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Abstract 

Background Visium Spatial Gene Expression (ST) is a method combining histological spatial information with 
transcriptomics profiles directly from tissue sections. The use of spatial information has made it possible to discover 
new modes of gene expression regulations. However, in the ST experiment, the nucleus size of cells may exceed the 
thickness of a tissue slice. This may, in turn, negatively affect comprehensive capturing the transcriptomics profile in a 
single slice, especially for tissues having large differences in the size of nuclei.

Methods Here, we defined the effect of Consecutive Slices Data Integration (CSDI) on unveiling accurate spot clus-
tering and deconvolution of spatial transcriptomic spots in human postmortem brains. By considering the histological 
information as reference, we assessed the improvement of unsupervised clustering and single nuclei RNA-seq and ST 
data integration before and after CSDI.

Results Apart from the escalated number of defined clusters representing neuronal layers, the pattern of clusters in 
consecutive sections was concordant only after CSDI. Besides, the assigned cell labels to spots matches the histologi-
cal pattern of tissue sections after CSDI.

Conclusion CSDI can be applied to investigate consecutive sections studied with ST in the human cerebral cor-
tex, avoiding misinterpretation of spot clustering and annotation, increasing accuracy of cell recognition as well as 
improvement in uncovering the layers of grey matter in the human brain.
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Background
The spatial transcriptomics concept has been introduced 
as a combination of massively parallel sequencing and 
microscopic imaging [1]. This method is an attractive 
approach in studies of normal development and in clini-
cal translational research. Visium Spatial Gene Expres-
sion (ST) is one of the technologies developed around 
this concept. ST is a next-generation molecular profil-
ing method dedicated to unraveling the transcriptomic 
architecture of the tissue. The application of ST for map-
ping the transcriptome with the morphological context 
has been proven successful in many fields [2].

Although ST is a powerful new technique for captur-
ing patterns of spatial distribution of gene expression, it 
also has a drawback of its design. A Visium Gene Expres-
sion slide consists of two or four tissue-capture areas 
(6.5 mm × 6.5 mm), divided into 4992 spots, each 55 µm 
in diameter. Every spot contains oligonucleotide probes 
with unique sequence barcodes that encode spatial infor-
mation in gene expression data (Asp et al., 2020). Due to 
their size, spots may encompass the expression profiles 
of several cells. Consequently, this diminishes the accu-
racy of distinguishing neighboring cell types. This can be 
addressed by several methods [3, 4], including integra-
tion with other single-cell analyses [5]. The most popu-
lar methods for the integration rely on so called anchors, 
which represent similar gene expression patterns.

The importance of the anchor-based data integration in 
distinct single-cell modalities (i.e., spatial transcriptomics 
and single nucleus RNA sequencing data [snRNA-seq]) 
has been investigated previously [5]. However, the appli-
cation of Consecutive Slices Data Integration (CSDI) in 
ST analysis using the anchor-based approach remains 
unexplored. We investigated the effects of CSDI on spot 
clustering and cell-type annotation using both snRNA-
seq and ST technologies in human cerebral cortex sam-
ples. By applying the CSDI to ST, we aimed to evaluate 
whether a single slice of tissue would be sufficient for ST 
analysis or whether consecutive slices would be required. 
We found that without CSDI, the pattern of obtained 
spot clusters between consecutive slices is inconsistent, 
and the cell-type annotation does not match the micro-
scopic characterisation of the slice. These issues were 
resolved by employing CSDI, and layer-structure of grey 
matter of the human brain was unveiled.

Methods
Data acquisition
We utilized the modified 10 × Genomics Visium Spa-
tial Gene Expression method to analyze the pro-
files of consecutive sections from fresh-frozen brain 
tissues. Accordingly, we used the orbitofrontal (ON) and 

temporal neocortex (TN) samples from two subjects. Tis-
sue specimens were provided by Harvard University and 
Massachusetts Alzheimer’s Disease Research Center and 
all experimental procedures were conducted in accord-
ance with Independent Bioethics Committee for Scien-
tific Research at Medical University of Gdansk (consent 
No. NKBBN/564-108/2022). The brain-tissue slices were 
placed onto a Visium Gene Expression slide (10x Genom-
ics) and fixed according to the 10x Genomics protocol 
(doc. CG000239 Rev. C). Next, the slides were divided 
into two via a piece of silicone gasket. Subsequently, we 
stained the tissue by two methods—hematoxylin and 
eosin, and hematoxylin and Congo red—to detect even-
tual amyloid deposits. We imaged the slides at 20× mag-
nification using brightfield settings (Olympus cellSens 
Dimension software). Afterward, the tissue was per-
meabilized, using conditions according to manufacturer 
protocol. The mRNA was released and bound to spa-
tially barcoded capture probes on the slide. Next, cDNA 
was synthesized from captured mRNA, and sequencing 
libraries were prepared. Samples were loaded and pooled 
according to the protocol (doc. CG000239 Rev. C) and 
sequenced in the standard Illumina pair-end constructs, 
using Illumina’s NextSeq 550 System.

Visium data processing
Four pairs (consecutive slices) of ST raw data (BCL files) 
from two postmortem brain samples were converted to 
fastq files using 10x Genomics software Space Ranger 
version 1.2.1 and its spaceranger mkfastq function. Sub-
sequently, reads were aligned to the human genome-
reference sequence (GRCH38) using the STAR method, 
and spatial feature counts were generated using the spac-
eranger count function. Because an inverted microscope 
was used for imaging, all images were flipped horizon-
tally prior to being applied to the Space Ranger.

Data preprocessing and normalization
All outputs from spaceranger count were read as Seurat 
objects using Load10X_Spatial function of Seurat ver-
sion 4.0.3. Prior to data normalization, the percentages 
of mitochondrial genes were calculated by the Percent-
ageFeatureSet function. Then, the spots with a number 
of spatial features of more than 7000 and less than 200 
were removed; spots that encompassed more than 15% of 
mitochondrial genes also were omitted from the down-
stream analyses. Standard normalization was performed 
using the NormalizeData function and the LogNormalize 
method using default parameters. Variable features for 
each object were determined using the FindVariableFea-
tures function and VST method. Next, the data were 
scaled and regressed out for the percentage of mitochon-
drial genes using the ScaleData function.
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Dimensionality reduction and clustering
Dimensionality reduction was completed using the 
RunPCA function. Prior to clustering, nearest neigh-
bors were determined by the FindNeighbors function 
with default parameters. After this, the FindClusters 
function determined the clusters by a shared nearest-
neighbor (SNN) modularity optimization-based clus-
tering algorithm (The resolution was arbitrarily set to 
0.3).

Consecutive slices data integration
Dimensionality reduction for consecutive slices was 
completed jointly through diagonalized canonical cor-
relation analysis (CCA). Using the FindIntegrationAn-
chors function, mutual nearest neighbors (MNNs) were 
found in this shared low-dimensional space and were 
termed anchors (for more details, see Stuart et  al. [5]). 
The IntegrateData function was considered for CSDI 
using precomputed anchor sets. The integrated con-
secutive slices were saved as transcriptomics-corrected 
objects. The same workflow for dimensionality reduction 
and clustering was applied to integrated objects. Finally, 
the eight Seurat objects (four pairs of consecutive slices) 
before and after CSDI (16 in total) were saved as RDS 
files to be compared from different perspectives.

Label transferring from snRNA‑seq to ST
The previously annotated snRNA-seq dataset was 
obtained from scREAD, a publicly available snRNA-seq 
database [6] (https:// bmbls. bmi. osumc. edu/ scread/). The 
causes of death for the two donors were Alzheimer’s dis-
ease (Subject A) and stroke (Subject B). Hence, snRNA-
seq profiles with AD01104 and AD01102 scREAD data 
IDs for Alzheimer’s and non-Alzheimer’s disease were 
retrieved [7]. The raw-sequencing data and the digital-
expression matrices obtained using the 10x Genomics 
software Cell Ranger are available in the NCBI’s Gene 
Expression Omnibus (GSE129308) and are accessible 
through the GEO Series accession number GSM3704357-
GSM3704375 (Otero-Garcia et al., 2020).

Data normalization and dimensionality reduction with 
the same parameters as the ST data were conducted for 
the two snRNA-seq datasets. By considering snRNA-seq 
as our reference and ST data as query datasets, anchors 
were found, and precomputed cell labels were trans-
ferred using the FindTransferAnchors (identifying shared 
cell/spot states present across different datasets) and 
TransferData functions, respectively. Label transferring 
and clustering were completed twice for each of the ST 
objects—once before and once after CSDI—to investigate 
the effect of CSDI on label transferring and clustering.

Results
We conducted spatial gene expression analysis in human 
postmortem, fresh frozen tissue sections. Two anatomi-
cal regions, the Orbitofrontal Neocortex (ON) and the 
Temporal Neocortex (TN) from two adult male donors 
were investigated (Fig.  1). From each region of both 

Fig. 1 Schematic view of experimental workflow and in silico 
analytical pipeline. Four pairs (P1–P4) of consecutive slices of human 
postmortem brains were obtained from two distinct anatomical 
locations (ON and TN). Two types of computational analyses were 
performed (spot clustering and snRNA-seq label transferring) and 
further divided into additional subtypes (before and after CSDI 
for each category). The names of slices are as follows: P, pairs of 
consecutive-sections; ON (1–2), Orbitofrontal Neocortex (section 
number in pair of consecutive slices), TN (1–2): Temporal Neocortex 
(section number in pair of consecutive slices); A and B: two studied 
subjects; Cons. S: consecutive sections

https://bmbls.bmi.osumc.edu/scread/
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subjects, one pair of consecutive slices (eight slices in 
total) were prepared. We cut the ON and TN tissue into 
10–12 µm thick sections. Each sample was sequenced to 
a median depth of 187 million reads, corresponding to a 
mean of 3300 unique molecular identifiers (UMIs) and a 
mean of 2058 genes per spot.

Identifying distinct cell types and their annotation using 
single tissue section
Figure 2A shows the distinction between the grey matter 
(GM) and the white matter (WM). The border between 
GM and WM was established histologically based on 
cellular composition and arrangement (Fig.  2A, Z1, Z2, 

Fig. 2 Results from spatial transcriptomics analysis using single tissue sections. A Top, histological image of orbitofrontal neocortex (ON) 
with marked white matter (WM) and grey matter (GM); Z1, zoomed-in image of the border between WM and GM; Z2, Blue arrow points to an 
oligodendrocyte nucleus; Z3, Black and Green arrows represent nuclei of neurons and astrocytes, respectively. In Z2 and Z3, white scale bars 
represent 10 µm. Bottom, unsupervised classification of spots. B The ST spots clustering before CSDI. C Label transferring before CSDI. The name of 
the sample encodes number of the section (P1/P2), number of slice (ON1/ON2), and patient id (A/B)
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and Z3). We used an unsupervised method to investi-
gate whether categorizing the ST spots based on their 
transcriptomics profile could represent structural layers 
of the brain. Subsequently, we compared the obtained 
groups with histological images of tissue slices to assess 
the obtained clusterization and classification (Fig.  2A). 
Thus, we confirmed the general consistency of GM and 
WM patterns revealed by histologic and transcriptomic 
methods.

We performed spot clustering using the steps recom-
mended by Satija et  al. [7] in order to cluster the spots 
with similar expression profiles, and distinguish distinct 
cellular layers. The resulting clusters revealed the separa-
tion of subcortical WM and cortical GM. More detailed 
morphological layers of the brain were also unveiled 
through the more detailed clustering (Fig.  2B). Consid-
ering the expected similarity of architecture between 
two consecutive slices of the cerebral cortex, we should 
observe the very similar pattern of clusters. However, 
this consistency was vague, and the layered structure of 
GM in P1_ON2_A could not be observed (Fig. 2B). We 
observed that although, the use of a single section of 
brain tissue with the ST method can be informative, it 
may also have critical limitations in spot clustering. To 
overcome this, we decided to use external gene expres-
sion data set and anchor-based integration method.

To better understand the identified brain layers, we 
integrated the measured expression profiles with a previ-
ously described snRNA-seq dataset [8]. As single nucleus 
profiles contain greater number of genes than in our ST 
profiles, the integration of these two data sets allowed 
us to perform the spot annotation more precisely. Using 
predefined cell-type annotations in snRNA-seq—includ-
ing oligodendrocytes, astrocytes, and neurons—the ST 
spots were labeled (see “Methods” for details). The pat-
tern of transferred labels is shown in P1_ON1_A and 
P1_ON2_A as an example (Fig. 2C). The locations of oli-
godendrocytes and astrocytes were primarily identified 
in WM and GM, respectively, in line with brain structure 
(Fig.  2A). However, we could not confidently annotate 
neurons in GM, which is incompatible with histology 
(Fig. 2A). In summary, a single slice of brain tissue using 
the ST method is informative but has limitations in dis-
tinguishing cell types using label transferring as well as in 
spot clustering.

The effects of CSDI on identifying distinct cell types 
and their annotations
Stuart et al. [5] developed the CSDI to correct the tran-
scriptomic profiles of consecutive slices using anchors 
representing spots with similar gene expression profile 
from two consecutive slices. This is used to pair spots 
from the two slices. At the same time, the transcriptomic 

differences between pairs of spots in anchors are used to 
correct datasets from both consecutive sections.

We decided to apply the CSDI method due to the heter-
ogeneity of the brain in terms of size of nuclei among dif-
ferent cell types (Fig. 3). On average, the size of a nucleus 
from a neuron in GM (about 20 μm) is much larger than 
the thickness of tissue section (10–12 μm). Consequently, 
a single tissue section will encompass only part of nuclei 
for essentially all neurons present in the studied sample. 
This restriction will also apply to other smaller nuclei, 
although to a lesser extent. Thus, for all cells present in a 
studied brain tissue, it will cause partial loss of transcrip-
tomic signals. Taking “P1_ON1_A” and “P1_ON2_A” as 
consecutive slices of ON as an example, we could iden-
tify all the morphological layers of the brain [9] only after 
CSDI (Fig. 4A and Additional file 1: Fig. S1). In conclu-
sion, CSDI can resolve the issue of inconsistency of the 
pattern of clustering between consecutive slices. Moreo-
ver, by applying the same parameters (see “Methods” for 
details), we can identify more neuronal layers in GM [10] 
(Fig. 4A and Additional file 1: Fig. S1). 

Cell bodies of neurons are mainly found in the GM 
(Fig.  2A). However, during our label transferring, the 
spots marked as neurons received weak probability val-
ues in the GM (Fig.  2C). This is an important concern, 
which led us to hypothesize that using information from 
a single section of tissue may lead to inaccurate interpre-
tation of clusters and cell types. Our approach to trans-
ferring cell labels from snRNA-seq to ST before and after 
CSDI revealed different results, which provides support 
for the above hypothesis. These differences are much 
more pronounced in GM, where the spots recognized 
as neurons, or astrocytes are the dominating cell types 
(Fig. 4B). Accordingly, we compared the annotations with 
consideration for the size of nuclei and the structural 

Fig. 3 The nucleus size heterogeneity among investigated cell types. 
The boxplot shows significant differences in size of nuclei in the 
human cerebral cortex (Kruskal–Wallis test). This is compatible with 
histological differences of nuclei size in Fig. 2A, Z2 and Z3 which the 
scale bars denote 10 µm
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layers of the brain (WM and GM). Prior to CSDI, the 
annotation of neurons and astrocytes received low and 
high probabilities, respectively, in the area of the GM, 
while the nuclei of oligodendrocytes were mostly visible 
in the WM (Fig. 2C and Additional file 2: Fig. S2). Inter-
estingly, after CSDI, the likelihood of the annotation of 
neurons was increased due to the gain of neuronal tran-
scriptomic profiles (Fig.  4B), which is consistent with 
the histological imaging (Fig.  2A). It is noteworthy that 

we did not observe any changes in the probability of 
annotation for oligodendrocytes in the WM before and 
after CSDI, which is also in agreement with histological 
structure of the cerebral cortex. Among the transferred 
labels from snRNA-seq to ST, neurons and astrocytes are 
mainly available in GM. Consequently, no signal fluctua-
tion will occur before and after CSDI in WM. In both sit-
uations, the WM would preferentially be annotated with 
oligodendrocytes (Figs. 2C, 4B, and Additional file 2: Fig. 
S2).

The differences between annotations obtained for the 
spots before and after CSDI can be attributed to the 
fact that the size of neuronal nuclei is much bigger than 
astrocytic nuclei [11] (Fig. 3). Their size is actually larger 
than the thicknesses of the tissue sections used in the ST 
protocol. Accordingly, a single slice will capture incom-
plete transcriptomic neuronal context. CSDI provides a 
robust means of rectification of this misinterpretation. 
Hence, the corrected signals of all types of nuclei can 
be obtained. Consequently, the label transferring from 
snRNA-seq to ST is made consistent with the histological 
findings (Fig.  2A). Ultimately, one can study the spatial 
distribution of different cell types more precisely.

We evaluated the results from two independent spot-
categorization methods used in this study: label transfer-
ring and spot clustering. Hence, we classified the spots 
using the transferred labels (Fig.  4C and Additional 
file  3: Fig. S3) and compared them with the spot clus-
tering results represented in Fig.  4A. We observed that 
the green cluster in Fig.  4C represents the three distin-
guished neuronal layers in Fig. 4A (blue, red, and green 
clusters). We were not capable of labeling the neuronal 
layers in Fig. 4C as the utilized reference snRNAseq data-
set did not distinguish neuronal subtypes. Similarly, the 
blue cluster in Fig.  4C represents oligodendrocytes in 
Fig.  4A (purple cluster). Through determining the loca-
tions of neurons and oligodendrocytes in both methods, 
we demonstrated that the results from both spot-cate-
gorization methods are consistent with the histological 
images (Fig. 2A).

We assessed the improvement of annotation for neu-
rons before and after CSDI. A considerable rise in the 
number of defined neurons was observed after data 
integration (Fig.  5A and Additional file  4: Fig. S4). To 
investigate the accuracy of changes in spot labeling, we 
computed the differentially expressed genes (DEGs) in 
neurons versus oligodendrocytes and astrocytes before 
(if available) and after CSDI. In some of the tissue sec-
tions, no neurons could be identified before CSDI (Fig. 5 
and Additional file 4: Fig. S4). Next, we applied the DEGs 
to Gene Ontology (GO) analysis (Fig. 5B and Additional 
file  4: Fig. S4). According to the enriched terms in GO 
analysis, neurons were identified accurately after data 

Fig. 4 Improvement of the spot clustering and annotation using 
CSDI method. A Clustering after CSDI unveiled the GM layers and 
resolved the inconsistency between the pattern of clusters in 
consecutive slices. B snRNA-seq Label transferring after CSDI. The 
annotation probability is shown as a scheme for three different cell 
types. C The classification of spots through label transferring is shown 
by considering the highest probability of annotation for each spot 
after CSDI
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integration. We showed that by applying CSDI, misla-
beled neuronal spots will be rectified. Thus, more accu-
rate biologically meaningful results can be achieved.

Discussion
We studied the impact of the CSDI method on spa-
tial gene expression analysis and evaluated the effect of 
CSDI on the improvement of clustering and label trans-
ferring [5]. The application of CSDI was motivated by 
the two issues we observed in the results of the basic 
spatial transcriptomic analysis. Firstly, in the GM, we 
observed inconsistencies between the patterns of clus-
ters in consecutive slices (Fig. 4A). Secondly, we failed to 
recreate the expected layered structure of GM (Fig. 4A). 

According to the study conducted by Maynard et  al. 
[10], data correction in consecutive slices was performed 
using the data-refinement step of Space Ranger. Hence, 
the spatial topography of gene expression in the human 
dorsolateral prefrontal cortex was defined. The pattern of 
determining clusters was consistent in all pairs of consec-
utive slices, a phenomenon we observed only after apply-
ing the CSDI. Moreover, using CSDI, we distinguished 
cortical and subcortical WM layers. Thus, we showed 
that the expected consistency of the pattern of clustering 
between consecutive slices can be achieved with CSDI 
similar to Space Ranger. We investigated the results of the 
clustering and label transferring, with and without CSDI 
utilization. Simultaneously, we compared the consistency 

Fig. 5 Improvement of the results from DEGs in spots assigned to neurons, before and after CSDI. A Intersection of the spots assigned to neurons 
before (purple circle) and after (yellow circle) CSDI. B Gene ontology analysis is applied to DEGs in neurons versus oligodendrocytes and astrocytes
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of the results obtained with the topographic organization 
of the cerebral cortex. We observed the improvement of 
clustering and the label transferring after applying CSDI. 
The superior performance of using CSDI is likely related 
to the size of nuclei in different cell types as the deter-
mining parameter. The sizes of the nuclei of certain neu-
rons are much larger than the nuclei of astrocytes and 
oligodendrocytes (e.g., neurons from the pyramidal layer 
(Figs. 2A and 3) of the cerebral cortex) [11]. In the human 
brain, the size of neuronal nuclei may exceed the tissue 
thickness recommended in the cryosectioning step of the 
ST protocol (10 µm) [12]. This may jeopardize capturing 
the whole transcriptomics profile using a single slice.

High resolution spatial methods [13] and/or experi-
ments involving tissue sections or entire organ cross-sec-
tions from small animals are virtually free from the risk 
of losing the transcriptomics content of cells. Akeret et al. 
[14], studied single tissue sections of mice brains using 
10 × Visium spatial transcriptomics without any problem 
in spot labeling. The reason could be due to the fact that 
in mice, the average diameter of neuronal soma derived 
from the cortical pyramidal layer does not exceed 10 µm 
[15]. Hence, our approach is specifically applicable to tis-
sues composed of cells with nuclei sizes exceeding the 
minimum thickness of the section required for the 10x 
Genomics Visium spatial transcriptomics experiment.

We used a combination of ST and snRNA-seq technol-
ogies to unveil the cerebral-cortex structure and related 
cell types. The ST preserves the spatial location of gene 
expression. However, its resolution at the level of the 
spot, as well as in terms of the number of captured genes, 
is nominally lower than the single-nuclei/single-cell tran-
scriptomics [16]. The lower resolution results from the 
size of spots in ST expression slides (55 µm in diameter). 
Accordingly, each spot may encompass the transcrip-
tomic profiles of multiple cells. The ST data integration 
with snRNA-seq/scRNA-seq is considered a deconvolu-
tion method to unravel the underlying cell types in each 
ST spot. In this context, using snRNA-seq has advantages 
over scRNA-seq. This is because the process of tissue 
cryopreservation ruptures the cell membranes; however, 
nuclear membranes remain intact during the freeze–
thaw cycle [17]. Furthermore, it has been shown that 
the RNA-seq of single nuclei is highly representative of 
transcriptional profiles from the entire cells. This fact is 
specifically relevant to postmortem brain samples after 
long-term storage at − 80 °C [17]. Hence, we utilized the 
prelabeled snRNA-seq to deconvolute the ST spots.

To confirm the deconvolution of ST spots and defined 
cell types, we compared our annotation with neuro-
pathological findings. Astrocytes play a vital role in 
delivering energy to neurons via the astrocyte-neuron 
lactate shuttle [18]. Hence, astrocytic nuclei are spatially 

located beside perikarya (Fig.  2A), mostly placed in the 
GM [19]. In Fig. 4B, the GM is annotated for both neu-
rons and astrocytes, corresponding to the previous find-
ings [18]. According to the shape of oligodendrocytic 
nuclei—which are round with visible halos [20]—the 
annotation of WM for oligodendrocytes corresponds 
with the expected normal morphology of the brain cross-
section [21] (Fig. 2A). These concepts are consistent with 
our histological (WM and GM) (Fig.  2A) and cell-type 
(astrocytes, neurons, and oligodendrocytes) (Fig.  4C) 
classifications.

An alternative solution to resolve the low resolution 
of the ST method is to decrease the size of barcoded 
spots in gene expression slide glasses. However, as we 
addressed in our study, ST results would be affected by 
the size of neuronal nuclei because the origin of the prob-
lem is not the sizes of spots but the thickness of the tis-
sue slices. Accordingly, by decreasing the sizes of capture 
spots, deconvolution methods may no longer be required 
anymore; however, the need for CSDI remains.

In summary, the transcriptomic profiles of ST con-
secutive slices may need to be corrected prior to further 
analysis. Correcting the datasets simply for the depth of 
sequencing using normalization methods (e.g., log nor-
malization) cannot remove all the unknown batch effects 
of consecutive slices. Data correction can be performed 
during the data-processing step by Space Ranger using 
the spaceranger aggr function or during the analysis steps 
using CSDI. In Space Ranger, the transcriptomic profile 
of consecutive slices will be aggregated, normalized to 
the same sequencing depth. Then, the feature-barcode 
matrices and the analysis of the combined data can be 
recomputed. In CSDI, the spots with similar transcrip-
tomics profiles in two datasets will be anchored. Using 
the anchors, the transcriptomics profile of consecutive 
slices will be corrected, and one can proceed with the 
downstream analysis. Consequently, the results of clus-
tering and annotation will be improved after data correc-
tion. Therefore, more trustable biological findings can be 
achieved. A general comparison between CSDI and Space 
Ranger aggr is shown in Additional file 4: Fig. S4. The pat-
tern of clusters after applying CSDI is more consistent in 
consecutive slices than Space Ranger (Additional file  5: 
Fig. S5, A), while in label transferring both methods per-
form equally (Additional file 5: Fig. S5, B). However, more 
in depth analysis is required to show the outperformance 
of one over the other.

The study has potential limitations. First, while spatial 
transcriptomic technology allowed us to define the spa-
tial location of cell types in human brain tissues, the reso-
lution was limited to 1–10 cells per spot [22]. This means 
that spatial transcriptomic analysis should be taken with 
caution and possibly benefit from the computational 
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approaches like CSDI. In this study, to annotate the ST 
spots more precisely, we integrated snRNA-seq and ST 
profiles. Second, we could only examine the role of neu-
ronal nucleus size from human brain on results from ST. 
Although, we acknowledged that this is not a concern in 
mouse brains [14, 15], we do not have enough relevant 
information about other species. In addition, we exclu-
sively used the 10  µm thickness for the tissue sections 
of the human brain, as recommended by manufacturer. 
However, a wider range of tissue thicknesses could pro-
vide a more comprehensive understanding of how neu-
ronal nucleus size may affect the ST analysis.

Conclusion
We observed that the thickness of tissue sections may be 
an important factor of the spatial transcriptomic analy-
sis. In particular, the recommended in the cryosectioning 
step of the ST protocol (10 µm) [12] may not be sufficient 
to capture the entire transcriptomics profile of human 
brain tissue due to the large size of neuronal nuclei 
(about 20 μm). Importantly, this limitation can be over-
come by using CSDI, which adjust the transcriptomic 
profiles prior to further analysis. The amendment leads to 
improved annotation results and more reliable biological 
findings.

Limitations of the study
Despite that ST is a powerful technology, the current 
study has the following limitations: (1) we couldn’t attrib-
ute the gene changes to a particular cell type among 
multiple cell types captured in spots, therefore we need 
to use deconvolution methods to decipher the spots 
content; (2) the size of neuronal nuclei exceed the rec-
ommended thickness of tissue slices, thus the transcrip-
tomics profile of spots encompassing neurons might be 
misinterpreted (3) the size of slide’s capture area did not 
allow us to study any anatomic region completely.
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Additional file 1: Figure S1. Improvement of the spot clustering through 
CSDI. The colors represent the results of unsupervised clustering per-
formed either before (A) or after (B) application of CSDI. (A) The expected 
consistency of the pattern of spot clusters between consecutive slices 
is missed. (B) The consistency of clustering after consecutive slices data 
integration is improved. The patients IDs are marked above the pictures. 
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after CSDI respectively. 

Additional file 2: Figure S2. Improvement of the label transferring by 
CSDI. The annotation probability is shown as a scheme for three different 
cell types. Label transferring from snRNA-seq to ST consecutive slices is 
shown before and after data integration. Before Integration: the probabil-
ity of spot annotations for neurons is not compatible with tissue histology. 
After integration: the probability of the presence of neurons increased in 
the GM of the cerebral cortex. 

Additional file 3: Figure S3. A comparison between the pattern of spot 
classification after CSDI through spot clustering and label transferring 
methods. The consistency between the results from these two methods, 
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Additional file 4: Figure S4. Improvement of the results from DEGs in 
spots assigned to neurons, before and after CSDI. Venn diagrams represent 
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the results are shown in barplots. 

Additional file 5: Figure S5. A comparison between CSDI and Space 
Ranger aggr in improvement of spot clustering and label transferring. 
Using CSDI, A) the pattern of clusters are more consistent versus Space 
Ranger aggr while in B) label transferring both methods perform equally.
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