
ers such as PAK1, MEK1/2 and ERK1/2 were upregu-
lated and interconnected in signaling cascades that 
target the secretion of TNFα, IFNγ and GM-CSF. Fur-
thermore, the VAV1 exchange factor for Rho-GTP-ases 
that connects directly to targets like ITGB2 and ITGAM 
was upregulated, suggesting a subsequent increase in 

cellular adhesion and movement. Figure 2C (left panel) 
shows hierarchical clustering heatmaps, including NK 
cell signature markers (NCAM/CD56, killer receptors 
KLRK1 and KLRD1, IFNγ, IL-22, natural cytotoxicity 
receptor NCR1 and KIT stem cell factor). These mark-
ers shared similarity in their behavior based on Pearson 
correlation algorithms (Fig.  2C, right panel), and they 
were all upregulated in Long-COVID  (Fig.  2C, lower 
panel). Figure 2D (top left panel) illustrates the pathway 
analysis scoring with TNFα as the top hit; this graph 
shows the enrichment p-value on the horizontal axis 
(in a negative log scale) and the perturbation p-value on 
the vertical axis [50].

Furthermore, pathway enrichment analysis demon-
strated that TNFα signaling pattern is highly represented 
in plasma proteome of the Long-COVID, as opposed 
to heathy control subjects (next plot, top row, Fig.  2D). 
The remaining plots in Fig.  2D portrayed elevated 
ANGPT1, whereas ANGPT2 did not change suggest-
ing an ANGPT1/ANGPT2 conversion phenomenon, as 
illustrated by the cartoon (Fig. 2D, bottom, right corner). 
The ANGPT1/2-Tie axis is likely a critical regulator of 
endothelial inflammation and vascular leakage [51–53], 
and excess of ANGPT1 may reduce this process. Poten-
tial ‘vascular perturbation’ in Long-COVID pivoting 
around ANGPT/VEGF axis was validated by ANGPT1 
and VEGFA measurement in plasma provided by ELISA, 
in a different group of patients than those approached by 
targeted proteomics (Additional file  4: Fig S3, Immuno 
arrays analysis).

In addition to the NK phenotype shift, the percentual 
contribution of memory B cells, memory CD4 activated 
cells and neutrophils to plasma proteome appeared ele-
vated in Long-COVID, whereas resting dendritic cells, 
CD4 memory resting cells and M1 macrophages seemed 
to be down-regulated (Fig. 2A).

(See figure on next page.)
Fig. 2 Natural killer (NK) cells change phenotypes in Long-COVID from activated to resting. A General immune cell typing using CIBERSORT 
analysis tool. The algorithms were applied to plasma proteome data sets after proteins were converted into genes. Graphs show the proportional 
contribution of each cell type in plasma for Long-COVID outpatients compared to healthy control subjects (HCTR). B Diagram depicts the 
NK cell cytotoxic pathways, a segment of KEGG pathways through iPathways Guide platform. Up-regulated biomarkers are shown in red and 
down-regulated in blue. Red arrows indicate  direct interactions. Analysis was done with KEGG Mapper, also confirmed by iPathwayGuide. C 
Heatmaps represent the profiling of the NK cell phenotype. Left heatmap shows the hierarchical clustering of NK cell hand curated markers and 
in the right panel the similarity test based on Pearson Correlation. For data visualization we used Morpheus software from Broad Institute. Graphs 
emphasize  individual NK cell markers expression in plasma compared among study groups. Statistical significance was processed with GraphPad 
9, P-value was considered significant if < 0.05 in either ANOVA (group), or Mann–Whitney U test. D Left graph represents pathways analysis scoring 
done with iPathwaysGuide software; tumor necrosis factor (TNF) signaling was the highest hit; schematic below represents the main predicted 
molecular interactions of ANGPT1 according to STRING analysis and confirmed by iPathwayGuide. Graphs shows the TNF expression in plasma as 
detected by PEA. The rest of the graphs indicate the plasma expression levels of Angiopoietin 1 (ANGPT1), Matrix metalloproteinase 9 (MMP9) and 
Vasculo- Endothelial Growth Factor A (VEGFA); all these proteins are predicted to be induced and potentiated by TNF. Statistical significance was 
processed with GraphPad 9, P-value was considered significant if < 0.05 with Mann–Whitney U test
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Fig. 2 (See legend on previous page.)
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Immune cell resetting is potentially associated 
with vascular events mediated by VEGFA
In line with the results presented above, we observed that 
ANGPT1 and VEGF signaling also corelated with the 
TNFα pathway. Additional file 6: Fig S5A and Additional 
file 7: Fig S6 show that the VEGFA pathway could regu-
late endothelial cell migration (signaling map is a crop-
out of the KEGG chart presented in Additional file 6: Fig 
S5, as an output of iPathwaysGuide software). Additional 
file  6: Fig S5B illustrates the upregulated markers that 
are members of the VEGFA pathway in Long-COVID, 
and included PXN, SRC, NOS3, and HSPB1 proteins. 
Other key markers such as Flt1 (VEGF receptor 1), AKT 
and MAPK, indicate endothelial cell survival, migration 
and proliferation. Key markers capable of protein–pro-
tein interactions are highlighted in the bottom left dia-
gram that suggested VEGFA induced cell proliferation; 
a process that  could be further mediated by SRC and 
MAP-Kinases, as well as AKT signaling to influence cell 
survival and/or migration.

Plasma proteome analysis suggested “Neutrophil 
Extracellular Trap  formation”
As shown in Additional file 8 Fig. S8, the features of neu-
trophil extracellular traps (NETs) include: (i) a defense 
mechanism against both micro-organisms and sterile 
triggers, (ii) a DNA scaffold with granule-derived pro-
teins, such as proteases (e.g., elastase) or citrullinated 
histone H3, (iii) an important role in inflammation, 
autoimmunity and other pathophysiological conditions 
(either detrimental or beneficial), and/or (iv) it can be 
prompted by many triggers and via multiple distinct path-
ways with often unknown interrelationship [54–57]. The 
NET pathways shown in Fig. 3A represent a summary of 
the KEGG NET map output of iPathwayGuide, presented 
in Additional file 8: Fig S8. In red are the overexpressed 
biomarkers. Individual NET-specific/related biomarkers 
were featured in single expression graphs, where plasma 
phospholipase (PLC1 and PLCγ), CAS1, and PDA4 were 
significantly upregulated in Long-COVID, while NFkB, 
CR1, C3 and SLPG were depressed, compared to severe 
COVID-19. While these results appear conflictual, our 
group and others previously reported a repurposed neu-
trophil phenotype in severe COVID-19 that may be fur-
ther differentiated in Long-COVID [54, 55].

Heatmaps representing the profiling of the neutrophil 
phenotype (based on a manually curated set of mark-
ers taken from specific literature reports) are presented 
in Fig.  3B [54–57]. The heatmaps show the hierarchical 
clustering of these markers in healthy control subjects 
and in COVID-19 patients along with their predicted 
inter-dependence (Pearson correlation algorithm; Fig. 3B, 
right panel). Figure 3C highlights increased expression of 

neutrophil based on  CD177, HLA-DR, ITGAM, ITGB2 
and TLR2 expression  in Long-COVID, as compared to 
the other patient cohorts. Interestingly, the presence of 
CD14, which is an innate immunity marker produced by 
macrophages and neutrophils was similar in both healthy 
control subjects and Long-COVID patients, but signifi-
cantly depleted in mild and severe COVID-19 patients. 
To validate NET formation in Long-COVID, we meas-
ured citrullinated histone H3 and elastase concentrations 
in plasma using   ELISA (results are presented in Addi-
tional file 5: Fig S4B). These markers are usually found in 
the neutrophil trap granules, with elevated citrullinated 
histone 3 being a specific marker for Long-COVID. A 
neutrophil cell pattern, along with several other cellular 
patterns (NK cell, microglia and astrocytes), are shown 
as heatmaps in Additional file  5: Fig S4C. These maps 
indicate the fluidity of certain cellular proteins present in 
plasma and they may indirectly indicate cellular status.

EP/p300 could potentially favor vascular inflammation via 
TNF signaling
Although the source of the plasma proteins, the fashion of 
their entry into the circulation, their life cycle, as well as 
their physiologic functions still remain largely matters of 
speculation, certain patterns with high statistical impact 
deserve close attention. Figure 4A illustrates TGFβ1 sign-
aling pathway with both up-regulated (in red) and down-
regulated (in blue) markers, per KEGG iPathwaysGuide 
output (Additional file 7: Fig S7). Figure 4B graphs repre-
sent the expression of individual markers associated with 
this TGFβ1 signaling pathway. Key marker interactions 
are presented in the diagram (upper right). The fluctua-
tion of TGFβ1 and TGFBR2 allowed us us to speculate 
that such configuration may favor TNFα pro-inflamma-
tory signaling to induce an acute form of glucocorticoid 
resistance (GCR) [56, 58, 59]. TNFα would have a sig-
nificant and broad impact on the transcriptional perfor-
mance of glucocorticoid receptor (GR), but no impact 
on nuclear translocation, dimerization, or DNA binding 
capacity of GR [59]. The GR cofactor that interacts signifi-
cantly less with the receptor under GCR conditions is EP/
p300, a plasma biomarker with high fluctuation in Long 
COVID that regulates the vascular bed via HIF, under 
hypoxic conditions. EP/p300 may strongly influence 
NFκB activation and thus, it could mediate inflamma-
tion [56]. Furthermore, it is known that EP/p300 knock-
down reduces the transcriptional output of GCR, whereas 
its overexpression followed by NFκB inhibition reverts 
TNFα-induced GCR, trailing an authentic rearrangement 
model [59]. The extensive actions of EP/p300 include 
interactions with SMAD1 to bridge coactivators such as 
NFκB transcribing IL-6, or it may interact with HIF1α/
VEGFA axis [6, 60] (Additional file 9: Fig S9).
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Fig. 3 Neutrophil extracellular trap formation has a critical role in Long-COVID. A Diagram shows the NK cell cytotoxic pathways mapped on KEGG 
charts via iPathwayGuide platform. Up-regulated biomarkers are shown in red (KEGG Mapper, also confirmed by iPathwayGuide software). Graphs 
display the levels of individual NK-cell marker expression in plasma among the study cohorts. Statistical significance was determined with GraphPad 
9, P-value was considered significant if < 0.05 with an ANOVA. B Heatmaps represent the profiling of the neutrophil cell phenotype. Markers have 
been manually curated. In the left panel, heatmap shows the hierarchical clustering of all markers and in the right panel the similarity matrix 
based on Pearson correlation. For data visualization we used Morpheus software from Broad Institute. C Graphs show individual neutrophil cell 
markers expression in plasma; comparison among all study cohorts. Statistical significance was processed with GraphPad 9, P-value was considered 
significant if < 0.05 with ANOVA
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Fig. 4 Increased expression of EP/p300 may repurpose TNF actions in Long-COVID. A Diagram shows TGFβ signaling pathways. Up-regulated 
biomarkers are shown in red and down-regulated in blue (KEGG Mapper, confirmed by iPathwayGuide software). B Graphs represent the expression 
levels of markers associated with the TGFβ1 pathway. Statistical significance was established using GraphPad-9, and P-value was considered 
significant if < 0.05 with Mann–Whitney U test. Key protein interactions are presented in the diagram from the middle panel (right side), an output 
of STRING confirmed with iPathwayGuide software. Fluctuation of the TGFβ and TNFα may impact EP/p300 epigenetic activity
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HIF signaling pattern reflected in the plasma proteome 
could be related to vascular proliferation
The Long-COVID proteome was intersected with the 
mild and severe COVID-19 data sets, as well as the 
healthy control group, in a meta-analysis performed 
by iPathwaysGuide software (Fig 5). In Fig. 5A (left dia-
gram), the resulting Venn diagram shows that the Long-
COVID cohort shared 80 signaling pathways among 
groups and 60 with severe COVID-19. Long-COVID 
still retains 32 unique (independent) pathways. Among 
all the pathways, HIF signaling was a major mechanism 
that was proportionally enriched with disease sever-
ity, to a maximum in Long-COVID, as seen in  Fig 5A 
and Additional file  9: Figure S9  (where red arrows rep-
resent coherent cascades). Looking at the specific signal-
ing map, certain molecular scenarios can be developed, 
where prospective HIF fluctuation in mild acute COVID-
19 could be initiated by IL-6, and it may involve STAT3. 
Targets like ANGPT and FLT1, could also be affected by 
possible modifications in angiogenesis, iron metabolism 
(TFRC effector), vascular tone (HMOX1 effector), and 
cell survival (through BCL2 survival factor). In the severe 
COVID-19 cohort, HIF signaling could likely be triggered 
by IL-6, IFNγ and growth factors (VEGF and/or EGF) 
as ligands of receptor tyrosine kinases. Possible down 
stream modifications would be expected to include eryth-
ropoietin (EPO), angiogenesis (FLT1, EGF, ANGPT1), 
vascular tone (eNOS, HMOX1), aerobic metabolism 
(GAPDH, ENO1) and survival (BCL2). HIF activation, 
and its consequences, in Long-COVID seemed to be sig-
nificantly affected by the simultaneous decrease in EP/
p300, which suggested extracellular matrix consequences 
via TIMP1, CD18-dependent inflammation (Integrin β2, 
ITGB2), and Tie2 regulated angiogenesis. HIF is a leading 
regulator of hypoxic/ischemic vascular responses, driv-
ing transcriptional activation of genes involved in vascu-
lar reactivity, angiogenesis, and the deployment of bone 
marrow-derived angiogenic cells.  In parallel, EP/p300 
may function as a histone acetyltransferase with epige-
netic functions reflected in endothelial cell proliferation 
and differentiation [6, 56, 58–61], perhaps contribut-
ing to epigenetic modifications induced by SARS-CoV-2 
infection. EP/p300 may also affect the stimulation of 
hypoxia-inducible genes such as VEGF. While there are 

no therapeutic agents that specifically target EP/p300, it 
was predicted by the iPathwayGuide software that the 
HIF pathway can be regulated by multiple re-purposed 
drugs as presented in Fig 5B.

Plasma proteome of Long‑COVID reflects cell proliferation 
patterns
To establish the nature of the vascular disease and its 
proliferative aspects, Long-COVID data was investi-
gated using the KEGG cancer pathways (Additional 
file  10: Fig S10), with the most representative signaling 
cascade being HIF as highlighted in Fig. 6A (left panel). 
In this network, the up-regulated biomarkers are shown 
in red and the down-regulated shown in blue. Plots in 
Fig. 6A (right panel) illustrate markers elevated in Long-
COVID. These proteins are usually responsible for the 
sustainability of the vascular bed. Figure  6B heatmaps 
reflect the levels of growth-factors that support cell pro-
liferation through membrane receptor tyrosine kinases 
likely  located within the vascular bed. These markers 
have been curated by the OLINK  company. The dia-
gram in the right panel  of Figure  6B illustrates correla-
tions between these factors in a similarity matrix based 
on Pearson correlation principles. Figure 6C graphs show 
the levels of the insulin-like growth factor (IGF) binding 
proteins that regulate the bioavailability of IGF, a factor 
known to regulate both angiogenesis and sustainability of 
the vascular bed. Except IGFBP4, the other IGFBPs are 
common to severe COVID-19. IGFBP-6 and IGFBPL1 
seem to be Long-COVID specific. The status of the IGFs 
and their binding proteins could reflect the tissue repair 
capacity. A possible scenario is that the IGF system may 
combat the inflammatory events stimulating tissue and 
organ repair.

Long‑COVID associated brain dysfunction reflected 
in the plasma proteome
The neurologic manifestations of the COVID-19 are well 
characterized and a comprehensive evaluation of the 
post-acute neurologic sequelae at 1  year was recently 
undertaken [62–65]. COVID-19 increased the risk of 
numerous neurologic sequelae such as ischemic and 
hemorrhagic stroke, cognition and memory disorders, 
peripheral nervous system disorders, episodic disorders 

Fig. 5 COVID-19 associated hypoxia is potentially mediated by HIF-1 and EP/p300, possibly disrupting the vascular bed. Long-COVID data has 
been intersected with Mild and Severe COVID-19 data sets, each normalized to the healthy control group (meta-analysis was performed with KEGG 
Mapper and confirmed by iPathwaysGuide software). Venn diagram at the left shows the intersection of the total number of signaling pathways 
among the clinical groups (iPathwayGuide). A One of the pathways predicted to support vasculo-proliferative disease was HIF-1-signaling pathway. 
Diagrams represent sequences of the HIF-1 pathways mapped onto KEGG charts and analyzed by iPathwayGuide software. The configuration of this 
pathway evolved from Mild COVID-19 to Severe COVID-19, having the most prominent representation in Long-COVID. Note: vasculo-proliferative 
disease is regularly mediated by HIF, which increases both proliferation and angiogenesis. B Table shows the drugs associated with the HIF pathway 
which can be repurposed for Long-COVID therapeutics (drug Bank output)

(See figure on next page.)
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(migraine and seizures), extrapyramidal and movement 
disorders, mental health disorders, musculoskeletal dis-
orders, sensory disorders, Guillain–Barré syndrome, 
encephalitis, and/or encephalopathy. In Fig.  7A, hier-
archical clustering heatmaps reflect the levels of neuro-
logical markers across the patient groups (curated by 
OLINK). Expression levels were hierarchically clustered 
in unsupervised heatmaps based on Pearson correlation 
algorithms. Markers selected through the above meth-
odology were investigated for functional annotation 
using tools from the GSEA platform and MSigDB data 
repositories (Fig.  7B). This latest analysis demonstrated 
that functional clusters were formed around leukocyte 
migration, positive immune signals, glial cell differen-
tiation, neurogenesis and MAPK regulatory modules. 
Taken together, these pathways suggest dysfunction 
of the brain-blood barrier grounded on cell prolifera-
tion. Graphs in Fig. 7C illustrate the expression levels of 
individual markers from the functional groups presented 
in Fig. 7B. One of the highly expressed markers, was the 
amyloid precursor protein (APP) which is known to be a 
pathognomonic marker for both Alzheimer disease and 
brain inflammation [62–66]. Additional markers for brain 
dysfunction include JAM2 (endothelial tight junctions 
protein), SNAPIN (a mediator of neuronal autophagy-
lysosomal function in developing neurons), KCNH2 
(potassium channel), S100A14 (involved in cell motility 
adhesion and growth), KIAA0319 (language impairment 
biomarker), and IROR1 (a receptor tyrosine kinase like 
orphan receptor 1, which regulates neurite growth in the 
central nervous system, mediates WNT-signaling and 
maintains the auditive apparatus).

Long‑COVID associated cardiometabolic dysfunction 
reflected in the plasma proteome
COVID-19 is associated with long-term cardiac dysfunc-
tion [6, 66]. In Fig. 8A, hierarchical clustering heatmaps 
reflect the levels and the dynamics of cardio-metabolic 
markers across all patient cohorts. Markers were curated 
by OLINK and their expression levels were hierarchically 
clustered using Morpheus software tools. Topographi-
cally, three critical clusters were formed (Fig.  8B) by 
standard screening using GSEA/MSigDB tools. The three 
clusters could also be functionally annotated; taken in 

order from 1 to 3, clusters refer to (i) extracellular matrix 
remodeling, (ii) cell adhesion and motility and (iii) angio-
genesis (tube formation). These functional clusters were 
then investigated for protein–protein interactions as pre-
sented in Fig. 8C. In this configuration, the extracellular 
matrix remodeling and cell–cell adhesion functions were 
dominated by integrins (ITGB1, ITGA5, ITGA1, ITGB6, 
ITGB1B1), which can potentially interact with fibronec-
tin (FN1), filamin (FLNA) and calcium binding markers, 
essentially mediating  Ca2+-independent—cell matrix 
interactions. CCL5 was highly elevated and usually medi-
ates the HIF-1α pathway during hypoxia, chronic 
inflammation and angiogenesis [67]. Graphs in Fig.  8D 
represent individual marker expression levels in plasma. 
The integrin changes depicted in these graphs may result 
in a disbalanced extracellular-matrix, possibly leading to 
apoptosis of endothelial cells.

Discussion
SARS-CoV2 infection has proclivity for long term 
disease, with profound impact on brain and heart 
(Additional file 11: Fig S11). To elucidate potential mech-
anisms, the plasma proteome of Long-COVID patients 
was investigated as a surrogate of cell/tissue activities; 
the plasma proteome was deconvoluted into different 
cell types and signaling mechanisms, as compared to age- 
and sex-matched acutely ill COVID-19 inpatients and 
healthy control subjects. Individual biomarker expression 
was also analyzed among the patient cohorts to identify 
potential value in diagnostic and prognostic targets. The 
source of the plasma proteins, the fashion of their entry 
into the circulation, their life cycle, as well as their physi-
ologic functions still remain largely matters of specula-
tion [68, 69]. But, despite these caveats, we analyzed the 
plasma proteome using a novel immunoassay with NGS 
technology, followed by complex bioinformatic analysis. 
The latter was useful for organizing plasma proteins into 
patterns that mirror biological processes, signaling path-
ways, cellular components and cell type contributions to 
plasma content.

Our analyses of Long-COVID suggest that NK cells 
could potentially switch their phenotype from an acti-
vated to resting state and neutrophils appear predisposed 
to extracellular trap formation. These findings were 

(See figure on next page.)
Fig. 6 Long-COVID is associated with abnormal proliferation pathways, largely affecting the vascular bed. A Diagram at the left shows a sequence 
of proliferative signaling pathways mapped on KEGG charts (KEGG Mapper). The top right panel presents graphs depicting the expression of 
individual markers that belong to the proliferative pathways mediated by VEGF. Comparison has been done among all study groups and statistical 
significance was established using GraphPad-9, with P-value considered significant if < 0.05 with ANOVA. B Heatmaps reflect global expression 
levels of the growth-factors that could be responsible for the cell proliferation via receptor tyrosine kinases (RTKs) membrane receptors. Markers 
have been manually curated based on literature reports. In the left panel heatmap shows the hierarchical clustering of all markers and in the right 
panel the similarity matrix based on Pearson Correlation. For data visualization we used Morpheus software from Broad Institute. C Graphs measure 
the levels of the insulin-like growth factor system (IGF), molecules known to regulate angiogenesis but also to ensure the sustainability of the 
vascular network. Statistical significance was established using GraphPad-9, and P-value was considered significant if < 0.05 with ANOVA
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validated with quantitative immunoassays. NK-redistri-
bution was estimated previously by the expression levels 
of CD56 vs CCR7 [70], while neutrophil trap formation 
has been characterized by elevated plasma elastase and 
citrullinated histone H3. The cell-type contributions to 
plasma proteome, and their predicted phenotypes, were 
reflected in vascular-proliferation patterns where events 
could be mediated by TNFα, ANGPT1, VEGFA, TGFβ1, 
and EP/p300. In this analytic scenario, the vasculo-prolif-
erative state can be potentially anchored to HIF-1 path-
ways. Concurrently, the fluctuations of EP/p300 could 
influence HIF-1 function in Long-COVID. EP/p300 is a 
large protein with multiple cellular functions, including 
stem cell effector efficacy; thus, EP/p300 plays a major 
role in the reprogramming events leading to a prolifera-
tive phenotype with the acquisition of drug resistance 
and cell plasticity [71]. EP/p300, as a part of various tran-
scriptional complexes, can alter critical biological func-
tions such as cellular proliferation, cell cycle regulation, 
apoptosis, DNA damage repair, cell fate determination 
and stem cell pluripotency [71, 72].

Our study, using the plasma proteome as a surrogate of 
cell/tissue activities, may provide an insight with regards 
to Long-COVID pathophysiology and potential preven-
tative strategies (Fig. 9). ANGPT1 has been shown to be 
up-regulated in Long-COVID [4, 5] and this protein plays 
an important role in vascular development and angio-
genesis via endothelial tyrosine-protein kinase receptor 
(TEK/Tie receptor) [53]. ANGPT1 may be a critical com-
pensatory protein in Long-COVID, mediating reciprocal 
interactions between endothelium and the surrounding 
extracellular matrix (ECM), interacting with the mesen-
chyme to inhibit endothelial permeability, while sustain-
ing angiogenesis, endothelial cell survival, proliferation, 
motility and vascular quiescence [53]. In quiescent ves-
sels, ANGPT1 usually forms complexes with TEK kinases 
from contiguous cells, leading to preferential activation 
of phosphatidylinositol 3-kinase and the AKT1 signaling 

cascades. Migrating endothelial cells that lack cell–cell 
adhesion capacity, rely on ANGT1 to recruit TEK and 
influence the ECM, resulting in the formation of focal 
adhesion complexes. However, their interactions with 
ECM could be impaired in Long-COVID due to down-
regulated MMP7, thereby reducing migration and tis-
sue repair. Moreover, depressed MMP7 would impede 
the proteolytic release of TNF from macrophages, which 
is typical for hypoxia, and the release of VEGF from its 
receptor (VEGFR1/Flt1) [73–75] Elevated ANGPT1 in 
Long-COVID might be compensatory to the above altera-
tions, thereby contributing to the activation of PTK2/FAK 
and downstream kinases MAPK1/ERK2 and MAPK3/
ERK1; events that ultimately stimulate angiogenesis and 
blood vessel maturation. Hypoxic conditions occurring 
in acute COVID-19 could induce growth factors such 
as VEGF, PDGF, EGF and IGF, ultimately potentiating 
cell proliferation in the vascular bed, and may hold true 
for those patients with “happy hypoxia”  (or local tissue 
hypoxia) [76, 77]. Alternatively, ANGPT1 may be a critical 
link between the VEGFA, HIF and TNFα signaling path-
ways that were impacted in Long-COVID. VEGFA, for 
instance, could play a crucial role in mediating recipro-
cal interactions between the endothelium and surround-
ing matrix and mesenchyme, due to the ECM remodeling 
detected in Long-COVID [4, 6, 53, 56, 58–61].

Our data also suggest that Long-COVID has the poten-
tial to severely impact the functionality of multiple organs 
via these aforementioned vasculo-proliferative actions. 
Differential protein expression and network analysis 
showed disruption of tissue recovery mechanisms that 
could be directly related to concerted HIF, TNFα and 
VEGFA signaling actions linked by ANGPT1. Besides 
providing system-level insights into the mechanism of 
Long-COVID pathology, our study identified potential 
biomarkers and therapeutic strategies that might be tai-
lored to specific immune and organ mechanisms to com-
bat the initial effects of  hypoxia.

Fig. 7 Long-COVID could impact brain functionality through vasculo-proliferative events possibly hosted by the blood–brain barrier. A Heatmaps 
reflect the levels of the most significant neurological markers per OLINK panels I, II and III, which were largely changed in Long-COVID patient 
plasma. Values were hierarchically clustered based on Pearson correlation algorithms. For data visualization we used Morpheus software, a tool 
designed by the Broad Institute. B Table shows functional annotation terms obtained with tools from the Gene Set Enrichment Analysis (GSEA) 
platform. These clusters refer to leucocyte migration, positive immune signals, glial cell differentiation, neurogenesis and MAPK regulatory pathways. 
At the right, diagram shows a segment of brain degeneration pathways as described by KEGG charts and processed for protein–protein interaction 
capacities with STRING software (confirmed by iPathwayGuide). TNF and APP proteins are highlighted as major players. The latter finding suggests 
that Lecanemab, a humanized IgG1 monoclonal antibody that targets amyloid beta, could be considered as a disease modifying immunotherapy. 
According to KEGG encyclopedia (target-based classification of drugs chapter), Bepranemab is a humanized, monoclonal antibody that binds to 
the central region of the Tau protein whose primary role is maintenance of the microtubules in neuronal axons. Bepranemab affects three target 
pathways in the brain: i) Neurodegeneration, ii) Alzheimer Disease, and MAPK pathways related to cell survival. Taken together, this data is indirectly 
pointing to a possible blood brain barrier dysfunctionality based on cell proliferation. C The expression levels of markers from the above functional 
groups have been plotted on graphs, where comparison has been done among all study groups. P-value was considered significant if < 0.05 with 
ANOVA. One highly expressed biomarker marker was the Amyloid Precursor Protein (APP/Presenilin) that is mainly known as a pathognomonic 
marker for Alzheimer disease and/or brain inflammation

(See figure on next page.)
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Consistent with our findings, alternatively polarized 
macrophages were a major contributor to Long-COVID 
induced molecular alterations [78]. In addition, an anti-
inflammatory profile was observed in Long-COVID 
patients based on insignificant levels of acute phase 
(IGFγ, IL-1) and macrophage-derived proteins (IL-18, 
MCP1, sTNFRII) [78].

High expression levels of the APP antigen were meas-
ured in plasma from Long-COVID outpatients. The APP 
gene encodes a cell surface receptor and transmembrane 
precursor protein that is cleaved by secretases to form a 
number of peptides, some of which are secreted and can 
bind to the acetyltransferase complex to promote tran-
scriptional activation, while others form the protein basis 
of the amyloid plaques found in the brains of patients 
with Alzheimer disease [62–65]. Mutations in this gene 
have been implicated in autosomal dominant Alzheimer 
disease and cerebro-arterial amyloidosis (cerebral amy-
loid angiopathy). Amyloids were shown to be highly toxic 
to neuronal cells [62–65]. In this context, and due to the 
high amounts detected in plasma, our findings suggest 
that cytotoxic aggregates may be associated with long 
term neurological symptoms in Long-COVID.

Cardiometabolic changes were suggested by in Long-
COVID plasma profiles, based on integrin signaling. 
ITGBP1 and INGA5 seem to engage FN1, to regulate 
focal adhesion (FAK)-related apoptosis pathways. Ele-
vated CCL5 could maintain an inflammatory state dur-
ing Long-COVID and together with resting NK cells that 
express CCR5 [77], promote angiogenesis. The latter via 
PI3K/AKT, NF-κB, HIF, RAS-ERK-MEK, JAK-STAT and 
TGFβ-SMAD pathways [78, 79]. However, these mecha-
nisms would be likely independent of the myeloid lines 
and their inflammatory actions since the myeloid marker 
MNDA was up-regulated in Long-COVID. Furthermore, 
the increased levels of HEBP1 suggests a vascular prolif-
erative disease, as this protein includes a natural chem-
oattractant peptide acting as a natural ligand for formyl 
peptide receptor-like receptor 2 (FPRL2). The FPRL2 
receptor promotes calcium mobilization and chemotaxis 
in monocytes and dendritic cells, potentially instigating 
myocarditis [76, 77, 79]. FPRL2 peptides are powerful 

neutrophil chemotactic factors and activators [76, 77, 79], 
and possibly instigate neutrophil trap formation. Dysreg-
ulated inflammation can potentiate maladaptive healing 
and pathological remodeling of cardiac tissue, leading to 
long term cardiac dysfunction, features sometimes pre-
sent in Long-COVID. As preclinical studies support the 
use of FPR2 agonists in heart disease, these therapeutic 
agents may be applicable for the prevention and treatment 
of cardio-metabolic pathology in Long-COVID [79].

Our study has unveiled potential cell-type signatures 
and signaling pathways in Long-COVID; however, 
there are several study limitations worthy of discussion. 
First, we investigated a limited number of patients, 
which based on the timing of their infection and data 
from our regional public health surveillance program, 
would have been infected with the wild-type or alpha 
SARS-CoV-2 variants. It is currently unknown whether 
all variants of concern would result in a similar pattern 
of symptoms and underlying pathophysiology. Second, 
we deconvoluted plasma proteins with sophisticated 
software to determine cell-type signatures, thereby 
providing information on cell type contributions to 
the plasma profiles. Future studies should evaluate cell 
numbers in fresh blood samples with flowcytometry-
based technologies. Third, the plasma proteome was 
investigated as a surrogate for cell/tissue activities, and 
when combined with bioinformatics, identified signal-
ing pathways for further investigation. Analyses of the 
plasma proteome seems reasonable given the broad 
pathology of this systemic illness, and the practical 
limitations of obtaining multiple human tissues. None-
theless, our conclusion must be tempered by the lack of 
understanding of protein release and turnover. Finally, 
key signaling pathways were identified, but may still 
be missing key biomarkers as the proteomics approach 
used herein was targeted, and not all pathway constitu-
ents were available for measurement Fig. 9.

In conclusion, our report provides a pathophysio-
logical framework to better understand the functional 
heterogenicity of Long-COVID and provides clues to 
the neurological and cardio-metabolic basis of this dis-
ease. This study also provides a valuable resource for 

(See figure on next page.)
Fig. 8 Long-COVID is potentially associated with cardiometabolic damage caused by vasculo-proliferative events. A Heatmaps reflect the levels of 
the most significant cardio-metabolic markers (per OLINK panels I and II) that were changed in Long-COVID patients. Markers have been curated 
by OLINK. Values have been hierarchically clustered based on Person correlation algorithms. For data visualization we used Morpheus software, 
a tool designed by the Broad Institute. B Post-hierarchical analysis these markers formed three functional clusters (#1, 2 and 3) determined with 
tools from the GSEA platform. These clusters refer to extracellular matrix remodeling, cell adhesion and motility, and angiogenesis (possible tube 
formation). C Markers forming the three functional clusters were analyzed for protein–protein interaction using STRING software (Search Tool for the 
Retrieval of Interacting Genes/Proteins). This analysis shows that extracellular matrix remodeling is dominated by integrin interactions and calcium 
binding events, as well as dysregulated macrophage activity (also observed by CIBERSORT analysis). D The expression levels of the markers that 
interact directly was plotted on graphs, where comparison has been done among all patient cohorts and statistical significance was determined by 
GraphPad-9 (P-value was considered significant if < 0.05 with ANOVA)
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the exploration of biomarkers in Long-COVID and the 
development of potential therapeutic targets for its 
prevention and/or treatment based on the potential 
pathophysiological mechanisms unveiled.
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Data represents plasma proteome obtained by Proximity Extension Assay, 
the average counts for all patients of each group. Right panel informs on 
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is used to calculate principal components. X and Y axis show principal 
component 1 and principal component 2 that explain 27.5% and 15.1% of 
the total variance, respectively. N = 88 data points. Data was processed by 
Clustvis software.

Additional file 4: Figure S2. Natural killer cell mediated cytotoxicity map. 
Figure S3. Serological validation of Angiopoetin-1 and Vasculo-Endothe-
lial Growth Factor A. Each block in the heatmaps represent the mean 
of three technical replicates. Markers were measured in human plasma 
using a custom multiplexed immunoassay kit according to manufacturer’s 
instructions.

Additional file 5: Figure S4. Cell typing validation. Graphsandrepresent 
NK cell and respectively Neutrophil Trap Formationvalidation by ELISA. 
Plasma was collected from different patient cohorts from those analyzed 
by targeted proteomics. Two markers of each cell type were chosen as 
follows: NK cell phenotype was validated by analysis of CD56/NCAM and 
CCR7 markers emphasizing silent vs activatedNK cells; NET phenotype 
was analyzed by estimation of abundance of Elastase and Citrullinated 
Histone 3 in plasma, two markers that are usually found in the NET 
trap granules. Data was process by GraphPad 9, and significance was 
considered from P<0.05. Samples were processed and analyzed in three 
technical replicates.

Additional file 6: Figure S5. Resetting of cell type-associated protein 
abundance patterns in plasma may reflect vascular events mediated by 
VEGFA.VEGF signaling pathways as described by the KEGG are presented. 
Up-regulated biomarkers are in red and down-regulated biomarkers in 
blue. Analysis was done with KEGG Mapper and confirmed with iPathway-
Guide software.Graphs show individual marker expression in Long-COVID 
plasma, as compared to healthy control subjects. Statistical significance 
was established using GraphPad-9, and P-value was considered significant 
if <0.05 in Mann-Whitney U test. Key markers were VEGFA, VEGFR2, AKT 
and MAPK, indicating endothelial cell activity, survival and migration. Key 
markers protein-protein interactions are presented in the diagram from 
the bottom panel, left.
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Signaling pathway.

Additional file 8: Figure S8. Neutrophil Extracellular Trap Formation.

Additional file 9: Figure S9. HIF1 Signaling pathways resulted from the 
pathways meta-analysis between HCTR, mild COVID-19, severe COVID-19 
and Long-COVID groups.

Additional file 10: Figure S10. Cancer pathway and biomarkers that 
appear in Long-COVID patient plasma.

Additional file 11: Figure S11. Neurological dysfunction pathway and 
biomarkers that appear in Long-COVID patient plasma.

Fig. 9 Schematic summary of the Long-COVID pathology as reflected in plasma proteome
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