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Abstract 

Background Non‑alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treat‑
ment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and 
favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary 
metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy 
through network pharmacology.

Methods We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of 
GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related 
to SMs of AS and GM. The final targets were selected on NAFLD‑related targets, which was considered as crucial 
targets. The protein–protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key 
signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signal‑
ing pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key 
signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemi‑
cal properties and toxicity in silico platform.

Results The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor 
A (VEGFA) was a key target in PPI network analysis. The PI3K‑Akt signaling pathway was the uppermost mechanism 
associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K‑Akt signal‑
ing pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA‑myricetin, or quercetin, GSK3B‑myricetin, IL2‑diosgenin 
complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1‑vestitol 
formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were 
no hurdles to develop into drugs devoid of its toxicity.

Conclusion In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent 
synergistic effects against NAFLD, dampening PI3K‑Akt signaling pathway. This work provides the importance of 
dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological 
mechanisms of combinatorial application (AS and GM) against NAFLD.
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Background
Non-alcoholic fatty liver disease (NAFLD) is charac-
terized by excessive fat accumulation in liver tissues, 
especially, in liver parenchyma [1]. Its pathophysiologi-
cal spectrum is encompassed in simple fatty liver (SFL) 
to non-alcoholic steatohepatitis (NASH), eventually 
reaching at liver cirrhosis and hepatocellular carci-
noma (HCC), via proceeding liver fibrosis (LF) [2]. Also, 
NAFLD is associated with diverse metabolic disorders: 
obesity, diabetes mellitus, hypertension, and cardiovas-
cular diseases [3]. The surging incidence and complicated 
etiology cause clinical burden, searching for effective 
therapeutic strategies in epidemiological, and behavior 
approach of NAFLD patients with a primary option [4]. 
Recently, although several therapeutic options have been 
reported to ameliorate NAFLD, its noticeable therapeu-
tic preferences are yet to be determined [5]. Formalized 
treatments for NAFLD are not documented and an avail-
able option is to be counselled concerning healthy life-
style: regimen, abstinence of high fats and carbohydrates, 
and frequent physical exercise [6–8].

In the incomplete project, we pioneered the second-
ary metabolites (SMs) from Avena sativa (AS; known as 
oat) and gut microbiota (GM) to identify the key SMs in 
both AS and GM for the treatment of NAFLD. Further-
more, AS has a wide spectrum of pharmacological activi-
ties such as antioxidant, anti-inflammatory, antidiabetic 
and anticholesterolemic efficacy [9]. The AS is an ancient 
grain utilized as an important grain from primitive times, 
suggesting that AS can diminish cholesterol, control sati-
ety, and even make positive effects on gastrointestinal 
(GI) health [10, 11]. Currently, several studies have dem-
onstrated that natural products can regulate body metab-
olism including anti-obesity and anti-diabetes [12].

Specially, the flavonoids from AS ameliorated hyper-
lipidemia caused by high-fat-diet via modulating bile 
acid and GM in mice [13]. The AS supplement has alle-
viating effects to lower the blood pressure in hyperten-
sive groups by increasing Bifidobacterium and Spirillum 
[14]. Furthermore, the bioactives of AS are key players 
to regulate the beneficial GM to relieve metabolic disor-
ders: obesity, atherosclerosis, and even osteoporosis [15]. 
Thereby, it elicits that AS is a significant modulator to 
control GM community.

In parallel, GM in human intestine is significant com-
munity to control the physiological responses for host 
[16]. Some favorable GM (known as probiotics) can 

convert into key SMs (known as postbiotics) is impli-
cated in many metabolic disorders including NAFLD 
[17]. Furthermore, probiotics and postbiotics are vital 
effectors to regulate PI3K/AKT pathway by intercon-
necting with AMP-activated kinase (AMPK) pathway 
[18, 19]. Some reports to approve the effects of post-
biotics on inflammatory pathways have been shown 
different experimental results due to different postbi-
otic mixture in media and its derivative structures [20]. 
Collectively, our study is to manifest key SMs from AS 
and GM to keep consistent results for the treatment of 
NAFLD. With the help of network pharmacology con-
cept, we performed integrative analysis to pinpoint cru-
cial elements: key GM, signaling pathway(s), target(s), 
and SMs. Network pharmacology (NP) is a systemic 
methodology to decipher the complex biological path-
ways, which is a valuable tool to elucidate efficacy of 
complex natural products [21]. NP has been developed 
as a new methodology in drug discovery as it combines 
scattered valuable information with data science [22]. 
As a matter of fact, NP decodes the complicated inter-
action between compounds, targets, and diseases from 
holistic viewpoint on multiple components [23]. Most 
recently, a merged GM and NP study was contributed 
to decode the roles of GM against diarrhea-predomi-
nant irritable bowel syndrome (IBS-D), indicating that 
eighteen GM with treatment of Chinese traditional 
medicine were critical components to alleviate IBS-D 
[24]. Furthermore, key SMs of alcoholic liver diseases 
(ALD) and NAFLD were deciphered with the NP analy-
sis [25, 26].

It is believed that NP might be a key to decrypt the 
therapeutic issue in dilemma, ending up with combi-
natorial application. As aforementioned, our study has 
established that the combinatorial application of AS 
and GM is to be expected as an alternative therapeutic 
strategy for NAFLD. Thus, this approach might be given 
critical hints to further clinical trials and advancement 
of the combined applications with AS and GM. The 
process of this study is displayed in Fig.  1. Given the 
limited microbiome data, the pharmacological pathway 
of combining AS and GM in the alleviation of NAFLD 
is only dependent upon mining data. The integrative 
methodology to reveal the combinatorial effects on AS 
and GM provides significant clues for favorable diet 
and well-designed microbiota compositions. The pur-
pose of this study was to uncover combinatorial effects 
on both AS and GM for the treatment on NAFLD.
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Materials and methods
The employment of the web‑based public bioinformatics
At present, the development of data science provides a 
great deal of information related to biological pathways 
between compounds and targets, which can be a plat-
form by merging the important databases. Based on it, 
we gathered valuable data to utilize NP as a drug discov-
ery methodology. We profiled the available bioinformat-
ics resources in Table 1.

The identification of SMs and its targets from AS
Natural Product Activity & Species Source (NPASS) 
database (http:// bidd. group/ NPASS/) (accessed on 28 
September 2022) was utilized to select the significant 
SMs from AS [27], indicating that targets related to the 
SMs were retrieved by Similarity Ensemble Approach 
(SEA) (https:// sea. bkslab. org/) (accessed on 28 Septem-
ber 2022) [28] and SwissTargetPrediction (STP) (http:// 
www. swiss targe tpred iction. ch/) (accessed on 28 Septem-
ber 2022) [29]. With the exactness and rigor, the inter-
secting targets between SEA and STP were considered 
as important targets associated with SMs from AS. It was 
defined as AS-related targets. Crucially, SEA database 
is a mining platform to select some major targets linked 
to targets, developed by Dr Shoichet’s group. It is to be 

specified that the number of 23 in 30 targets extracted by 
SEA was confirmed by experimentation [30]. Apparently, 
STP has been used to identify the putative targets for 
ligands, for instance, the attained targets for cudraflavone 
C hit the mark experimentally [31].

The selection of SMs and its targets from GM
The gutMGene database was used to obtain the SMs 
converted by GM (http:// bio- annot ation. cn/ gutmg ene/) 
(accessed on 29 September 2022) [32]. The obtained SMs 
were input into both SEA and STP platform to select the 
targets. The overlapping targets identified by SEA and 
STP were identified as critical targets associated with 
SMs from GM. It is defined as GM-related targets.

The determination of core targets from AS and GM 
against NAFLD
The intersecting targets were identified between AS-
related targets and GM-related targets, which were 
considered as significant targets for combinatorial ther-
apeutics. The NAFLD- related targets extracted by Dis-
GeNET (https:// www. disge net. org/) (accessed on 30 
September 2022) [33] and OMIM (https:// www. omim. 
org/) (accessed on 30 September 2022) [34]. Finally, we 
selected the core targets against NAFLD, by comparing 

Fig. 1 The workflow of this study

http://bidd.group/NPASS/
https://sea.bkslab.org/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
http://bio-annotation.cn/gutmgene/
https://www.disgenet.org/
https://www.omim.org/
https://www.omim.org/
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the targets between combinatorial therapeutics’ targets 
and NAFLD-related targets.

The protein–protein interaction networks
We utilized String database (https:// string- db. org/) 
(accessed on 01 October 2022) [35] to identify protein–
protein interaction (PPI) networks, which was described 
by R Package. On the PPI networks, we found a target 
with the highest degree value, thus it was to be defined as 
a key target to ameliorate NAFLD.

The construction of bubble plot
The construction of bubble plot was established by Kyoto 
Encyclopedia of Gene and Genomes (KEGG) pathway 
enrichment analysis. The signaling pathways on the bub-
ble plot were depicted, according to Rich factor value. We 
discerned a key signaling pathway for the treatment of 
NAFLD, suggesting that the mechanism might be inhibi-
tive effect on NAFLD. The bubble plot was constructed 
by R package.

Table 1 The lists of accessible databases for the study

No Databases Short description URL

1 ADMETlab 2.0 Cheminformatics to identify physicochemical proper‑
ties or compound toxicities

https:// admet mesh. scbdd. com/

2 DisGeNET Bioinformatics of target‑gene relationships on human https:// www. disge net. org/

3 gutMGene Microbiome database to identify metabolites of gut 
microbiota

http:// bio‑ annot ation. cn/ gutmg ene

4 NPASS Database of natural herbal plants http:// bidd. group/ NPASS/

5 Online Mendelian Inheritance in Man (OMIM) Human database to identify between targets and 
diseases

https:// www. omim. org/

6 Pro Tox‑II Cheminformatics to predict compound toxicities https:// tox‑ new. chari te. de/ protox_ II/ 
index. php? site= home

7 Similarity Ensemble Approach (SEA) Cheminformatics to decode targets on compounds https:// sea. bkslab. org/

8 String Bioinformatics to identify protein–protein interaction 
networks

https:// string‑ db. org/

9 SwissADME Cheminformatics to predict the drug‑like properties http:// www. swiss adme. ch/

10 SwissTargetPrediction (STP) Cheminformatics to survey targets on small com‑
pounds

http:// www. swiss targe tpred iction. ch/

11 VENNY 2.1 Venn diagram drawing tool to compare each list of 
constituents

https:// bioin fogp. cnb. csic. es/ tools/ venny/

Table 2 The physicochemical properties of the secondary metabolites (SMs) of Avena sativa (AS) identified by NPASS

No Compounds PubChem ID Lipinski’s Rules Lipinski’s 
Violations

Bioavailability 
Score

TPSA(Å2)

MW HBA HBD MLog P

 < 500  < 10  ≤ 5  ≤ 4.15  ≤ 1  > 0.1  < 140

1 Castanin 5281704 298.29 5 1 1.01 0 0.55 68.90

2 4’,7,8‑Trihydroxyisoflavone 5466139 270.24 5 3 0.52 0 0.55 90.90

3 (‑)‑Epicatechin 72276 290.27 6 5 0.24 0 0.55 110.38

4 (‑)‑Catechin 73160 290.27 6 5 0.24 0 0.55 110.38

5 Protocatechuic Acid 72 154.12 4 3 0.40 0 0.55 77.76

6 Spermidine 1102 145.25 3 3 0.08 0 0.55 64.07

7 Formononetin 5280378 268.26 4 1 1.33 0 0.55 59.67

8 (3S)‑Vestitol 177149 272.30 4 2 1.87 0 0.55 58.92

9 Raspberryketone 21648 164.20 2 1 1.74 0 0.55 37.30

10 Medicarpin 336327 270.28 4 1 1.87 0 0.55 47.92

11 Vestitol 92503 272.30 4 2 1.87 0 0.55 58.92

12 Mdl‑26752 492218 244.42 4 4 1.03 0 0.55 76.10

https://string-db.org/
https://admetmesh.scbdd.com/
https://www.disgenet.org/
http://bio-annotation.cn/gutmgene
http://bidd.group/NPASS/
https://www.omim.org/
https://tox-new.charite.de/protox_II/index.php?site=home
https://tox-new.charite.de/protox_II/index.php?site=home
https://sea.bkslab.org/
https://string-db.org/
http://www.swissadme.ch/
http://www.swisstargetprediction.ch/
https://bioinfogp.cnb.csic.es/tools/venny/
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The construction of GM or AS—a key signaling 
pathway‑targets‑SMs (GASTM) networks
We described GASTM network to know the relation-
ships of each component: GM or AS, a key signal-
ing pathway, targets, and secondary metabolites. The 
GASTM network was constructed by utilizing R Package. 
Taken together with GM or AS, a key signaling pathway, 
targets, and SMs as nodes, matching associations above 
components were assembled with Microsoft Excel, then 
input into R package to identify the interaction network 
of GASTM against NAFLD.

Molecular docking assay (MDA)
The Molecular docking assay (MDA) was implemented 
with AutodockTools-1.5.6 to understand what the most 
significant SMs in both GM and AS are. Commonly, the 
threshold of AutodockTools-1.5.6. was fitted as -6.0 kcal/
mol [36] or SM with lowest Gibbs energy (the greatest 
negative value) was regarded as the uppermost SM to 
have therapeutic value in the treatment of NAFLD. The 

SMs were selected as.sdf format from PubChem (https:// 
pubch em. ncbi. nlm. nih. gov/) (accessed on 02 October 
2022), changing into.pdb format via Pymol tool. The.
pdb format was transformed into.pdbqt format to pre-
pare for the MDA on targets. The targets were selected 
by the Protein Data Bank (PDB) (https:// www. rcsb. org/) 
(accessed on 01 October 2022) for.pdb format, which 
were switched into.pdbqt format by setting parameter in 
AutodockTools-1.5.6. The MDA was conducted on.pdbqt 
format by preparing for conformer between SMs and 
targets. The docking site was set in cubic box (x = 40 Å, 
y = 40 Å, and z = 40 Å) in a central point of each target.

The validation of drug‑likeness and toxic parameters 
on the uppermost SMs
The properties of drug-likeness on the uppermost SMs 
were performed by SwissADME (http:// www. swiss adme. 
ch/) (accessed on 02 October 2022) [37]. The filtering 
standard was based on Lipinski’s rule: Molecular weight 

Fig. 2 A The number of overlapping 25 targets from Avena sativa between SEA and STP. B The number of overlapping 668 targets from gut 
microbiota between SEA and STP. C The number of overlapping 23 targets between Avena sativa and gut microbiota. D The number of overlapping 
16 targets via intersecting targets of Avena sativa and gut microbiota against NAFLD

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
http://www.swissadme.ch/
http://www.swissadme.ch/
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Fig. 3 A PPI networks. B A heatmap of binding energy on 20 SMs against VEGFA. C The conformer of myricetin‑VEGFA. D The conformer of 
quercetin‑VEGFA. E Bubble plot of 3 signaling pathways associated with occurrence and development of NAFLD
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(< 500 g/mol) or Topological Polar Surface Area (TPSA) 
(< 140 Å2) or Moriguchi octanol–water partition coeffi-
cient (MLogP) (≤ 4.15) or Hydrogen Bonding Acceptor 
(HBA) (< 10) or Hydrogen Bonding Donor (HBD) (≤ 5). 
To accept the rule, the molecules should not be violated 
more than 2 parameters out of 5 parameters. The toxic-
ity of the uppermost SMs was confirmed by ADMETlab 
2.0 [38] and ProTox-II [39], its parameters are as follows: 
Human ether-a-go-go-related gene (hERG) [40]; Human 
Hepatotoxicity (H-HT) [41]; Carcinogens [42]; Cytotox-
icity [43]; and Eye corrosion [44].

Results
The secondary metabolites (SMs) of AS and its targets
The number of 12 SMs from AS was documented from 
NPASS database, all of which were accepted by Lipin-
ski’s rule (Table 2). The targets related to the 12 SMs were 
retrieved by SEA (260) and STP (260), thus, the num-
ber of 25 overlapping targets was identified between the 
cheminformatics databases (Fig. 2A). The 25 overlapping 
targets were considered as significant protein-coding 
gene associated with AS.

The secondary metabolites (SMs) of GM
We identified the number of 208 SMs (Additional file 1: 
Table  S1) in gutMGene database, the targets connected 
to the 208 SMs were confirmed by SEA (1256) and STP 

(947) (Additional file  1: Table  S1). The overlapping 668 
targets were regarded as significant protein-coding genes 
related to SMs from GM (Additional file  1: Table  S1) 
(Fig. 2B).

The overlapping targets between AS‑related targets 
and GM‑related targets
The number of 23 targets was identified between the 
number of 25 overlapping targets from AS and 668 tar-
gets from GM, suggesting that the 23 targets are signifi-
cant targets to exert the combinatorial efficacy on both 
AS and GM (Fig. 2C).

The identification of core targets against NAFLD
The number of 23 targets obtained from the combined 
AS-related targets and GM-related targets was compared 
with NAFLD-associated targets (1836) (Additional file 1: 
Table S1), the final 16 targets were identified as bona fide 
targets to be expected to exert combinatorial efficacy on 
AS-based and GM-based application (Fig. 2D).

A key target on PPI network and MDA
The final 16 targets PPI network consisted of 11 nodes 
and 17 edges, and 5 (ALDH2, PON1, ERN1, NR4A1, and 
GPR35) out of 16 targets were not interacted with one 
another (Fig. 3A). The Vascular Endothelial Growth Fac-
tor A (VEGFA) in the networks was the highest degree 
of value, followed by ESR1 (7), ESR2 (3), IL2 (3), and 
TERT (3) (Table  3). We considered the VEGFA as the 
uppermost target against NAFLD. In addition, results 
of the MDA showed that the binding energy of myrice-
tin, quercetin was -8.2  kcal/mol as the lowest score in 
the number of 20 SMs (Fig.  3B), indicating that these 
SMs (myricetin, quercetin) could exert a potent bind-
ing affinity with VEGFA (Fig. 3C, D). The GM is enabled 
to convert myricitrin into myricetin, the applicable GM 
is Escherichia sp. 12, Escherichia sp. 33, and Enterococ-
cus sp. 45 [45]. Moreover, quercitrin by Bacteroides sp. 
45 [46], rutin by Bifidobacterium dentium, Bacteroides 
uniformis, and Bacteroides ovatus [47, 48], avicularin 
Bacillus sp. 46 [49], myricitrin by Enterococcus sp. 45, 
and Escherichia sp. 33 [45], isoquercitrin by Enterococcus 
casseliflavus [50], can convert into quercetin. It implies 

Table 3 The degree value of targets on PPI network

No Target name Degree 
of value

1 VEGFA 8

2 ESR1 7

3 ESR2 3

4 IL2 3

5 TERT 3

6 ABCG2 2

7 GSK3B 2

8 MIF 2

9 SHBG 2

10 CBR1 1

11 NOX4 1

Table 4 The description of signaling pathways related to NAFLD in the study

KEGG ID & description Target False 
discovery 
rate

hsa04917: prolactin signaling pathway ESR1, ESR2, GSK3B 0.0134

hsa04660: T cell receptor signaling pathway FYN, IL2, GSK3B 0.0267

hsa04151: PI3K‑Akt signaling pathway VEGFA, IL2, GSK3B, NR4A1 0.0450
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that the GM is beneficial probiotics to produce favorable 
postbiotics, in parallel, myricetin and quercetin are good 
effectors to bind stably on VEGFA.

Bubble plot and GASTM network
The bubble plot provided by PPI shows three signal-
ing pathways: Prolactin signaling pathway, T cell recep-
tor signaling pathway, and PI3K-Akt signaling pathway 
(Fig. 3E). Among the three signaling pathways, PI3K-Akt 
signaling pathway linked directly to VEGFA was con-
sidered as a key signaling pathway (Table 4). In parallel, 
VEGFA, IL2, GSK3B, and NR4A1 related to PI3K-Akt 
signaling pathway are regarded as promising targets 
significantly. Noticeably, PI3K-Akt signaling pathway 
had the lowest rich factor, suggesting that the signaling 

pathway might function as antagonistic mode. It means 
that lower rich factor can be defined as less number of 
expressed genes in annotated signaling pathways [51].

The GASTM network shows the relationships between 
GM (60 nodes, green circle) or AS (1 node, green circle), 
PI3K-Akt signaling pathway (1 node, green circle), targets 
(4 nodes, orange circle), and metabolites (56 nodes, blue 
sky circle), consisting of 122 nodes and 155 edges (Fig. 4). 
On a holistic viewpoint, the integrated four components 
can exert therapeutic effects, orchestrate with each other 
against NAFLD.

Molecular docking assay
The molecular docking assay (MDA) shows what the 
promising SM(s) are on the PI3K- Akt signaling path-
way, and the key SM(s) are derived from either GM or 

Fig. 4 The GM or AS‑ a key signaling pathway‑targets‑SMs (GASTM) network (122 nodes and 155 edges)
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Fig. 5 The results of molecular docking assay (MDA). A myricetin‑GSK3B. B diosgenin‑IL2. C vestitol‑NR4A1



Page 10 of 15Oh et al. Journal of Translational Medicine          (2023) 21:263 

AS. As mentioned previously, the key SMs (myrice-
tin, and quercetin) of VEGFA were derived from GM 
(Escherichia sp. 12, Escherichia sp. 33, Enterococcus 
sp. 45, Bacteroides sp. 45, Bifidobacterium dentium, 
Bacteroides uniformis, Bacteroides ovatus, Bacillus sp. 
46, and Enterococcus casseliflavus). Likewise, myrice-
tin on GSK3B had the highest affinity with -10.6 kcal/
mol (Fig.  5A), originated from Escherichia sp. 12, 
Escherichia sp. 33, and Enterococcus sp. 45. Diosgenin 
bound most stably to IL2 had the greatest affinity 
with -9.1  kcal/mol (Fig.  5B), which can be converted 
from SCHEMBL20481776 (PubChem ID: 135312912) 
[52]. However, GM can convert diosgenin are yet to 
be revealed. Vestitol on NR4A1 formed the most sta-
ble conformer with -9.0  kcal/mol (Fig.  5C), the vesti-
tol was derived from AS. The information of the MDA 
was profiled in Additional file 2: Table S2. Collectively, 
the combinatorial application of AS and beneficial GM 
can involve in the treatment on NAFLD via the PI3K-
Akt signaling pathway by multiple-compounds, and 
multiple-targets.

The verification of drug‑likeness and toxicity on key SMs
The number of four SMs (myricetin, quercetin, dios-
genin, and vestitol) was accepted by Lipinski’s rule, 
thus, which could be important agents to develop ther-
apeutics. Accordingly, the parameters of toxicity were 
all confirmed: hERG, Human Hepatotoxicity, Car-
cinogens, Cytotoxicity, and Eye corrosion. Thus, the 
identified four SMs are promising candidates against 
NAFLD (Table 5). The four SMs had no physicochemi-
cal hindrances to be therapeutic agents. The chemical 
structures of the key SMs were exhibited in Fig. 6.

Discussion
The PPI network shows that VEGFA is the uppermost 
target to regulate other 10 targets. The key SMs (myri-
cetin, quercetin) have been revealed by MDA, which 
could form the most stable conformers on VEGFA. The 
myricetin diminishes the lipid synthesis in liver cell and 
inflammatory response by tuning GM [53]. Additionally, 
an animal test demonstrated that the quercetin enhances 
NAFLD by alleviating inflammation, free-radicals, and 

Table 5 The verification of drug‑likeness and toxicity on key SMs

Parameters Secondary metabolite

Myricetin Quercetin Diosgenin Vestitol

Hydrogen bonding acceptor (HBA); < 10 8 7 3 4

Hydrogen bonding donor (HBD); ≤ 5 6 5 1 2

Moriguchi octanol–water partition coefficient (MLog 
P); ≤ 4.15

− 1.08 − 0.56 4.94 1.87

Topological polar surface area (TPSA(Å2)) < 140 151.59 131.36 38.69 58.92

Lipinski’s rule ≤ 1 1 0 1 0

hERG (hERG blockers) Non‑inhibitor Non‑inhibitor Non‑inhibitor Non‑inhibitor

Human hepatotoxicity (H‑HT) Negative Negative Negative Negative

Carcinogens Non‑carcinogens Non‑carcinogens Non‑carcinogens Non‑carcinogens

Cytotoxicity Inactive Inactive Inactive Inactive

Eye corrosion Negative Negative Negative Negative

Fig. 6 The chemical structures of four key SMs. A myricetin. B quercetin. C diosgenin. D vestitol
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Table 6 The description of the three signaling pathways related to occurrence and development of NAFLD

↓: improvement; ↑: deterioration

Signaling pathway Target or metabolism Activation 
or 
inhibition

Effect Notes

Prolactin signaling pathway Prolactin Activation NAFLD ↓ ‑Prolactin is an endogenous polypeptide 
with approximately 23 kda, which has nega‑
tive relationships concerning NAFLD [66]
‑Prolactin receptor expression is diminished 
in obese subjects under NAFLD, the down‑
regulation of which exacerbates NAFLD [66]
‑Thus, it implies that activation of prolactin 
signaling pathway can be a therapeutic 
strategy against NAFLD

T cell receptor signaling pathway Complex (MHC) class I (CD8 +) Inhibition NAFLD ↑ ‑In NAFLD, reduction of CD8 + diminished 
the liver inflammation and led to hepatic 
stellate cell (HSC) inactivation [67]

Complex (MHC) class II (CD4 +) Inhibition NAFLD ↓ ‑The dysfunction of lipid metabolism in 
NAFLD subjects (human and mouse) caused 
the reduction of CD4 + in liver [68, 69]
‑It has been implicated that CD4 + T cells 
decrease in the development of NAFLD 
while CD8 + T cells escalate in progression of 
HCC initiated by NAFLD [68, 70]

PI3K‑Akt signaling pathway The synthesis of free fatty acids (FFAs) in 
organs

Inhibition NAFLD ↓ ‑In obese subjects, over‑circulating of FFAs 
driven by PI3K‑Akt signaling pathway can 
influence on negative side effects to organs, 
resulting in imbalance of glucose and lipid 
metabolism [71]

The synthesis of triglyceride in hepatocytes Inhibition NAFLD ↓ ‑The up‑regulation of PI3K‑Akt signaling 
pathway accelerates the synthesis of triglyc‑
eride in hepatocytes [72]

Fig. 7 The key findings in this study
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lipid degradation in type 2 diabetic mice [54]. Commonly, 
expression level of the VEGFA increases during obe-
sity, and neutralization of VEGFA relieves the metabolic 
disorders occurred by diet [55]. It elicits that VEGFA 
inhibitors can be candidates to improve lipid metabolic 
dysfunction including NAFLD.

The three signaling pathways confirmed by PPI are 
related to occurrence and development of NAFLD, which 
concisely discussed in Table 6.

The most stable SM on IL2 was diosgenin, suggest-
ing that the diosgenin is a representative compound in 
saponin derivatives [56]. A report shows that diosgenin 
reduces triglyceride content in the liver, and stimulates 
the excretion of cholesterol [57]. Another report to sup-
port the therapeutic efficacy of diosgenin demonstrated 
that diosgenin interrupts the lipid absorption in intestine, 
triggers cholesterol transformation into bile acid and its 
elimination as well as interferes with lipid biosynthesis 
[58]. Also, IL2 inhibitor is a potent therapeutic agent to 
treat diverse inflammatory responses including NAFLD 
[59, 60]. It elicits that diosgenin is not only an effector 
to control lipid content but can also be used as NAFLD 
alleviator. A typical SM conformed to Glycogen Synthase 
Kinase 3 Beta (GSK3B) was myricerin with highly thera-
peutic values such as antioxidant, antidiabetic, antiin-
flammation, and even anticancer [61]. Noticeably, GSK3 
antagonist alleviates hepatic steatosis which is accom-
panied by mitochondrial abnormality [62]. A report 
demonstrated that GSK3B inhibitor can be a promising 
therapeutic effector to control NAFLD [63]. Thus, it has 
been supported that antagonists of GSK3B might be sig-
nificant agents for the treatment of NAFLD. A represent-
ative SM bound to Nuclear receptor subfamily 4 group A 
member 1 (NR4A1) was vestitol derived from AS, which 
is a species of isoflavonoid [64]. The vestitol is known as 
a potent anti-inflammatory agent by reducing leukocyte 
rolling [64]. At present, few studies of vestitol have been 
reported. The NR4A1 involved in chronic inflammatory 
state and dysfunction of lipid metabolism in type2 dia-
betic (T2D) patients [65]. It implies that the inhibition 
of NR4A1 can help regulate lipid biosynthesis against 
NAFLD.

Overall, this study shows that dampening of PI3K-Akt 
signaling pathway might be a potential mechanism to 
relieve NAFLD. In detail, the key effectors that we sug-
gested are myricetin, quercetin from Escherichia sp. 12, 
Escherichia sp. 33, Enterococcus sp. 45, Bacteroides sp. 
45, Bifidobacterium dentium, Bacteroides uniformis, 
Bacteroides ovatus, Bacillus sp. 46, and Enterococcus cas-
seliflavus. However, the GM that converts diosgenin is 
still veiled. Although there were no evident relationships 
either positive or negative feedback between AS and nine 
GM, we could expect the high possibility as relievers 

on NAFLD, obtaining the four SMs: (1) myricetin, (2) 
quercetin, (3) diosgenin from GM, and (4) vestitol from 
AS (known as oatmeal).

All in all, these findings shed light on the importance 
of GM as therapeutics, and AS with auxiliary role in the 
context NAFLD. Despite that, our study is required to do 
clinical tests and extensive investigation with rigorous-
ness. The key findings of this study are represented in 
Fig. 7.

The pros and cons of this study
From the incorporation of NP, this study exploratory 
organizes on the key GM, signaling pathways, targets, 
and SMs with the application of AS in NAFLD treatment, 
suggesting theoretical evidence for further clinical veri-
fication. As limited borderline of NP, the pharmacologi-
cal pathway of integrating analysis on AS or GM against 
NAFLD is only dependent on data-driven analysis, and 
its combinatorial effects, the interaction between AS and 
GM in vivo were ignored, which is integral to validate the 
authenticity through preclinical and clinical tests. Hence, 
the performance of our analysis needs to be advanced 
more, for instance, by integrating new dataset continu-
ally. At this point, our approach platform is easy to merge 
new data to improve the performance and might be a 
hallmark to elucidate the relationships between diet and 
GM. In addition, our study provides a rationale for how 
to improve accuracy prior to clinical trials.

Conclusion
In conclusion, our study highlights the therapeutic 
effects and mechanisms of the treatment on NAFLD via 
combinatorial application: gut microbiota (GM), and 
Avena sativa (AS), indicating antagonists (myricetin, 
quercetin, diosgenin, and vestitol) to inhibit PI3K-Akt 
signaling pathway. These findings provide a new insight 
to utilize the endogenous species (gut microbiota) and 
exogenous species (Avena sativa) on microbiome-based 
therapeutics. However, this study should be taken 
in  vitro or in  vivo experimentation into consideration 
to uncover bona fide pharmacological efficacy.
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