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Abstract 

Background Oral squamous cell carcinoma (OSCC), an HPV-negative head and neck cancer, frequently metastasizes 
to the regional lymph nodes but only occasionally beyond. Initial phases of metastasis are associated with an epithe-
lial–mesenchymal transition (EMT), while the consolidation phase is associated with mesenchymal–epithelial transi-
tion (MET). This dynamic is referred to as epithelial–mesenchymal plasticity (EMP). While it is known that EMP is essen-
tial for cancer cell invasion and metastatic spread, less is known about the heterogeneity of EMP states and even 
less about the heterogeneity between primary and metastatic lesions.

Methods To assess both the heterogeneity of EMP states in OSCC cells and their effects on stromal cells, we per-
formed single-cell RNA sequencing (scRNAseq) of 5 primary tumors, 9 matching metastatic and 5 tumor-free lymph 
nodes and re-analyzed publicly available scRNAseq data of 9 additional primary tumors. For examining the cell type 
composition, we performed bulk transcriptome sequencing. Protein expression of selected genes were confirmed 
by immunohistochemistry.

Results From the 23 OSCC lesions, the single cell transcriptomes of a total of 7263 carcinoma cells were avail-
able for in-depth analyses. We initially focused on one lesion to avoid confounding inter-patient heterogeneity 
and identified OSCC cells expressing genes characteristic of different epithelial and partial EMT stages. RNA velocity 
and the increase in inferred copy number variations indicated a progressive trajectory towards epithelial differen-
tiation in this metastatic lesion, i.e., cells likely underwent MET. Extension to all samples revealed a less stringent 
but essentially similar pattern. Interestingly, MET cells show increased activity of the EMT-activator ZEB1. Immuno-
histochemistry confirmed that ZEB1 was co-expressed with the epithelial marker cornifin B in individual tumor cells. 
The lack of E-cadherin mRNA expression suggests this is a partial MET. Within the tumor microenvironment we found 
immunomodulating fibroblasts that were maintained in primary and metastatic OSCC.

Conclusions This study reveals that EMP enables different partial EMT and epithelial phenotypes of OSCC cells, 
which are endowed with capabilities essential for the different stages of the metastatic process, including mainte-
nance of cellular integrity. During MET, ZEB1 appears to be functionally active, indicating a more complex role of ZEB1 
than mere induction of EMT.
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Background
Head and neck squamous cell carcinoma (HNSCC) is 
the sixth most common cancer worldwide, with 890,000 
new cases and 450,000 deaths in 2018 [1]. The survival 
for HNSCC patients has improved modestly over the 
past decades; however, this improvement is partially 
attributable to the emergence of human papillomavirus 
(HPV)-associated HNSCC that has a better prognosis 
than HPV-negative tumors [1]. One of the HPV-negative 
HNSCC subtypes is oral cavity squamous cell carcinoma 
(OSCC) which is mainly associated with tobacco and 
alcohol abuse [1]. OSCCs are often diagnosed at an early 
stage owing to the patient’s self-identification of the mass 
lesion and symptoms. Still regional lymph node metas-
tases are frequent and thus, surgical removal of primary 
tumor is accompanied by neck dissection and radiother-
apy [2]. Given the morbidity associated with this com-
bined intervention, there is a need to identify molecular 
biomarkers to predict the presence of lymph node metas-
tases and to prognosticate survival.

In many epithelial tumors, invasion and metastasis 
becomes possible through an epithelial–mesenchymal 
transition (EMT), i.e., a reactivation of an embryonic 
developmental program in which cells acquire migratory 
and invasive properties [3]. In EMT, epigenetic, tran-
scriptional, and post-translational changes cause epithe-
lial cells to break down the strong homotypic cell–cell 
junctions and adopt a mesenchymal morphology [4]. 
EMT has also been shown to impact the characteristics 
of mesenchymal cells in the tumor stroma either by cell 
polarization or as a direct contributor to the cancer-
associated fibroblast (CAF) population [5, 6]. Conversely, 
CAFs also modify the EMT status of tumor cells.

Importantly, EMT should not be understood as a 
clearly defined process, but rather as many dynamic 
and complex processes, which may vary depending on 
tumor entity, stage, and microenvironment [4, 7, 8]. Thus, 
expression of EMT-related genes and their regulating 
transcription factors is highly heterogeneous, even within 
one cancer entity, between patients, in different lesions 
from one patient, and between individual cancer cells 
within one lesion [4, 9]. Since it is a continuous, dynamic, 
and reversible process, cancer cells can adopt a multitude 
of intermediate or partial states, e.g., epithelial to more 
mesenchymal or partial EMT (pEMT) states [7, 10–13]. 
Therefore, it has recently been recommended that this 

EMT continuum should rather referred to as epithelial-
mesenchymal plasticity (EMP) [4, 12].

Single-cell analyses are a powerful tool to capture the 
EMP-associated heterogeneity of cancer cells and their 
impact on stromal cells. However, to date most EMP-
related single-cell studies are based on controlled in vitro 
and in vivo experiments [7, 8, 11, 14, 15]. Particularly in 
HNSCC only few studies scrutinized EMP within freshly 
isolated tumor samples [10, 16, 17]. Of particular note is 
the seminal work of Puram et al. in which 2215 malignant 
cells from 18 patients were characterized, revealing mul-
tiple pEMT states with high variability in EMP-related 
gene expression [10].

In the work presented here, we investigated the cellular 
heterogeneity of 5 primary, 9 regionally metastatic OSCC 
lesions and 5 tumor-free lymph nodes isolated from 7 
patients using multiplexed single-cell RNA sequencing 
(scRNAseq). In addition, we re-analyzed a recently pub-
lished series of scRNAseq data from primary HNSCC 
that included 9 OSCC tumors to put our observations 
on an even broader data base [17]. Our results not only 
confirm the EMP-associated heterogeneity of cancer cells 
in primary and metastatic OSCC, but also demonstrate 
that immunomodulating CAFs are preserved in primary 
and metastatic OSCC. Furthermore, we demonstrated 
a mesenchymal-epithelial transition (MET) of OSCC 
cells in established lymph node metastases. Surprisingly, 
we observed a high activity of the EMT-activator ZEB1 
in metastatic OSCC cells with epithelial differentiation, 
which was confirmed by co-expression of ZEB1 and 
cornifin-B protein in individual tumor cells.

Methods
Tissue samples
From 7 OSCC patients treated at the Department of Oral 
and Maxillofacial Plastic Surgery of the University Hos-
pital of Heinrich Heine University Düsseldorf, we exam-
ined a total of 19 tissue samples—5 primary tumors and 
14 potentially affected lymph nodes—by histopathologi-
cal examination and bulk and single cell RNA sequenc-
ing. Of the 14 lymph nodes, 9 represented lymph node 
metastases as indicated by detection of carcinoma cells in 
histopathological examination and scRNAseq. The clini-
cal details are provided in Additional file  10: Table  S1. 
Due to the large size of the excised lesion, we were able 
to analyze two different areas of the primary tumors of 
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patients #6 and #7 as separate samples to better capture 
any heterogeneity that may exist; these samples are desig-
nated #6.1 and #6.4 as well as #7.1 and #7.4, respectively.

Histology and immunohistochemistry (IHC)
Hematoxylin and Eosin (H&E) and IHC were performed 
on 4  µm formalin-fixed, paraffin-embedded (FFPE) sec-
tions. H&E staining was performed using standard pro-
tocols (Additional file  1: Fig. S1). Whole-slide imaging 
was performed using Zeiss Axioscan 7 and 10 × mag-
nification (Carl Zeiss Microscopy Deutschland GmbH, 
Oberkochen, Germany).

IHC using the rabbit polyclonal antibodies anti-
SPRR1B (Cat. No.: SAB1301567-400UL, Sigma 
Aldrich, Darmstadt, Germany) and anti-ZEB1 (Cat. No. 
HPA027524-25UL, Sigma Aldrich) was performed as 
previously described [18]. Briefly, after sections were 
deparaffinized for 60  min at 60  °C and rehydrated, sec-
tions were incubated for 15 min in an inverter microwave 
oven with antigen retrieval buffer pH 9 for anti-SPRR1B 
and pH 6 for anti-ZEB1. After 3 × 2  min washes with 
Tris-buffered saline with 0.1% Tween (TBST) sections 
were incubated for 8  min with 3% peroxidase. Follow-
ing an additional washing step, slides were incubated for 
30  min with 3% bovine serum albumin (BSA) in TBST. 
For single stainings, sections were incubated at room 
temperature for 1  h with anti-SPRR1B at a dilution of 
1:600, or overnight with anti-ZEB1 at a dilution of 1:500 
dilution. Afterwards, the secondary anti-rabbit HRP 
Polymer was applied for 30 min, followed by 1:20 diluted 
3,3′-Diaminobenzidin (DAB) for 10 min and 1:10 diluted 
hematoxylin for 3 min. Samples were washed with TBST 
in between incubations and, with tap water for 3  min 
before fixation. For multiplexed antigen detection, the 
OpalTM chemistry system (Akoya Biosciences, Marl-
borough, MA, USA, Cat. No.: OP7TL4001KT) was used 
according to the manufacturer’s description. Briefly, after 
deparaffinization and fixation, we processed the sections 
for 15 min with retrieval buffers in an inverter microwave 
oven. Then, we incubated them with antibody diluent 
for 10  min at room temperature, followed by incuba-
tion with the anti-SPRR1B antibody for 30  min. Next, 
Opal Polymer horseradish peroxidase (HRP) secondary 
antibody solution with the respective chromogen was 
applied for 10  min, antibodies were removed by micro-
wave treatment and the staining with anti-ZEB1 anti-
body was performed. Finally, slides were incubated with 
4′,6-diamidino-2-phenylindole (DAPI) for 5 min.

Single‑cell RNA sequencing
Samples were processed immediately after surgery and 
temporarily stored for transport at 4 °C in tissue storage 

solution before processing (Miltenyi Biotec, Bergisch 
Gladbach, Germany). Briefly, samples were dissociated 
into single-cell suspensions using the gentleMACS Dis-
sociator (Cat. No. 130-093-235, Miltenyi Biotec, Ber-
gisch Gladbach, Germany) with program “h_tumor_01”, 
followed by 2 × program “h_tumor_02” in 4.7  ml RPMI 
1640 (Cat. No. P04-16500, PAN-Biotech) and an enzyme 
mix consisting of 200 µl Enzyme H, 100 µl Enzyme R and 
25 µl Enzyme A (Cat. No. 130-095-929 Miltenyi Biotec). 
Afterwards, single-cell suspensions were reconstituted 
and washed thrice with 0.05% BSA phosphate-buffered 
saline (PBS) and filtered through a 100 µl cell strainer.

In cases multiple samples of a single patient had to be 
analyzed (Additional file 10: Table S1), antibody hashing 
for multiplexing of samples was performed according to 
manufacturer’s protocol. Briefly, 1  µg of the respective 
TotalSeq anti-human hashtag antibody was used to incu-
bate a maximum of ca. 2 million cells for 30 min at 4 °C 
(Cat. No. 394601, 394603, 394605 and 394661, 394663, 
394665, respectively, Biolegend, San Diego, CA, USA). 
After 3 washes with PBS with 0.05% BSA, the respec-
tive cell suspensions were mixed prior to single-cell RNA 
library preparation. In short, both unhashed and hashed 
single-cell suspensions were barcoded and processed 
with the microfluidic system of 10 × Genomics Chro-
mium v2.0 platform as described in the manufacturer’s 
protocols (10 × Genomics, Leiden, Netherlands). Due 
to a change of system, both the 3′ technology including 
Chromium Single Cell 3′ Library & Gel Bead Kit version 
2 (Cat. No. 120237), Chromium Single Cell A Chip Kit 
(Cat. No. 120236) and Chromium i7 Multiplex Kit (Cat. 
No. 120262), as well as the 5′ technology including Chro-
mium Single Cell 5′ Library & Gel Bead Kits version 2 
(Cat. No. 1000263), Chromium Next GEM Chip K Sin-
gle Cell Kit (Cat. No. 1000286) and Dual Index Kit TT set 
A (Cat. No. 1000215) were used; for library construction 
the Chromium Single Cell 3′/5′ Library Construction Kit 
(Cat. No. 1000020) was applied. After library prepara-
tion, the library from patient #1 was sequenced with an 
Illumina HiSeq 4000 (Illumina, Berlin, Germany) at the 
DKFZ Genomics and Proteomics Core Facility in Hei-
delberg and all other libraries were sequenced on an Illu-
mina NovaSeq 6000 (Illumina, Berlin, Germany) in three 
runs (Run 1: patient #2, #4, #5; Run 2: patient #3, Run 3: 
patient #6 and #7) at the West German Genome Center 
in Cologne.

Bulk transcriptome analysis
The bulk transcriptome was analyzed using a quanti-
tative nuclease protection assay from the HTG Tran-
scriptome Panel (HTP) according to the manufacturer’s 
protocol (Cat. No. HTG-001-224, HTG Molecular Diag-
nostics, Tucson, AZ, USA). Briefly, the tumor areas were 



Page 4 of 19Horny et al. Journal of Translational Medicine  (2023) 21:267

macro-dissected as depicted in Additional file 1: Fig. S1 
from 4  µm FFPE sections and subjected to Proteinase 
K and DNase digestion. Next, the quantitative nuclease 
protection assay was performed using the HTG EdgeSeq 
Processors before adapters and sample tags were added 
during PCR amplification. The resulting libraries were 
sequenced using an Illumina NextSeq 500/550 High Out-
put Kit v2.5 (75 cycles) (Cat. No. 20024906, Illumina, 
Berlin, Germany).

The resulting FASTQ files were processed towards a 
gene expression count matrix using the HTG EdgeSeq 
Reveal Software version 4.0.1. Quality Control, normali-
zation, and principal component analysis (PCA) were 
performed using R version 4.0.5. Sample 5 failed QC 
due to low number of sequenced reads and was removed 
from the analysis. Deconvolution was performed with 
web application of CIBERSORTx (https:// ciber sortx. 
stanf ord. edu/) using a signature matrix derived from the 
gene expression count matrix of combined scRNAseq 
data of the samples analyzed with HTP [19]. We filtered 
for genes that are expressed less than 5% within the given 
tumor phenotypes and randomly included only 75% of T 
and B cells for better performance. The resulting signa-
ture matrix was used for imputing cellular fractions from 
the counts-per-million normalized HTP data without 
any batch correction or quantile normalization and 500 
permutations.

Bioinformatic analysis of scRNAseq data
Preprocessing
Processing from FASTQ files towards the unfiltered 
count matrix (barcodes × genes) was performed using 
Cellranger Software Suite version 3.1.0 and the human 
reference genome build GRCh38, downloaded from 
10 × Genomics in version 3.0.0.

Cells were identified by evaluating quality criteria 
inspired by Luecken et  al. (see Additional file  11) [20]. 
Cells were defined by having more than 500 unique 
molecular identifiers (UMIs), less than 10% mitochon-
drial gene expression and additionally for patient 3 and 
5 having more than 30 housekeeper genes expressed. The 
filtered count matrices (cells × genes) were further pro-
cessed using Seurat version 4.0.1 and R version 4.0.5 [21]. 
Demultiplexing of hashed libraries was performed choos-
ing manual threshold of hashtag oligo (HTO) expression 
based on quality assessments described in Additional 
file  11. We removed doublets that were identified by 
demultiplexing of HTO expression matrices from all 
analyses.

Normalization and dimensionality reduction
When performing analysis of a specific set of cells, e.g., 
only tumor cells or only cells of a specific patient, the 

respective set of cells was normalized using the SCtrans-
form algorithm and the 3000 most variable genes 
were selected for PCA [22]. During normalization, we 
regressed for cell cycle scores and percentage of mito-
chondrial gene expression. Cell cycle scores and phases 
were determined in Seurat using log-normalized RNA 
counts and S and G2M-Phase genes defined by Tirosh 
et al. [23]. When generating a uniform manifold approxi-
mation and projection (UMAP) without patient-specific 
batch effect, we used corrected PCs derived with the har-
mony R package version 0.1.0 [54]. Based on the variance 
explained by each PC and the respective ranked elbow 
plot we choose an appropriate number of PCs for UMAP 
visualization and SNN clustering as implemented in Seu-
rat. For deriving patient-specific clusters for calculat-
ing the intratumoral cosine similarity, we used the same 
resolution parameter for comparability. UMAPs colored 
by specific gene expression were ordered by expression 
values.

Tumor cell identification and phenotyping
We annotated all cell types and identified tumor and 
fibroblast phenotypes by using a combination of meth-
ods: SNN clustering, differential gene expression, gene 
set enrichment analysis (GSEA), expression of literature-
based marker genes and automated reference-based 
annotation with SingleR using the Monaco bulk-RNA 
Immune dataset (Additional file 1: Fig. S2) [24, 25]. Auto-
mated, reference-based annotation with SingleR version 
1.4.1 was run on SNN clusters with a resolution of 100, 
yielding extremely small clusters including only few cells 
but increasing performance. Further, we excluded cells 
with ambiguous cell type marker expression. For example, 
within the tumor cells of the lymph node metastasis from 
patient 1, we observed few cells expressing genes typical 
for fibroblasts and DCs that were subsequently excluded 
from tumor-specific analysis. Similarly, we removed T 
cells, B cells, mast cells, fibroblasts, muscle cells, melano-
cytes, and other immune cells from the tumor cell sub-
sets, as well as T cells highly expressing CD3 genes from 
the fibroblast subset. Malignant cells were first identified 
by high epithelial gene expression, e.g., high cytokera-
tin expression, and inferred CNVs (Additional file  2: 
Fig. S2 C–E). CNVs were inferred using the R package 
inferCNV version 1.6.0 with the not normalized, filtered 
count matrix including all cells as input and algorithm 
run in “samples” mode. Inferred CNVs of mitochondrial 
genes were excluded. Differential gene expression was 
performed by calculating the log2 foldchanges between 
one cluster and all other cells from the subset based on 
log-normalized data using NormalizeData function and 
a scale factor of 10,000. We filtered for genes with log2 
foldchange greater than 0.25 and a minimum percentual 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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expression of at least 10% within the cluster or all other 
cells. For calculating the cosine similarity, we did not fil-
ter the log2 foldchanges. GSEA was performed using the 
“fgsea” R package version 1.16.0, log2 foldchanges from 
differential gene expression and gene ontology biological 
processes (GO:BP,C5 v7.1) as well as hallmark gene sets 
(H, v7.1) downloaded from MSigDB database [26–28]. 
Gene sets were included if they had at least 15 genes or 
at maximum 500 genes within the gene set using 10,000 
permutations.

For deriving epithelial differentiating and pEMT 
gene signatures of patient 1 we calculated foldchanges 
between the “epi” and “pEMT” cluster and included genes 
with log2 foldchanges greater or lesser than 1, respec-
tively, and with at least 10% of either epi or pEMT cells 
expressing that gene. Gene set variation analysis (GSVA) 
was performed using the R package GSVA version 1.38.2 
with default settings, i.e., gaussian kernel [29]. As input, 
EMTome signatures, the pEMT and epithelial differen-
tiation 1 and 2 signature from Puram et al. [10] and the 
three EMT and the epithelial senescence signatures from 
Kinker et al. were used [14].

Trajectories were inferred using SlingShot version 1.8.0 
with malignant cell clusters as shown in Fig. 2A of patient 
1 and the first 20 PCs [30]. RNA velocity was inferred 
using the VeloCyto python and R package (version 0.6) 
[31]. Creation of the loom file was done using default 
options and gene annotations as used for Cellranger pro-
cessing. Genes were filtered based on the minimum aver-
age expression magnitude with a threshold of 0.05 for 
spliced and 0.02 for unspliced reads. Velocity estimates 
were calculated using the inverse correlation coefficient 
of the PC embedding correlation matrix as distance, the 
top/bottom 2% quantiles for gamma fit, 50 neighboring 
cells projecting 1 deltaT into the future and projected on 
the UMAP using 200 neighbors and 30 grid points.

Transcription factor activity was inferred using the 
VIPER algorithm (version 1.24.0) and regulons from the 
DoRothEA database (version 1.2.2) [32–34]. Hierarchi-
cal clustering in the heatmaps was performed using the 
Euclidean distance and ward.D2 method unless other-
wise noted. Visualization was performed using ggplot2 
version 3.3.3 and ComplexHeatmap version 2.6.2 [35, 36].

Reanalysis of HNSCC dataset from Kürten et al.
From the publicly available scRNAseq data set on pri-
mary HNSCC tumors we downloaded the FASTQ files 
of CD45-negative and HPV-negative libraries from 
the sequencing read archive (SRA) under accession ID 
SRP301444 [17]. The data sets were analyzed the same as 
described above. HPV-negative samples were chosen for 
comparability to the OSCC dataset. However, the HN07 
tumor originated from the larynx, while all other samples 

originated from the oral cavity. We adjusted the cell iden-
tification thresholds based on our evaluation criteria 
pooled for all libraries: cells were defined by having more 
than 175 genes expressed, less than 10% mitochondrial 
gene expression and more than 60 housekeeper genes 
expressed (see Additional file 11).

Results
Single‑cell gene expression signatures of tumor cells 
from a single metastasis show several predominant, 
but not necessarily exclusive, functional phenotypes
To avoid inter-patient heterogeneity as a confounding 
factor, we first focused on the analysis of a single OSCC 
metastasis to develop hypotheses which would be subse-
quently tested in the entire cohort. For this, we chose a 
metachronous lymph node metastasis that was removed 
one year after the primary tumor, because we assumed 
that consolidation processes are particularly pronounced 
in this longer existing metastasis. Multiplexed scRNAseq 
recovered 4121 cells that could be assigned to the fol-
lowing cell types: 1906 (46.8%) tumor cells, 1186 (29.1%) 
fibroblasts, 507 (12.4%) dendritic cells (DCs), 375 (9.2%) 
macrophages and 102 (2.5%) endothelial cells (Fig.  1A). 
The absence of T or B cells was in line with the histol-
ogy showing completely disrupted lymph node struc-
tures and only occasional tumor-infiltrating lymphocytes 
(Additional file  1: Fig. S1). OSCC cells were identified 
both by the presence of copy number variations (CNVs) 
inferred from scRNAseq data as well as the expression of 
epithelial markers including S100A2, cytokeratins (KRT5, 
KRT14, KRT17) and stratifin (SFN) (Additional file 2: Fig. 
S2C–E).

Detailed phenotyping of the cancer cells identified 
several clusters to which we could assign predominant 
functional phenotypes that differ in their EMT state, 
immunomodulatory capacity, as well as their response 
to hypoxia, stress, and metabolic constraints (Fig. 1B-D). 
However, the predominance of a functional phenotype 
does not exclude additional traits. Specifically, 515 cells 
exhibited a pEMT phenotype characterized by expression 
of a mixture of epithelial and mesenchymal genes such as 
matrix metallopeptidases (MMPs), caveolin-1 (CAV1) 
and C–X–C motif chemokine ligand 14 (CXCL14). Those 
genes were previously described in pEMT signatures 
and are enriched in the EMT hallmark gene set from the 
molecular signatures database (MSigDB) (Additional 
file  3: Fig. S3A) [10, 27]. In contrast, 385 cells showed 
higher expression of genes associated with epithelial 
differentiation such as S100A7/A8/A9, the keratino-
cyte envelope protein cornifin-B (SPRR1B), and specific 
cytokeratins (e.g., KRT6B and KRT16). The EMP-related 
gene expression patterns correlate with established sig-
natures from the EMTome database (Additional file  3: 
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Fig. S3B–E) [9]. Interestingly, 184 cells from both EMP-
phenotypes were present in a mixed cluster characterized 
by the high expression of cell-cycle related genes (despite 
the fact that we applied cell cycle regression).

With respect to cell clusters whose gene expression 
was not predominately associated with EMP, 268 cells 
exhibited an immune-regulatory phenotype enriched for 
genes associated with cytokine-mediated responses and 

mrna processing
coagulation
cellular protein complex disassembly
rna splicing via transesterification reactions
hallmark myc targets v1

pE
M

T

cell cycle
cell cycle process
hallmark g2m checkpoint
mitotic cell cycle
hallmark e2f targets

m
ix

epidermis development
epidermal cell differentiation
cornification
keratinization
keratinocyte differentiation

ep
i

cellular response to lipid
cellular response to biotic stimulus
response to cytokine
cytokine mediated signaling pathway
hallmark tnfa signaling via nfkb

gastrulation
formation of primary germ layer
hallmark glycolysis
cell substrate junction organization
extracellular structure organization

hy
po

xi
a

alpha amino acid metabolic process
response to extracellular stimulus
response to starvation
hallmark mtorc1 signaling
hallmark unfolded protein response

m
et

ab
ol

is
m

establishment of protein localization to ER
cotranslational protein targeting to membrane
nuclear transcribed mrna catabolic process
viral gene expression
nuclear transcribed mrna catabolic process NMD

st
re

ss
Im

m
un

e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

normalized enrichment score

pE
MT

mix ep
i

Im
mun

e

hy
po

xia

meta
bo

lism

str
es

s

CXCL14
PRSS23
CAV1
FST
MT1E
IFITM3
MT2A
MMP13
TXNDC17
MMP10
HIST1H4C
HMGB2
UBE2C
STMN1
CDKN3
CDK1
TYMS
RRM2
DUT
MKI67
S100A8
S100A7
KRTDAP
S100A9
SLPI
SPRR1B
KRT6B
FABP5
KRT16
SBSN
CXCL3
CXCL2
CXCL1
CXCL8
CCL20
IER3
TNFAIP3
NFKBIA
DUSP2
HSPA1A
NDRG1
SERPINE1
LAMB3
IGFBP3
TIMP3
P4HA1
SLC2A1
EGLN3
HSPG2
CA9
TRIB3
ASNS
ASS1
PSAT1
MTHFD2
SLC7A5
PHGDH
DDIT4
WARS
AREG
WFDC2
FOS
GLUL
CHCHD10
ISYNA1
SPRY1
CEBPD
HES4
JUN
ID3

C D

epi

hypoxia

Immune (CXCL1/2/3/8)
stress

metabolism

pEMT

mix

-2.5

0.0

2.5

-5
.0

-2
.5 0.
0

2.
5

5.
0

UMAP_1

U
M

AP
_2

scale.data

−10
−5
0
5
10

-log10(padj)

0

1

2

-10

0

10

-1
0 -5 0 5 10

UMAP_1

U
M

AP
_2

Tumor
cDCs

ECs

Fibroblasts

Macrophages

1906 cells

507 cells

1,186 cells

102 cells

375 cells

A B

(C
XCL1

/2/
3/8

)

(C
XC

L1
/2

/3
/8

)

Fig. 1 Single-cell gene expression signatures in OSCC cells from a single metastasis reveal predominant functional phenotypes. A UMAP 
based on scRNAseq data of 4076 cells isolated from a metachronous lymph node metastasis. Cells are annotated and summarized according 
to the presumed cell type. B UMAP of 1906 OSCC cells depicted in A. Cells are annotated according to predominant functional phenotype. C 
Heatmap for scaled, log-normalized gene expression of tumor cells (columns) split by respective phenotype and the top 10 differentially expressed 
genes (DEGs) (rows) of the respective phenotype against all other tumor cells. DEGs are sorted from highest to lowest log2 foldchange. Row 
sections are ordered like column sections. D Top 5 enriched gene sets from log2 foldchanges of respective tumor phenotypes by normalized 
enrichment scores (x-axis). Gene sets of respective phenotypes are sorted from highest to lowest enrichment. Bars are colored by the negative 
decadic logarithm of the Benjamini–Hochberg adjusted p-value (padj). DCs: dendritic cells. ECs: endothelial cells



Page 7 of 19Horny et al. Journal of Translational Medicine  (2023) 21:267 

0

2

4

6

0 10 20 30 40 50 60 70 80 90 10
0

curve 2

M
M

P
1

0

2

4

6

0 10 20 30 40 50 60 70 80 90 10
0

curve 2

V
IM

0

2

4

6

0 10 20 30 40 50 60 70 80 90 10
0

curve 2

SP
R

R
1B

0

2

4

6

0 10 20 30 40 50 60 70 80 90 10
0

curve 2

K
LK

7
epi-3

hypoxia

Immune (CXCL1/2/3/8)
stress

epi-1

metabolism

pEMT-2
pEMT-1

pEMT-3

mix

pEMT-4

epi-4

epi-2

-2.5

0.0

2.5

-5
.0

-2
.5 0.
0

2.
5

5.
0

UMAP_1

U
M

AP
_2

pEMT-1
pEMT-2
pEMT-3
pEMT-4
mix
epi-1
epi-2
epi-3
epi-4
Immune
hypoxia
metabolism
stress

pE
MT−1

pE
MT−2

pE
MT−3

pE
MT−4

mix ep
i−1

ep
i−2

ep
i−3

ep
i−4

THBS1
CYR61
F3
CAV1
FST
CXCL14
MMP10
MMP13
KRT15
MMP1
SERPINA1
MT2A
BGN
PDPN
TXNDC17
CDKN3
UBE2C
LGALS1
CENPW
HMGN2
HIST1H4C
HMGB2
UBE2C.1
STMN1
CDKN3.1
SPRR1B
S100A8
KRT16
S100A9
LYPD3
CTSC
FABP5
RHOV
LGALS7
MT1X
S100A7
KRTDAP
TMEM45A
PI3
SLPI
PSCA
ADIRF
KLK6
KLK7
KRT13

−4 −2 0 2 4 6

−4
−2

0
2

4

scale.data

−10
−5
0
5
10

A B

C D

E F

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2
ch

r1
3

ch
r1

4
ch

r1
5

ch
r1

6
ch

r1
7

ch
r1

8
ch

r1
9

ch
r2

0
ch

r2
1

ch
r2

2
ch

rX
ch

rY

pEMT−1

pEMT−2

pEMT−3

pEMT−4

mix

epi−1

epi−2
epi−3
epi−4

log2

0
1
2
3
4

malignant
non-

cells

-20

-10

0

10

20

0 20 40

principal component 1 (3.9% variance)

pr
in

ci
pa

l c
om

po
ne

nt
 2

 (
1.

2%
 v

ar
ia

nc
e)

2
1

3 4 mix 2 1
3
4

pEMT epi
start

curve6

curve1

curve2

curve1

curve2

curve6

Fig. 2 A progressive epithelial differentiation, but no strong uniform direction of development in pEMT clusters. A UMAP of 1906 OSCC cells 
annotated based on SNN clustering, defining 4 pEMT (pEMT-1 to 4), 4 epithelial differentiated (epi-1 to 4) and one mixed (mix) cluster; clusters are 
numbered by size. B Heatmap for scaled, log-normalized gene expression in EMP-associated tumor cell phenotypes (columns) split by EMP cluster 
and their top 5 DEGs (rows) against all other EMP-related tumor cell phenotypes. DEGs are sorted from highest to lowest log2 foldchange. Row 
sections are ordered like column sections. C Projection of RNA velocity on the UMAP depicted in A. Arrows indicate the extrapolated direction 
of development; arrow length indicates strength of future development. D First two principal components of OSCC cells with the three EMP-related 
principal curves that are derived from trajectory inference. Graph on top visualizes the relationship between EMP clusters described by the three 
principal curves forming a branching trajectory. E Log-normalized expression (y-axis) of MMP1, VIM, SPRR1B and KLK7 across pseudotime values 
(x-axis) of curve 2, color-coded by clusters. Red lines indicate smoothed expression values over the trajectory generated with a general additive 
model; 95% confidence intervals are shaded gray. F Inferred CNVs across EMP-related tumor cells (rows) for all chromosomes (columns). Red 
indicates copy number gains, white diploid copy number and blue copy number loss. Columns show genes categorized in chromosomes 
and ordered by genome position; hence the size of the chromosome reflects the number of detected genes and not its nucleotide length. 
Mitochondrial genes were excluded



Page 8 of 19Horny et al. Journal of Translational Medicine  (2023) 21:267

higher expression of the chemokines CXCL1/2/3/8 and 
CCL20. For 554 cells, the gene expression pattern sug-
gests adaptation to environmental factors. Specifically, 
51 cells had higher expression of transcription factors 
FOS and JUN, suggesting a stress response, and 310 cells 
can be assumed to respond to hypoxic conditions in the 
tumor based on the higher expression of NDRG1 and 
EGLN3, which are both regulated by oxygen levels [37, 
38]: NDRG1 regulates stress response and p53-mediated 
caspase activation [37] and EGLN3 has an important role 
in regulation of hypoxia-inducible factor 1 alpha (HIF1α) 
through prolyl hydroxylation [38]. 193 cells expressed 
genes associated with amino acid metabolism, starvation 
response and mTORC1 signaling, i.e., a regulator of mito-
chondrial metabolism [39]. The upregulated genes ASNS, 
PSAT1 and PHGDH integrate the metabolites of serine 
and glycine metabolism into glycolysis and therefore fuel 
glycolysis with amino acids [40]; hence, these cells appear 
to be adapted to low-glucose conditions.

OSCC cells in lymph node metastases undergo 
mesenchymal‑epithelial transition
We next focused on possible dynamics within the pre-
dominantly EMP-related cancer cell clusters using a 
higher resolved shared-nearest neighbor (SNN) cluster-
ing. Based on this, we defined 4 pEMT clusters (pEMT-1 
to 4), 4 clusters of more epithelial differentiated cells 
(epi-1 to 4) and one cluster with mixed phenotypes 
(mix) (Fig.  2A). pEMT-1 is enriched for genes involved 
in coagulation such as THBS1, CYR61 and F3, and may 
play a role in angiogenesis (Fig. 2B, Additional file 4: Fig. 
S4A). pEMT-2 and 3 both showed higher expression of 
extracellular matrix (ECM) remodeling genes, but in 
addition pEMT-2 was characterized by higher expres-
sion of cytokeratin KRT15 and chemokine CXCL14 while 
pEMT-3 showed higher expression of the serine pro-
tease inhibitor SERPINA1 and podoplanin (PDPN) which 
mediates efficient ECM degradation by controlling inva-
dopodia [41]. Of the more epithelial differentiated cell 
clusters, epi-2’s expression profile is closest to the pEMT 
cluster, having higher expression of MMP1 and lower 
expression of SPRR1B and S100A8/A9 than epi-1, epi-
3, or epi-4 (Fig.  2B, E). Epi-3 showed increased expres-
sion of S100A7 and KRTDAP, whereas epi-4 showed 
higher expression of kallikreins (KLK6/7), prostate stem 
cell antigen (PSCA) and adipogenesis regulatory factor 
(ADIRF). Both ADIRF and PSCA play a role in prostate 
cancer and PSCA is also reported as highly expressed in 
mucosal tissue, but less in HNSCC [42–44].

To gain a better understanding on the gene expression 
dynamics in this metastasis, we estimated RNA veloc-
ity, which predicts the short-term future development 
in gene expression of individual cells using the ratio of 

spliced and non-spliced mRNA counts (Fig.  2C) [31]. 
This analysis revealed that epithelial differentiated cells 
were strongly developing towards cluster epi-4, while 
most other cells show more or less random patterns of 
developmental directions, hence could not be inter-
preted. Tracking the developmental pathway within the 
metastasis by trajectory analysis across all EMP-related 
clusters revealed a major developmental axis between 
pEMT and epithelial differentiated cells that is diversi-
fying within each end (Fig.  2D, E, Additional file  4: Fig. 
S4B). To confirm that the found progressive epithelial 
differentiation of the metastatic cells represents an MET, 
we inferred CNVs from the scRNAseq data. This dem-
onstrated an increased number of copy number gains on 
chromosome 1, 8, 17, and 19 within epithelial differen-
tiated cell clusters epi-1, epi-3, and epi-4 (Fig. 2F, Addi-
tional file 4: Fig. S4C). It should be noted, however, that 
CNVs on chromosomes 1 and 17 are associated with 
upregulated epithelial genes in close genomic proxim-
ity; thus, these two copy number gains may not represent 
true genomic CNVs, but rather reflect the high expres-
sion of these genes in epithelial differentiated cells (Addi-
tional file 4: Fig. S4D, E).

Intra‑tumoral heterogeneity of OSCC is driven by EMP
To test whether our observation that OSCC cells in one 
lymph node metastasis undergo a mesenchymal-epithe-
lial transition is generally valid, we extended our analyses 
by adding 5 primary tumors and 8 matched lymph node 
metastases from 6 patients (Additional file 10: Table S1). 
The patients presented with a history of tobacco smok-
ing and alcohol abuse except the female patients #4 and 
#5, both of whom, however, also lack HPV positivity. 
From the publicly available scRNAseq data set on pri-
mary HNSCC tumors published by Kürten et al. [17] we 
chose to include the 9 HPV-negative primary tumors in 
our analysis, of which all but one originated from the 
oral cavity (HN07 originated from the larynx). In total, 
we analyzed 7263 cancer cells from 16 different patients 
(Fig. 3A). Importantly, the frequency of cancer cells was 
unevenly distributed across samples, which could not 
be explained by differences in tumor cell content across 
samples as determined for our cohort by histopathol-
ogy (Additional file 1: Fig. S1). The stability of epithelial 
tumor cell assemblies, which may not be sufficiently bro-
ken up by dissociation protocols, likely interfered with 
the generation of OSCC single-cell suspensions (Addi-
tional file 5: Fig. S5A). In addition, as expected from the 
inter-patient heterogeneity, cancer cells were clustered 
based on their gene expression by patient rather than 
functional phenotype (Fig.  3A, B). Thus, we accounted 
for the patient-specific effects with batch-corrected prin-
cipal components (PCs) using the harmony R package 
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which indeed resulted in a clustering by functional phe-
notypes [45] (Fig.  3C, Additional file  5: Fig. S5B–D). 
For annotation of the phenotype of the clusters we were 
guided by the gene signatures previously identified in the 
indicator sample, but also found several additional, pre-
dominantly immunoregulatory phenotypes. EMP-related 
phenotypes were present in all but one tumor sample 
with only one EMP cell (Fig. 3D). To compare the EMP-
related intrapatient heterogeneity of all analyzed tumor 
cells between patients, we performed differential gene 
expression within each patient and calculated the simi-
larities between the resulting clusters of all patients. We 
first considered each patient individually and performed 
clustering, annotation, inferCNV and differential expres-
sion analysis. As exemplified for the primary OSCC of 
patient HN01, tumor cell clusters had the same inferred 
CNVs and were annotated based on their phenotype 
again using the indicator sample as a guide (Fig. 3E, Addi-
tional file  5: Fig. S5E, F). The cosine similarity between 
patient-specific clusters demonstrated that within each 
patient, the heterogeneity in EMP is most prominent and 
epithelial differentiated phenotypes are profoundly dif-
ferent from most other clusters, especially pEMT (Fig. 3F, 
Additional file 5: Fig. S5G). Indeed, all pEMT phenotypes 
are very similar to each other and show a large over-
lap of the gene expression patterns with predominantly 
immune- and metabolic-related clusters. In epithelial dif-
ferentiated cells, the most upregulated genes are S100A8 
and S100A9, encoding calprotectin, and SPRR1B, which 
are all members of the epidermal differentiation complex 
[46]. Of note, hypoxia- and stress-related heterogeneity is 
similar between patients suggesting a reactive response 
rather than an aspect of tumor evolution.

EMT‑related transcription factor ZEB1 is highly active 
in metastatic epithelial differentiated OSCC cells
The transcription factors ZEB1/2, TWIST1/2, Snail 
(SNAI1) and Slug (SNAI2) are key for regulation of EMP 
[7, 27]. While mRNA expression of SNAI2 within sin-
gle OSCC cells was reported by Puram et  al., the other 
transcription factors were not detected [10]. Here, we 
confirm this observation as we detected SNAI2 mRNA in 
almost half of the OSCC cells, but none of the other tran-
scription factors (Fig.  4A). However, detection of lowly 
expressed genes such as transcription factors by scR-
NAseq, especially in 10X genomics technology, becomes 
unreliable due to dropout effects [47]. Also, the activity of 
transcription factors is often not reflected by the dynam-
ics of their mRNA expression alone, as their activity 
additionally depends on protein stability and posttrans-
lational modifications; for example, the ZEB1 protein is 
more stable than Snail [48]. To circumvent this problem, 
we inferred the activity of these transcription factors 

based on the mRNA expression profile of their target 
genes using the algorithm VIPER with regulons defined 
by DoRothEA database [32–34]. Using this approach, we 
were able to detect high activities of ZEB1, ZEB2, Snail 
and Slug in OSCC cells of different patients with vary-
ing EMP phenotype (Fig. 4B). This shows that epithelial 
differentiation in OSCC metastases is associated with 
higher activity of the EMT activator ZEB1 (Fig.  4C). 
Since, on the one hand, this was unexpected and, on the 
other hand, the method used to derive transcription fac-
tor activities potentially overestimates the activity for 
transcriptional repressors, we addressed the plausibility 
of this observation (Additional file 6: Fig. S6). Consistent 
with the fact that one of the main functions of ZEB1 is 
the downregulation of E-cadherin [49] (CDH1), OSCC 
cells generally showed low expression of CDH1 (Fig. 4B). 
Next, we investigated the expression of the ZEB1 pro-
tein by immunohistochemistry (IHC) in all 14 tumor 
lesions of our cohort. We observed nuclear ZEB1 expres-
sion in similar tumor areas as cytoplasmic cornifin-B 
expression, which served as a marker of epithelial dif-
ferentiation (Fig. 4D, E). Consequently, we validated the 
co-expression of ZEB-1 and cornifin-B in the same cell 
by immunofluorescence double-staining (Fig. 4F). In line 
with our scRNAseq data, colocalization of both proteins 
was observed in a fraction of cancer cells in 9/14 (64%) 
samples and double positive cells were more frequently 
observed in lymph node metastases (7/9, 78%; Additional 
file 10: Table S1) compared to primary tumors (2/5, 40%).

Immunomodulating CAFs are present in primary tumors 
and tumor‑involved lymph nodes
Next, we investigated the OSCC tumor microenviron-
ment (TME) and derived its potential impact on meta-
static dissemination. For this, we additionally analyzed 
the scRNAseq data of 5 tumor-free lymph nodes from 
patients #4, #6 and #7 (Fig.  5A, B). In this expanded 
cohort, most of the 41,284 cells were derived from the 
tumor-involved or tumor-free lymph nodes (34,599 cells, 
84%), which as expected were predominantly immune 
cells, (35,856 cells, 87%, Fig.  5C, Additional file  7: Fig. 
S7A). The other non-malignant cells were fibroblasts 
(1595 cells, 4%), pericytes (551 cells, 1%), endothelial 
cells (399 cells, 1%) and muscle cells (55 cells, 0.1%). In 
comparison, due to the negative selection of CD45 + leu-
kocytes, the data set of Kürten et al. shows a higher pro-
portion of stromal cells, including endothelial cells (5972 
cells, 28%), fibroblasts (3067 cells, 15%) and pericytes 
(673 cells, 3%, Fig. 5D, Additional file 7 Fig. S7B). Quan-
tification of cell type composition in scRNAseq datasets 
is difficult to interpret because of technical biases in 
sample preparation (e.g., larger and stiffer cell types are 
generally underrepresented) that results in cell number 
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and patient-specific differences (Additional file  7: Fig. 
S7C, D). Hence, we examined the bulk transcriptome and 
deconvoluted the respective cell types for our samples, 
revealing higher tumor and stroma cell content com-
pared to cell type proportions derived from scRNAseq 
data (Additional file  8: Fig. S8A). Still, the tumor-free 
lymph nodes contained a high number of lymphocytes, 
whereas the metastatic samples had a composition simi-
lar to primary tumors despite the relevant differences 
between samples (Additional file 8: Fig. S8A, B).

Since the EMP status of tumor cells affects the proper-
ties of CAFs and vice versa, we focused on the transcrip-
tional phenotypes of CAFs. Three main phenotypes were 
identified within our dataset: ECM-producing and -mod-
ifying fibroblasts (1071 cells, 67%), immunomodulating 
fibroblasts (311 cells, 19%) and contractile myofibroblasts 
(144 cells, 9%, Fig.  5E, Additional file  9: Fig. S9A–D). 
Additionally, there was a small population of fibroblast 
reticular cells (FRCs, 41 cells, 3%) and myoblasts (28 cells, 
2%). These phenotypes were also present in the Kürten 
et al. dataset and due to the higher number of available 
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from C colored by the respective phenotypes derived from shared-nearest neighbor clusters. F UMAP of 2,920 fibroblasts and 683 pericytes from D 
colored by the respective phenotypes derived from shared-nearest neighbor clusters
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cells, we were also able to differentiate the immunomod-
ulating fibroblasts into further subtypes varying in their 
expression of chemokines and cytokines and to identify 
a fibroblast population associated with cell stress (Fig. 5F, 
Additional file 9: Fig. S9E–H).

The ECM-producing and -modifying phenotype is 
characterized by higher expression of MMPs, collagens 
(i.e., I, III, V and VI) and is enriched for gene sets related 
to formation and organization of the ECM (Additional 
file 9: Fig. S9A–C, E–G). Cells with contractile functions 
include pericytes identified by expression of the regulator 
of G-protein signaling 5 (RGS5), myofibroblasts identified 
by cytoskeleton genes such as alpha smooth muscle actin 
2 (ACTA2), actin gamma smooth muscle 2 (ACTG2) and 
myosin heavy chain 11 (MYH11), and myoblasts identi-
fied by desmin (DES), chordin like 2 (CHRDL2) and tran-
scription factors associated to myogenic differentiation 
(MYF5/6, Additional file  9: Fig. S9A, D, E, H). Moreo-
ver, myofibroblasts have enriched gene sets related to 
muscle contraction and similar to pericytes only express 
collagens IV and XVIII. Stress-associated cells express 
heat shock proteins (HSPA’s), AP-1 related genes JUN 
and FOS and also ECM-producing genes, indicating 
they are ECM-producing fibroblasts impregnated with 
a transcriptional stress response signature as the pre-
dominant phenotype (Additional file 9: Fig. S9G). Immu-
nomodulating fibroblasts exhibit higher expression of 
chemokines such as CXCL12 or CXCL14, cytokines such 
as Interleukin 6 (IL6), complement factors such as C3 and 
CFD, and phospholipases such as PLA2G2A and APOD, 
with most enriched gene sets being related to immune 
response mechanisms (Additional file  9: Fig. S9A, D, E, 
H). Hence, these cells probably exert an immune-modu-
latory effect within the TME. FRCs cluster closely to the 
immunomodulating cells and highly express chemokines 
CCL2, CCL8, CXCL2, CXCL12 as well as CCL19 and 
CCL21. The latter two chemokines regulate lymphocyte 
homing and are characteristic of lymph node FRCs [50–
52]. FRCs which are usually present in mucosal, skin and 
lymph node tissue were accordingly most abundant in 
tumor-free lymph nodes (on average 18% vs 6% in met-
astatically affected lymph nodes, Additional file  9: Fig. 
S9I) [53–55]. Interestingly, we also detected FRCs within 
the primary tumors, suggesting they are functioning in 
mucosa-associated lymphoid tissue (MALT, Additional 
file 9: Fig. S9I, J).

Discussion
EMT represents the reactivation of an embryonic 
developmental program in which cells acquire migra-
tory and invasive properties, i.e., prerequisites for inva-
sion and metastasis of cancer [3, 56, 57]. Thus, in early 
stages of metastasis, tumor cells undergo EMT, whereas 

in established metastases the reverse process aka MET 
is also observed [58, 59]. To assess the EMP-associated 
heterogeneity among OSCC cells and gain some insight 
into the dynamics of this process, we examined the tran-
scriptomes of 7,263 individual carcinoma cells isolated 
from primary and metastatic OSCC. Although we col-
lected a high number of carcinoma cells in total, one of 
the limitations of this study is the often low number of 
malignant cells examined per tumor lesion. Despite this, 
we were able to demonstrate a progressive MET within 
a single, established lymph node metastases and confirm 
the EMP-associated heterogeneity in primary and meta-
static OSCC. Interestingly, the epithelial differentiation in 
OSCC metastases is associated with higher activity of the 
EMT-activator ZEB1, which was confirmed on protein 
level by detection of co-expression of ZEB1 and cornifin-
B in individual tumor cells using immunofluorescence 
staining. Consistent with previous reports showing that 
the EMP status of tumor cells influences the properties of 
CAFs and vice versa, we also detected distinct CAF phe-
notypes in primary tumors and tumor-involved lymph 
nodes; interestingly, immunomodulating fibroblasts were 
found throughout the metastatic cascade [5, 6].

EMP appears to be the main driver of cellular heteroge-
neity within OSCC: detailed phenotyping of cancer cells 
identified several clusters whose predominant functional 
phenotypes corresponded to different EMP states, rang-
ing from a pEMT to a more epithelial differentiated state. 
Moreover, pEMT phenotypes in particular might super-
impose with traits related to angiogenesis, ECM remod-
eling, metabolic adaptations, stress, and interactions 
with the immune system. Metabolic adaptations include 
response to environmental limitations such as hypoxia 
and low glucose. Low glucose conditions are counter-
acted with upregulation of genes related to amino acid 
metabolism that fuel into glycolysis [40]. While previous 
studies suggested that the activity of specific metabolic 
pathways in OSCC varies widely among patients [60], we 
observed that hypoxia- and stress-related gene expres-
sion patterns are similar between patients, supporting 
the notion of a reactive response rather than an aspect of 
individual tumor evolution.

In terms of EMP dynamics, it is assumed that cells may 
transit from one EMP state to another along a continu-
ous spectrum of changes. Currently, however, it is also 
discussed if long-lived phenotypes representing discrete 
EMP states prevail [3, 7, 8, 10, 11, 13–15]. Most studies 
supporting continuous transitions are based on in  vitro 
or preclinical in  vivo models that may not fully reflect 
the complexity of the tumor and its microenvironments 
[7, 8, 11]. Indeed, human in  situ or ex vivo studies sug-
gested distinct EMP states; however, these approaches 
do not fully capture cellular dynamics [10, 14, 57]. We 



Page 14 of 19Horny et al. Journal of Translational Medicine  (2023) 21:267

demonstrated that within each patient, the EMP-driven 
differences are most prominent and epithelial differenti-
ated phenotypes are profoundly different from pEMT 
clusters, suggesting that these states may be more static. 
Moreover, gene expression dynamics estimated by RNA 
velocity demonstrated epithelial differentiated cells were 
strongly developing towards a more pronounced epithe-
lial differentiation with an increasing expression of genes 
of the epidermal differentiation complex [46]. Of note, 
OSCC cells with a pEMT phenotype did not show such 
a uniform developmental direction. The assumption that 
epithelial differentiated metastatic cells developed later 
than pEMT cells, i.e., underwent MET, is supported by 
an increasing number of inferred copy number gains 
towards increasing epithelial differentiation even if 
accounting for the limitations of this approach.

However, we cannot conclude whether MET happened 
within the metastasis or primary malignancy, as our data 
reflects the tumor heterogeneity within a specific time-
point of tumor evolution. As we observed a similar EMP 
heterogeneity in primary tumors, multiple disseminated 
tumor cells reflecting this heterogeneity might have 
migrated collectively, which could be crucial for meta-
static consolidation [61].

Unexpectedly, we found high transcriptional activ-
ity of the EMT-activator ZEB1 in epithelial differenti-
ated OSCC cells in both primary and metastatic tumor 
lesions, even considering that the scRNAseq data 
inferred transcription factor activities are biased towards 
transcriptional repressors. In the case of primary tumors 
this may be interpreted as the incipient EMT, but this 
hypothesis would not work for metastatic lesions where 
ZEB1 activity was associated with a progressive epithe-
lial differentiation. Indeed, in previous studies, depletion 
of ZEB1 was reported to drive tumor cells from pEMT 
towards an epithelial phenotype [62, 63]. However, deple-
tion of Zeb1 in a mouse model also reduces phenotypic 
variability of cancer cells, particular their phenotypic/
metabolic plasticity [62]. While it is well established that 
ZEB1 together with microRNAs stabilizes EMT through 
a feedforward loop, this loop could also induce epithelial 
differentiation based on environmental factors [64]. In 
addition to the transcriptional repressor activity, ZEB1 
has been demonstrated to induce the epithelial differen-
tiation marker cornifin-B in response to IL-1β and IFN-γ 
[65]. We not only demonstrate the simultaneous occur-
rence of SPRR1B mRNA expression and ZEB1 activity, 
but also the co-localization of cornifin-B and the ZEB1 
protein expression in OSCC lymph node metastases. 
Thus, although ZEB1 activity is crucial for the induc-
tion of the pEMT state, it does not seem to completely 
prevent partial epithelial differentiation. Remarkably, no 
relevant differences in CDH1 expression were detected 

between the different EMP states in the metastatic OSCC 
lesions. Therefore, the more epithelial differentiated phe-
notypes we observed most closely correspond to a par-
tial epithelial differentiation analogous with the observed 
pEMT phenotypes. We speculate that the driving force 
behind this EMP-associated heterogeneity of OSCC cells 
is to maintain cellular integrity. For example, ZEB1 is 
an ATM-substrate linking ATM and CHK1, promoting 
homologous recombination-dependent DNA repair and 
thereby protecting cells from genotoxic stress whereas 
expression of keratin intermediate filaments helps to pro-
tect cells from stress associated apoptosis [66, 67].

Similar to previous reports, we detected various fibro-
blast phenotypes in OSCC lesions, of which, remarkably, 
the immunomodulatory CXCL14-expressing fibroblasts 
were found in both primary tumors and lymph node 
metastases [10, 17, 55, 68]. This indicates the special 
importance of this subgroup, as they may enable tumor 
cells to escape from the immune system. Using single-
cell mRNAseq data, CXCL14-expressing fibroblasts have 
previously been detected in HNSCC, melanoma, and 
lung cancer lesions and are presumed to have immuno-
suppressive effects; the latter explained the association 
of their presence with poorer prognosis [68]. However, 
CXCL14 is also constitutively expressed and secreted by 
fibroblasts and keratinocytes in healthy skin and mucosa 
[69, 70]. Indeed, the effects of the chemokine CXCL14 
seem to depend strongly on the cellular context [71]. 
For example, restored CXCL14 expression in HPV-pos-
itive oropharyngeal carcinoma is associated with better 
survival in immunocompetent syngeneic mice [72] but 
CXCL14-producing CAFs promoted tumor growth in 
a prostate cancer model [73]. Similarly, ECM-modify-
ing and contractile fibroblasts can promote or suppress 
tumor progression by consolidating or disrupting tissue 
structure, as ECM remodeling can affect both tumor and 
immune cell migratory ability [74].

Our study demonstrates that the comprehensive 
molecular characterization of tumor lesions captures 
both their complexity, as well as the heterogeneity 
between manifestations and the dynamics of their cel-
lular composition [75]. In particular, the heterogeneity 
of EMP status in HNSCC appears to be of translational 
importance as it provides further insight into tumor 
aggressiveness and treatment resistance. Similarly, it 
may help to assess the impact of systemic therapies on 
the microenvironment and correlate different EMP phe-
notypes with further clinical progression [76]. This also 
applies to the effect of perioperative drugs, which are 
designed to counteract the spread of cancer by inhibit-
ing stress-inflammatory responses such as the release 
of catecholamines and prostaglandins [77]. Patients 
would therefore benefit from translational molecular 
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companion programs by differentiating early effective 
from ineffective interventions.

In summary, the data presented here indicates that the 
interplay between tumor and stromal cell interactions is a 
highly complex process and that the EMP status of tumor 
cells and the polarization of stromal cells may influence 
each other. Our observations suggest that tumor cells and 
CAFs behave similarly in primary and metastatic OSCC 
samples. These findings may help to unravel the role of 
fibroblasts in predicting metastasis risk, which in turn 
may influence treatment decisions in OSCC.

Conclusions
Single cell transcriptomics reveals that heterogene-
ity within OSCC cells is dominated by EMP differences 
resulting in distinct partial EMT and epithelial dif-
ferentiated phenotypes. Particularly, the partial EMT 
phenotypes can be accompanied by features related to 
metabolic adaptations, stress, and interaction with the 
immune system. In addition, CAFs were shown to be a 
major component of the TME, with immunomodulating 
CXCL14-expressing fibroblasts in both primary OSCC 
tumors and lymph node metastases indicating their rel-
evance during immune escape. The EMP phenotypes 
likely endow capabilities that are essential for the differ-
ent stages of the metastatic process, including mainte-
nance, cellular integrity and polarization of stromal cells. 
This could be a possible additional function of ZEB1, as it 
is also expressed during progressive epithelial differentia-
tion in OSCC metastases.
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Additional file 1: Figure S1. Histology of OSCC primary and metastatic 
tumors. Whole-slide image H&E staining for FFPE sections of OSCC 
samples. Scale bars depict 2 mm. High-resolution pictures are available 
through DOI: https:// doi. org/ 10. 6084/ m9. figsh are. 20905 837. v1.

Additional file 2: Figure S2. Cell type identification by marker genes, 
automated reference-based annotation, differential expression and 
inferred CNVs. (A) Expression of marker genes (x-axis) for each cell type 
(y-axis) in our cohort. Dots are colored by the average log-normalized 
gene expression and the dot size represents the percentage of cells with 
detected expression of the respective gene within the cell type. (B) UMAP 
of 41,284 cells from our cohort cells colored by SingleR annotations using 
the Monaco bulk RNA dataset on shared-nearest neighbor clusters with 
resolution 100. (C) Heatmap for scaled, lognormalized gene expression of 
all cell types from patient #1 and their top 10 DEGs (rows) against all other 
cells. DEGs are sorted from highest to lowest log2 foldchange. (D) Inferred 
CNVs across cells (rows) of different cell types without mitochondrial 
genes from patient #1. Columns show genes categorized in chromosomes 
and ordered by genome position; hence the size of the chromosome 
reflects the number of detected genes and not its nucleotide length. (E) 
Standard deviation of the log2 inferCNV values to the mean of non-
malignant cells compared between non-malignant and malignant cells of 
patient #1.

Additional file 3: Figure S3. PEMT and epithelial differentiating gene 
expression signatures are comparable to previously published EMT signa-
tures. (A) EMT hallmark gene set enrichment plot for log2 fold changes of 
pEMT cells against all other cells of lymph node metastasis from patient 
1. Shown is the stepwise calculated enrichment score, black lines indicate 
genes present in the respective gene set. (B) Average log2 fold change of 
gene expression (x-axis) and differences in cellular fractions expressing the 
respective gene (y-axis) between pEMT and epithelial differentiated cell 
clusters. Labelled in red are genes with log2 foldchange below or above 
1 that are included in the epithelial differentiation or pEMT signature, 
respectively, with top 10 genes named. The histogram on top shows 
the number of genes across the log2 fold change with in total 100 bins. 
(C, D) Average expression scores (y-axis) of the pEMT (C) and epithelial 
differentiation (D) signatures across tumor phenotypes from patient #1 
depicted in figure 2A (xaxis) color-coded by these clusters. (E) Heatmap of 
correlation coefficients of GSVA scores between 91 EMP-related signatures 
of malignant cells, derived from the EMTome database and selected 
publications (9, 10, 14). On the right side, the correlation coefficients 
between GSVA scores of EMT signatures from the EMTome database and 
of epithelial differentiation and pEMT signatures from patient #1 (right) are 
shown and next to it, annotated as ”EXPR_perc”, is the fraction of genes 
with non-zero expression and the size of the respective EMT signature in 
log10 scale with the respective number next to it. Rows and columns are 
hierarchically clustered using a spearman correlation distance (1-cor(x,y)) 
and ward.D2 method.

Additional file 4: Figure S4. Extended analysis of the tumor pheno-
type characterization for the lymph node metastasis of patient #1. (A) 
Top 5 enriched gene sets from log2 foldchanges of respective tumor 
phenotypes by normalized enrichment scores (x-axis). Gene sets of 
respective phenotypes are sorted from highest to lowest enrichment. 
Bars are colored by the negative decadic logarithm of the Benjamini- 
Hochberg adjusted p-value (padj). (B) First two PCs of OSCC cells with all 
six principal curves that are derived from trajectory inference. Graph on 
top visualizes the relationship between malignant phenotypes, described 
by the principal curves forming a branching trajectory. Cells responding 
to environmental conditions form their own branch, indicating that the 
strong reactive response determines their predominant phenotype. (C) 
Inferred CNVs across tumor cells of patient #1 (rows) for all chromosomes 
(columns). Columns show genes categorized in chromosomes and 
ordered by genome position; hence the size of the chromosome reflects 

https://doi.org/10.1186/s12967-023-04102-w
https://doi.org/10.1186/s12967-023-04102-w
https://doi.org/10.6084/m9.figshare.20905837.v1
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the number of detected genes and not its nucleotide length. Mito-
chondrial genes were excluded. (D, E) Inferred CNVs across tumor cells 
(rows) of chromosome 1 (D) and chromosome 17 (E) showing genes 
(columns) ordered by genome position. The signal on chromosome 1 is 
located on a genomic position on which S100 genes are accumulating 
and the signal on chromosome 17 on a location with accumulation 
of cytokeratins; most of these genes are highly expressed in the more 
epithelial differentiated cells.

Additional file 5: Figure S5. Malignant phenotypes characterized 
across all analyzed patients. (A) Number of cells (y-axis) for each library 
(x-axis) showing the cells that are used for 10x Genomics scRNAseq 
(light blue) and all recovered, i.e., detected, cells after sequencing 
(blue). Based on manufacturers information a recovery rate around 50% 
is expected. (B) Heatmap for scaled, log-normalized gene expression 
of tumor cells (columns) split by respective phenotype depicted in 
Figure 3C and the top 10 DEGs (rows) of the respective phenotype 
against all other tumor cells. DEGs are sorted from highest to lowest 
log2 foldchange and row sections are ordered the same as column sec-
tion. On bottom, the respective patient and localization is annotated 
for each cell. (C) Top 5 enriched gene sets from log2 foldchanges of 
respective tumor phenotypes by normalized enrichment scores (x-axis). 
Gene sets of respective phenotypes are sorted from highest to lowest 
enrichment. Bars are colored by the negative decadic logarithm of the 
Benjamini- Hochberg adjusted p-value (padj). (D) UMAP of OSCC cells 
as depicted in figure 3C with PCs corrected for patient-specific effects 
using harmony. Cells are annotated according to their patient id. (E) 
Inferred CNVs across EMP-related OSCC cells from patient HN01 (rows) 
for all chromosomes (columns). Cells split by their EMP phenotype 
do not show any differences in their inferred CNVs pattern. Columns 
show genes categorized in chromosomes and ordered by genome 
position; hence the size of the chromosome reflects the number of 
detected genes and not its nucleotide length. Mitochondrial genes 
were excluded. (F) UMAPs of malignant cells from all respective 
patients. Cells are annotated SNN clusters and renamed according to 
the predominant phenotype. (G) Same plot as depicted in Figure 3F 
with the names of all patient-specific clusters as shown in E followed be 
the patient id.

Additional file 6: Figure S6. Inferred transcription factor activity 
might be biased by activator or repressor function. (A) Distribution of 
the mean activity of all cells from patient #1 for all transcription factors 
split by repressor, ambiguous and activators. Repressors and activators 
are defined based on more than 90% of the target genes being either 
repressed or upregulated, transcription factors with less than 90% 
for both are in the ambiguous class. (B) Distribution of the fraction of 
cells within a respective cell cluster with a transcription factor activity 
of greater than 0. The clusters include all cell types and malignant cell 
clusters from patient #1 split by activators, ambiguous and repressors. 
Clusters with high fraction of cells with activity greater than 0 indicate 
an active transcription factor, which is more prominent across repres-
sors than for activators.

Additional file 7: Figure S7. Cell type abundances across patients and 
tissues. (A) Relative fractions (xaxis) of cell types (y-axis) across different 
patients (left) or tissue types (middle) with the absolute number of cells 
per cell type (right), colored by cell types from Figure 5C. “NA” denotes 
cells that could not be demultiplexed from hashed samples and hence 
could not be assigned to a tissue type. (B) Relative fractions (x-axis) of 
cell types (y-axis) across different patients (left) with absolute numbers 
per cell type (right). (C) UMAP of 41,284 cells based on OSCC scRNAseq 
data from our cohort and colored by patients. (D) UMAP of 21,037 
cells based on CD45-negative and HPV-negative primary HNSCC from 
Kürten et al. and colored by patients.

Additional file 8: Figure S8. Bulk transcriptomes reveal the cellular 
composition of OSCC across tissue types. (A) Fractions of cell types 
(x-axis) across all samples (y-axis) including primary tumors (PT), 

metastatic lymph nodes (MET) and tumor-free lymph nodes (LN) for cells 
detected by scRNAseq (left panel) or deconvoluted from bulk transcrip-
tome analysis (right panel). (B) Pie charts showing the average fraction of 
celltypes across samples from each tissue type, derived from scRNAseq 
data (top) and bulk transcriptome deconvolution (bottom) and colored by 
cell type. cDCs: conventional dendritic cells; pDCs: plasmacytoid dendritic 
cells; RBCs: red blood cells; ECs: endothelial cells.

Additional file 9: Figure S9. Characterization of OSCC-derived fibroblasts. 
(A) Heatmap of scaled, log-normalized expression of the top 5 differen-
tially expressed genes (DEGs) (rows) for fibroblasts and pericytes (col-
umns) split by their respective phenotype. DEGs are sorted from highest 
towards lowest log2 foldchange and row sections are ordered like column 
sections. (B) Normalized enrichment scores (NES) of top 5 enriched gene 
sets for each fibroblast phenotype. Gene sets are sorted from highest to 
lowest NES and the bar chart is colored by negative decadic logarithm of 
Benjamini-Hochberg adjusted p-values (padj). (C) Scaled, log-normalized 
expression of collagens (COL) (rows) across fibroblasts and pericytes 
split by respective phenotypes (columns). Rows are clustered by their 
similarity using the Euclidean distance and ward.D2 method. (D) Selected 
genes (y-axis) expressed across phenotypes (x-axis). Dots are colored by 
averaged log-normalized gene expression and dot size represents the 
percentage of cells expressed in this phenotype, i.e., cells with more than 
1 unique molecular identifier (UMI) detected in the respective gene. (E-H) 
Analog to AD for fibroblasts and pericytes from Kürten et al. dataset. (I) 
Composition of phenotypes across tissue types in pie charts (top) and 
across samples as bar chart (bottom). Pie charts show the average fraction 
of phenotypes across fibroblasts and pericytes for each tissue type. The 
bar chart shows the fraction of phenotypes (x-axis) across samples (y-axis) 
on the left with the absolute abundance of cells on the right side, colored 
by tissue type. (J) Similar plot as in I for the Kürten et al. dataset. As all sam-
ples represent primary tumors, they were summarized in one pie chart.

Additional file 10: Table S1. Clinical and sequencing information from 
OSCC patients.

Additional file 11. Materials and Methods.
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